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Abstract

First posed in 1942 by Kelly and Ulam, the Graph Reconstruction
Conjecture is one of the major open problems in graph theory. While
the Graph Reconstruction Conjecture remains open, it has spawned
a number of related questions. In the classical vertex graph recon-
struction number problem a vertex is deleted in every possible way
from a graph G, and then it can be asked how many (both minimum
and maximum) of these subgraphs are required to reconstruct G up
to isomorphism. This can then be extended to deleting k vertices in
every possible way.

Previous computer searches have found the 1-vertex-deletion re-
construction numbers of all graphs of up to 11 vertices. In this paper
computed values of k-vertex-deletion reconstruction numbers for all
graphs on up to 8 vertices and k ≤ |V (G)| − 2 are reported, as well
as for some k for graphs on 9 vertices. Our data suggested a number
of new theorems and conjectures. In particular we pose, as a gen-
eralization of the Graph Reconstruction Conjecture, that any graph
on 3k or more vertices is k-vertex-deletion reconstructible.

1 Introduction

Traditional graph notation (as in [6, 3, 13]) is primarily used in this pa-
per. In all cases graphs are assumed to be simple, undirected, and finite.
Furthermore, graphs are considered to be unlabeled, and therefore isomor-
phic graphs are not distinguished. In the case of common graphs such as
cliques (Kn), bipartite/tripartite cliques (Kr,s/ Kr,s,t), paths (Pn), and cy-
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cles (Cn), the subscripts indicate the number of vertices. The set of all
graphs on n vertices is denoted by Gn.

Where more complex graphs need to be labeled, the graph6 notation
(as implemented in Brendan McKay’s nauty package [15]) is used. This
notation uses printable ASCII characters to encode the adjacency matrix
of the graph in a compact form. As the adjacency matrix of a graph, and
therefore the graph6 representation, depends on the vertex labeling, the
default canonical labeling from nauty is used. For instance, the graph 2K2

would be written as C‘ in graph6 notation.

In 1942 Kelly and Ulam posed the Graph Reconstruction Conjecture,
and it has remained an important open problem to this day.

Definition 1 ([12, 5, 9]). Deckk(G) is the multiset of graphs that results
from deleting k vertices in every possible way from the graph G. When a
vertex is removed, all edges incident to that vertex are also removed. The
elements of a deck are customarily referred to as cards.

Graph Reconstruction Conjecture (Kelly and Ulam, 1942 [10, 12]).
Any simple finite undirected graph G on 3 or more vertices can be uniquely
identified (up to isomorphism) by Deck1(G).

There are no known counter-examples to this conjecture, and it is widely
believed to be true [1, 5, 13, 14]. For some classes of graphs the conjecture
has been proven to hold; specifically disconnected graphs, regular graphs,
trees, and maximal planar graphs [19, 2, 20, 1]. Through exhaustive com-
puter search it has previously been shown that all graphs of between 3
and 11 vertices [14, 24, 17], and certain classes of graphs of up to 16 ver-
tices [14, 24], are reconstructible. In 1957 Kelly proposed generalizing the
Graph Reconstruction Conjecture to deletion of multiple vertices [11].

A graph G is said to be k-vertex reconstructible if it can be uniquely
identified (up to isomorphism) from Deckk(G). More recently the question
“if a graph is k-reconstructible, how many of its k-vertex-deleted subgraphs
are required to reconstruct it?” has been asked. This takes two forms, the
existential (or ally) reconstruction number (∃rnk), and the universal (or
adversarial) reconstruction number (∀rnk).

Definition 2 ([8, 23, 12, 1]). The existential k-vertex reconstruction num-
ber (∃vrnk) of a graph G is the cardinality of the smallest S ⊆ Deckk(G)
that reconstructs G.

Definition 3 ([8, 23, 12, 1]). The universal k-vertex reconstruction number
(∀vrnk) of a graph G is the smallest number such that all S ⊆ Deckk(G)
of that cardinality reconstruct G.
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If a graph G is not k-vertex reconstructible, then we let ∃vrnk(G) =
∀vrnk(G) =∞.

While there is no known efficient way to compute the reconstruction
number of a general graph, there are various properties that are known. For
example, it has been shown by Bollobás that ∃vrn1(G) = ∀vrn1(G) = 3 for
almost all graphs [4]. There are also a number of classes of graphs which are
known to have large (> 3) ∃vrn1, some of which were recently discovered as
a result of computations similar to those described in this paper [19, 18, 17].

Less is known about k-vertex reconstruction for k>1. One result from
Nỳdl proves that it is possible to construct a graph on 2k vertices which
is not k-vertex reconstructible for k ≥ 1 [21, 22] (see also [5]). There has
also been some results on the the complexity of decision problems related
to k-vertex reconstruction [9], and the 2-vertex reconstructibility of graphs
up to 9 vertices [17].

2 Theorems and Conjectures on
Reconstruction Numbers

The reconstruction numbers we have computed led to a number of observa-
tions. In this section we present theorems generalizing those observations,
as well as some conjectures suggested by the data for future investigation.

Theorem 1. For all n ≥ 3, G ∈ Gn

∃vrnn−2(G) = ∀vrnn−2(G) =

{(
n

n−2

)
G ∈ S

∞ otherwise

where S = { nK1, Kn, K2 ∪ (n− 2)K1, K2 ∪ (n− 2)K1 }

Proof. Note that for n = k + 2, Deckk(G) consists of graphs K2 and 2K1,
i.e. counting exactly the number of edges in G and providing no other
information. Consequently, only graphs reconstructible from their number
of edges are k-reconstructible in this case. These are the graphs in S.
Observe that for all of them all

(
n

n−2

)
=
(
n
2

)
cards are needed for counting

the edges and thus for the reconstruction.

Lemma 2. For all k ≥ 1

∃vrnk(G) = ∃vrnk(G)

∀vrnk(G) = ∀vrnk(G)
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Proof. If S is a multiset of graphs, then we let c(S) be the result of tak-
ing the complement of each graph in S. Observe that for any graph G,
Deckk(G) = c(Deckk(G)) Therefore, a graph H shares subdeck S with G,
iff H shares subdeck c(S) with G. Hence, a subdeck S uniquely recon-
structs G iff c(S) uniquely reconstructs G, and all subdecks of cardinality s
uniquely reconstruct G iff all subdecks of cardinality s uniquely reconstruct
G.

Theorem 3. For all k ≥ 1, n ≥ k + 2, G ∈ {nK1, Kn}

∃vrnk(G) = ∀vrnk(G) =
(

n

k

)
−
(

n− 2
k

)
+ 1

Proof. Deckk(nK1) consists of
(
n
k

)
cards, each an edgeless graph on n − k

vertices. Observe that Deckk(K2∪(n−2)K1) has m =
(
n
k

)
−
(
n−2

k

)
edgeless

cards (those missing K2), as there are
(
n
k

)
total cards and

(
n−2

k

)
cards

which choose neither vertex of the K2 subgraph. Similarly, any graph
with more than m edgeless cards must be edgeless, because every edge is
included in at least one card. Finally, since all cards of nK1 are the same,
∃vrnk(nK1) = ∀vrnk(nK1) = m + 1. By Lemma 2 the same result applies
to Kn = nK1.

Theorem 4. For all k ≥ 1, n ≥ k + 2, G ∈ Gn

∀vrnk(G) ≥
(

n

k

)
−
(

n− 2
k

)
+ 1

Proof. If G = nK1, then ∀vrnk(G) =
(
n
k

)
−
(
n−2

k

)
+ 1 by Theorem 3.

Otherwise, as in the proof of Theorem 3, for any fixed edge e in G, Deckk(G)
has exactly m =

(
n
k

)
−
(
n−2

k

)
cards obtained by skipping e. Thus G and

G − e, while nonisomorphic, share a subdeck of m cards. Therefore m + 1
is a lower bound for ∀vrnk(G).

Corollary 5. For all k ≥ 1, n ≥ k + 2, G ∈ Gn

∀vrnk(G) ≥ ∀vrnk(nK1)

Proof. Follows directly from Theorem 3 and Theorem 4.

We also pose the following conjectures motivated by data presented in sec-
tions 4 and 5. It is easy to check that ∀vrn1(K1,3) = 4, but all further
known cases satisfy Conjecture 6.
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Conjecture 6. For all k ≥ 1, n ≥ k + 3, G ∈ {K1,n−1, K1 ∪Kn−1}, except
for k = 1, n = 4

∀vrnk(G) =
(

n

k

)
−
(

n− 2
k

)
+ 1

The next conjecture generalizes a well known theorem by Bollobás, which
states that almost every graph G has ∃vrn1(G) = ∀vrn1(G) = 3 [4]. Note
that Conjecture 7 only refers to ∃vrnk, as Theorem 4 shows that ∀vrnk

behaves quite differently for k > 1.

Conjecture 7. For all k ≥ 1, the probability that ∃vrnk(G) = 3 approaches
1 with increasing |V (G)|.

3 Non-Reconstructibility
Under k-Vertex-Deletion

While there are no known graphs on more than 3 vertices which are not
1-vertex reconstructible (which is consistent with the Graph Reconstruc-
tion Conjecture), this is not true for k-vertex reconstruction for k > 1 [21,
22, 17]. Table 1 shows the number of graphs which are not k-vertex recon-
structible for values of |V | and k we computed. Clearly k ≥ |V (G)| − 1 is
not of interest, as no graphs are reconstructible for such k. Where there
are empty spaces for n > k + 2, we were not able to compute the result
due to prohibitive computation time.1 Note that Table 1 agrees with The-
orem 1, as exactly 4 graphs are computed to be k-vertex reconstructible
when k = |V |−2.

graph order
4 5 6 7 8 9 10 11

unique graphs 11 34 156 1044 12346 274668 12005168 1018997864

k

1 0 0 0 0 0 0 0 0
2 7 4 0 0 0 0
3 30 78 20 8 0
4 152 854 1937
5 1040 11935
6 12342 273846
7 274664

Table 1: Number of graphs not k-vertex reconstructible by |V | and k

1The results on 9 vertices for k = 6 were computed while this paper was in review,
and presented only here. The associated data, such as that presented in later sections,
is available from the authors.
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This data suggests the following definitions and conjectures.

Definition 4. The k-vertex reconstructible orders (vrok) is the set of all
n such that all graphs with |V | = n are k-vertex reconstructible — i.e., let
vrok = {n : |V (G)| = n =⇒ G is k-vertex reconstructible}.

Definition 5. The minimal k-vertex reconstructible order (min(vrok)) is
the minimal value in vrok. If vrok = ∅, then min(vrok) =∞.

Conjecture 8. For all k ≥ 1, min(vrok) <∞ (vrok 6= ∅).

Conjecture 9. For all k ≥ 1, n ≥ min(vrok) ⇐⇒ n ∈ vrok.

Conjecture 10. For all k ≥ 1, min(vrok) = 3k.

It should be noted that 2k /∈ vrok is known due to Nýdl’s result in [21,
22]. Proof of Conjecture 9 would be remarkable, as it would also prove
the Graph Reconstruction Conjecture. Furthermore, Conjectures 9 and 10
together lead to a generalization of the Graph Reconstruction Conjecture:

Graph k-Vertex Reconstruction Conjecture. Any simple finite undi-
rected graph G on 3k or more vertices can be uniquely identified (up to
isomorphism) by Deckk(G).

The largest non-k-vertex reconstructible graphs are of interest, as there
are few of them for the values of k we have computed. It is easy to see that
the graphs in Figure 1 have the same Deck2, and by Lemma 2 so do their
complements. This result has been previously reported by McMullen in [17,
16]. Analogously, the first two graphs in Figure 2 have the same Deck3.
The other two graphs in Figure 2 are of a more interesting variety, as they
do not share a Deck3 with each other, but each with its own complement.

•
• •

• •�����������

*******

�������

•
• •

• •*******

�������

(A) D@s (B) DIK

Figure 1: Graphs on 5 vertices which, along with their complements, are
not 2-vertex reconstructible. The sets which share the same Deck2 are:

{A, B}, {A, B}.
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(A) GSP@xw (B) G_Kta[ (C) GG_}p{ (D) G_[pm[

Figure 2: Graphs on 8 vertices which, along with their complements, are
not 3-vertex reconstructible. The sets which share the same Deck3 are:

{A, B}, {A, B}, {C, C}, {D, D}

4 Existential k-Vertex-Deletion
Reconstruction Numbers

This section presents values of ∃vrnk we have computed for varying k.
Table 2 shows the distribution of ∃vrn1 according to number of vertices for
all graphs up to 11 vertices, a result we previously reported in [24]. Note
that |V | = 3 is not shown as Theorem 1 gives us exact values.

Tables 3, 5, 7, and 9 show the same information for k-vertex-deletion
for 2 ≤ k ≤ 5. We have computed ∃vrn |V |−2 for all graphs on up to 9
vertices, and the results do match Theorem 1, so we only display results
for |V | ≥ k + 3. For 2 ≤ k ≤ 5 we list those graphs which (along with
their complements) have maximal ∃vrnk for each order in Tables 4, 6,
8, and 10. Graphs with ∃vrn1 > 3 and |V | ≤ 11 have previously been
described [19, 18, 17, 24], and are not repeated here. It is clear that it is
more common for ∃vrnk to be greater than 3 when k > 1. However, an
obvious pattern appears whereby the ratio of graphs with ∃vrnk(G) = 3
increases as |V (G)| increases, regardless the value of k. This pattern led to
the formulation of Conjecture 7 in section 2.

graph order
4 5 6 7 8 9 10 11

unique graphs 11 34 156 1044 12346 274668 12005168 1018997864

∃vrn1

3 8 34 150 1044 12334 274666 12005156 1018997864
4 3 4 8 6
5 2 2 2 4
6 2
7 2

Table 2: Counts of ∃vrn1 by number of vertices
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graph order
5 6 7 8 9

unique graphs 34 156 1044 12346 274668
not reconstructible 4 0 0 0 0

∃vrn2

3 8 240 9592 270869
4 2 30 396 2464 3454
5 34 216 216 230
6 4 30 106 36 50
7 8 32 44 18 20
8 9 16 20 8 16
9 7 2 10 2 5
10 2 4 4 12
11 2 2 4 4
12 6 2
13
14 2 2
15
16 4

Table 3: Counts of ∃vrn2 by number of vertices

graph |V | |E| ∃vrn2 ∀vrn2
2K2 ∪K1 DGC 5 2 9 10
P4 ∪K1 DAK 5 3 9 10
P5 DDW 5 4 9 10
C5 DqK 5 5 9 9
3K2 E‘?G 6 3 11 13
7K1 F???? 7 0 12 12
3K2 ∪K1 FGC?G 7 3 12 16
K4 ∪K3 FwCWw 7 9 12 14
8K1 G????? 8 0 14 14
9K1 H?????? 9 0 16 16
K5 ∪ 6K4 H˜?GW[N 9 16 16 22

Table 4: Graphs which, along with their complements, have maximal ∃vrn2

for each order
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graph order
6 7 8 9

unique graphs 156 1044 12346 274668
not reconstructible 78 20 8 0

∃vrn3

3 2760
4 128 45713
5 10 652 145271
6 12 1738 62156
7 24 2290 14434
8 2 66 2285 3018
9 2 90 1874 678
10 4 126 1216 244
11 88 755 160
12 2 96 490 68
13 8 70 304 46
14 2 76 207 34
15 10 54 152 26
16 8 66 72 20
17 14 74 40 8
18 22 54 38 2
19 4 62 36 8
20 30 5 2
21 14 16 2
22 6 6 4
23 6 2
24 4 6 4
25 2
26 2 4
27
28 4
29 4
30 2
31 2
32
33 2
36 4
37 2
41 2
50 2

Table 5: Counts of ∃vrn3 by number of vertices

graph |V | |E| ∃vrn3 ∀vrn3
P3 ∪K2 ∪K1 E?D_ 6 3 19 19

••
•• •

•yyy
EANg 6 7 19 19

7K1 F???? 7 0 26 26
2K4 G˜?GW[ 8 12 41 49
9K1 H?????? 9 0 50 50

Table 6: Graphs which, along with their complements, have maximal ∃vrn3

for each order
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graph order
7 8

unique graphs 1044 12346
not reconstructible 854 1937

∃vrn4

7 6
8 6
9 10
10 21
11 8
12 16
13 48
14 66
15 4 100
16 6 170
17 2 193
18 2 212
19 2 346
20 2 440
21 4 368
22 310
23 2 318
24 365
25 14 375
26 2 436
27 6 322
28 22 420
29 8 460
30 16 488
31 30 452
32 22 434
33 44 442
34 2 442
35 450
36 354
37 370
38 351
39 403
40 300
41 304
42 212
43 169
44 70
45 58
46 36
47 22
48 20
49 6
50 4
51 2
52 2
56 2

Table 7: Counts of ∃vrn4 by number of vertices

graph |V | |E| ∃vrn4 ∀vrn4
(K2,4 − e) ∪K1 F??zo 7 7 34 34
8K1 G????? 8 0 56 56

Table 8: Graphs which, along with their complements, have maximal ∃vrn4

for each order
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|V |
8

unique graphs 12346
not reconstructible 11935

∃vrn5

23 2
24 4
25 4
26 4
27
28 2
29 6
30 4
31 2
32 2
33
34 4
35 2
36 2
37 2
38 4
39 4
40 6
41 2
42 8
43 8
44 8
45 8
46 12
47 32
48 10
49 28
50 30
51 24
52 56
53 66
54 65

Table 9: Counts of ∃vrn5

for |V | = 8

graph |V | |E| ∃vrn5 ∀vrn5
G@?G?C 8 3 54 55
G?C?J? 8 4 54 55
G‘?G?C 8 4 54 55
G?C?G[ 8 5 54 55
G???z[ 8 8 54 55
G???˜K 8 8 54 55
G?C?N[ 8 8 54 55
G?GGg{ 8 8 54 55
G??@}w 8 9 54 55
G??Hb{ 8 9 54 55
G??Hfw 8 9 54 55
G??Oˆs 8 9 54 55
G?CZFC 8 9 54 55
G??Ix{ 8 10 54 55
G??gx{ 8 10 54 55
GGC?N{ 8 10 54 55
G??Yx{ 8 11 54 55
G??gz{ 8 11 54 55
G?@@˜s 8 11 54 55
G?AJjw 8 11 54 55
G_?Dzw 8 11 54 55
G_?gx{ 8 11 54 55
G??zvo 8 12 54 55
G?CNnW 8 12 54 55
G?LLng 8 13 54 55
G@NEJs 8 13 54 55
G@hYtK 8 13 54 55
G_GXx{ 8 13 54 55
G‘GWx{ 8 13 54 55
G?@zvs 8 14 54 55
G?G\z{ 8 14 54 55
G_Azvo 8 14 54 55
G‘iayw 8 14 54 55

Table 10: Graphs which, along with their
complements, have maximal ∃vrn5 for

|V | = 8

5 Universal k-Vertex-Deletion
Reconstruction Numbers

This section presents values of ∀vrnk we have computed for varying values
of k, analogously to Section 4. Table 11 shows the distribution of ∀vrn1

according to number of vertices for all graphs up to 11 vertices, a result we
previously reported in [24]. As before |V | = 3 is not shown as Theorem 1
gives us exact values.

Tables 12, 14, 16, and 18 show the same information for k-vertex-
deletion for 2≤k≤5. We have computed ∀vrn |V |−2 for a graphs on up to
9 vertices, and the results do match Theorem 1, so we only display results
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for |V | ≥ k + 3. For 2≤k≤5 we list those graphs which (along with their
complements) have minimal ∀vrnk for each order in Tables 13, 15, 17, and
19. Since almost all graphs have the minimal ∀vrn1 = 3 [4] we do not give
a listing of them. As some of the graphs listed in Table 13 are too complex
to give a succinct description, they are shown in Figure 3. Note that those
graphs in Figure 3 appear related, but to not make up an obvious family.

Another interesting pattern that emerges involves the maximal ∀vrnk.
By Theorem 1 the maximal ∀vrnk of graphs on k + 2 vertices is

(|V |
k

)
. For

slightly larger graphs it appears to be
(|V |

k

)
− c for small values of c. For

example, our data shows that the maximal ∀vrn2 for |V | = 6, ∀vrn3 for
|V | ∈ {6, 7}, ∀vrn4 for |V | ∈ {7, 8}, and ∀vrn5 for |V | = 8 are all

(|V |
k

)
− 1.

graph order
4 5 6 7 8 9 10 11

unique graphs 11 34 156 1044 12346 274668 12005168 1018997864

∀vrn1

3 2 7 8 16 266 45186 6054148 815604300
4 9 19 56 496 8208 199247 5637886 199382868
5 8 90 520 3584 28781 301530 3922130
6 2 12 284 1434 10686 83730
7 4 20 914 4824
8 4 12

Table 11: Counts of ∀vrn1 by number of vertices

graph order
5 6 7 8 9

unique graphs 34 156 1044 12346 274668
not reconstructible 4 0 0 0 0

∀vrn2

8 6
9 9
10 15 6
11 2
12 4 4
13 98 2
14 46 14 5
15 76 4
16 216 36 9
17 532 111 271
18 172 1020 3704
19 28 2820 14270
20 3598 21982
21 3212 60137
22 1254 79798
23 248 48632
24 32 20508
25 6 17347
26 5772
27 1826
28 316
29 92
30 4

Table 12: Counts of ∀vrn2 by number of vertices
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graph |V | |E| ∃vrn2 ∀vrn2
5K1 D?? 5 0 8 8
K1,4 D?{ 5 4 7 8
K3 ∪K2 D‘K 5 4 8 8
6K1 E??? 6 0 10 10
K1,5 E?Bw 6 5 8 10
K4 ∪ 2K1 E@Kw 6 6 5 10
7K1 F???? 7 0 12 12
K1,6 F??Fw 7 6 9 12
8K1 G????? 8 0 14 14
K1,7 G???F{ 8 7 10 14

G‘iZQk 8 14 4 14
9K1 H?????? 9 0 16 16
K1,8 H????B˜ 9 8 11 16

HC‘PX‘H 9 12 4 16
HGDQXgj 9 14 3 16
H{dQXgj 9 18 9 16

Table 13: Graphs which, along with their complements, have minimal ∀vrn2

for each order
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(B) HC‘PX‘H (C) HGDQXgj (D) H{dQXgj
∃vrn2 = 4 ∃vrn2 = 3 ∃vrn2 = 9
∀vrn2 = 16 ∀vrn2 = 16 ∀vrn2 = 16

Figure 3: Complex graphs from Table 13
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graph order
6 7 8 9

unique graphs 156 1044 12346 274668
not reconstructible 78 20 8 0

∀vrn3

17 4
18 6
19 68
26 6
27
28 4
29 4
30 38
31 88
32 400
33 342
34 142
37 8
38
39 4
40 3
41 16
42 6
43 51
44 76
45 263
46 532
47 1282
48 2451
49 3902
50 2602 5
51 840
52 118 2
53 96 8
54 88 4
55 75
56 98
57 157
58 242
59 360
60 1940
61 3798
62 6426
63 11409
64 21181
65 32518
66 42127
67 46011
68 38908
69 30087
70 18289
71 10642
72 5843
73 2984
74 1216
75 224
76 64
77 46
78
79 4

Table 14: Counts of ∀vrn3 by number of vertices
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graph |V | |E| ∃vrn3 ∀vrn3
6K1 E??? 6 0 17 17
K1,5 E?Bw 6 5 15 17
7K1 F???? 7 0 26 26
K1,6 F??Fw 7 6 21 26
K5 ∪ 2K1 F@Kxw 7 10 10 26
8K1 G????? 8 0 37 37
K1,7 G???F{ 8 7 28 37
K2,6 G??F˜w 8 12 14 37
K1,1,6 G??F˜{ 8 13 14 37
9K1 H?????? 9 0 50 50
K1,8 H????B˜ 9 8 36 50

H{dQXgj 9 18 6 50

Table 15: Graphs which, along with their complements, have minimal ∀vrn3

for each order

graph order
7 8

unique graphs 1044 12346
not reconstructible 854 1937

∀vrn4

31 8
32 6
33 16
34 160
56 8
57 2
60 4
61 14
62 22
63 98
64 214
65 548
66 1065
67 3062
68 3362
69 2010

Table 16: Counts of ∀vrn4 by number of vertices

graph |V | |E| ∃vrn4 ∀vrn4
7K1 F???? 7 0 31 31
K1,6 F??Fw 7 6 27 31
K4 ∪K3 FwCWw 7 9 28 31
K2,5 F?B˜o 7 10 29 31
8K1 G????? 8 0 56 56
K1,7 G???F{ 8 7 47 56
K2,6 G??F˜w 8 12 21 56
K1,1,6 G??F˜{ 8 13 21 56

Table 17: Graphs which, along with their complements, have minimal ∀vrn4

for each order

15



|V |
8

unique graphs 12346
not reconstructible 11935

∀vrn5

51 6
52 6
53 18
54 24
55 357

Table 18: Counts of ∀vrn5

for |V | = 8

graph |V | |E| ∃vrn5 ∀vrn5
8K1 G????? 8 0 51 51
K1,7 G???F{ 8 7 45 51
K2,6 G??F˜w 8 12 47 51

Table 19: Graphs which, along with their
complements, have minimal ∀vrn5 for

|V | = 8

6 Algorithm

All the results presented in previous sections were obtained by using the
same basic algorithms which were described in [24]. After introducing some
notation on multisets (of graphs), this section describes the main algorithm.

Definition 6.

(a) m(S; x) is the multiplicity of an element x in a multiset S (the
number of times x appears in S).

(b) |S| =
∑

x∈S m(S; x) is the cardinality of a multiset S.

(c) B(S; q) = {x | m(S; x) ≥ q} is the set of elements in S with
multiplicity at least q. If q is omitted, then it is presumed to be 1,
giving the basis set of S.

The intersection (
⋂

) and union (
⋃

) of multisets preserves the minimal and
maximal multiplicity of matching elements, while the additive union (

⊎
)

sums the multiplicities of matching elements. Thus we have:

• m(S1

⋂
S2; x) = min(m(S1; x), m(S2; x))

• m(S1

⋃
S2; x) = max(m(S1; x), m(S2; x))

• m(S1

⊎
S2; x) = m(S1; x) + m(S2; x)

In the following, a set will be considered to be a special case of multiset,
where the multiplicity of all elements is one.

To determine both universal and existential reconstruction numbers the
same primitive question is asked: “can a given subdeck S reconstruct G?”
In order for S to not reconstruct G there must be another graph H which
also has S as a subdeck. Therefore, in order to answer the question, either
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an example of a graph which shares the same subdeck must be found, or
it must be proven that no such graph exists. We answer that question by
computational search.

In order to narrow down the search space of graphs which may share
a given subdeck, only graphs which share at least one card with G are
considered. An expedient way of obtaining that search space is to perform
the inverse operation to Deckk for each C ∈ Deckk(G).

Definition 7. Extensionsk(F) is the set of non-isomorphic graphs that
results from adding k vertices to the graph F, and adding edges incident to
the new vertices in every possible way.

The following algorithm, inspired by that used by Brian McMullen [17,
16], was used to compute the reconstruction results presented earlier:

1. DG ← Deckk(G)

2. for each C ∈ DG , compute multiset HC :

(a) set the basis set of HC to be Extensionsk(C)−G

(b) for each H∈HC let m(HC ; H)← min( m(Deckk(H); C), m(DG ; C) )

3. H ←
U

C∈DG
HC

4. let ∀vrnk(G)← 1 + max(m(H; H) : H ∈ H)

5. let ∃vrnk(G)← min( |S| : (S ⊆ DG) ∧ (
T

C∈S B(HC ; m(S; C)) = ∅) )

The multisets labeled HC are constructed such that each H ∈ HC has a
multiplicity equal to the number of times C is shared in the decks of G and
H. The multiset H then has multiplicities of each H ∈ H equal to the total
number of cards H shares with G.

It is important to note that since isomorphic graphs are considered
equivalent, a common implicit operation in this algorithm is the test of
isomorphism. This is accomplished by use of the canonical labeling function
in Brendan McKay’s nauty [15] package. Each graph is canonically labeled
as it is generated, and thereafter is simply tested for equality with others.

As canonical labeling itself is an expensive operation, it is beneficial
to reduce the number of times it must be performed. The structural dif-
ferences with the algorithm used in [16] and [17] are designed to reduce
the number of canonical labelings that are required. By taking advan-
tage of the fact that H ∈ Extensionsk(C) =⇒ C ∈ Deckk(H), we can
see that m(Deckk(G); C) = 1 =⇒ m(Hc; H) = 1 in step 2b with-
out performing any further calculations. To further optimize cases where
m(Deckk(G); C) > 1, it can be noted that computing m(Deckk(H); C)
only requires the inspection of those graphs in Deckk(H) that have the
same number of edges as C.
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