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Abstract

For a graph G, the expression G
v→ (a1, . . . , ar) means that

for any r-coloring of the vertices of G there exists a monochro-
matic ai-clique in G for some color i ∈ {1, . . . , r}. The vertex Folk-
man numbers are defined as Fv(a1, . . . , ar; q) = min{|V (G)| : G

v→
(a1, . . . , ar) and Kq * G}. Of these, the only Folkman number of
the form F (2, . . . , 2︸ ︷︷ ︸

r

; r − 1) which has remained unknown up to this

time is Fv(2, 2, 2, 2, 2; 4).
We show here that Fv(2, 2, 2, 2, 2; 4) = 16, which is equivalent

to saying that the smallest 6-chromatic K4-free graph has 16 ver-
tices. We also show that the sole witnesses of the upper bound
Fv(2, 2, 2, 2, 2; 4) ≤ 16 are the two Ramsey (4,4)-graphs on 16 ver-
tices.

1 Introduction

Let G be a finite, simple, undirected graph. We will denote the set of
vertices of G as V (G) and the set of edges as E(G). The graphs obtained
from G by addition and removal of an edge e will be written as G+ e and
G − e, respectively. G stands for the complement of G, and χ(G) for the
chromatic number of G. Finally, unless explicitly stated otherwise, it may
be presumed that all integer variables we name are positive.

The two-color Ramsey number R(k, l) is defined as the smallest number
n such that for every graph G on n vertices, either G contains a Kk or G



contains a Kl [4]. We say that a graph G is (k, l)-good if G does not contain
a Kk and G does not contain a Kl. The set of all (k, l)-good graphs on n
vertices is written as R(k, l;n).

The expression G
v→ (a1, . . . , ar) means that for any r-coloring of the

vertices of G there exists a monochromatic ai-clique in G for some color
i ∈ {1, . . . , r}. The vertex Folkman graphs Hv(a1, . . . , ar; q) are defined as

Hv(a1, . . . , ar; q) = {G : G v→ (a1, . . . , ar) and Kq * G}.

The vertex Folkman numbers Fv(a1, . . . , ar; q) are defined by

Fv(a1, . . . , ar; q) = min{|V (G)| : G ∈ Hv(a1, . . . , ar; q)}.

Since the order of a1, . . . , ar is inconsequential to the definitions, we will
assume that a1 ≤ a2 ≤ · · · ≤ ar. Folkman [3] proved that Hv(a1, . . . , ar; q)
is non-empty if and only if q > max{a1, . . . , ar}. Knowing that certain
Folkman numbers exist, the natural next question is what bounds can be
determined for those numbers. By the pigeonhole principle, we observe
that Km

v→ (a1, . . . , ar), where

m = 1 +
r∑

i=1
(ai − 1).

This easily leads to Fv(a1, . . . , ar;m + 1) = m.  Luczak, Ruciński, and
Urbański [7] obtained the next bound by proving that Fv(a1, . . . , ar;m) =
ar +m. Nenov [12] proved certain bounds for a prohibited clique order of
m− 1, specifically

Fv(a1, . . . , ar;m− 1) = m+ 6 if ar = 3 and m ≥ 6, and
Fv(a1, . . . , ar;m− 1) = m+ 7 if ar = 4 and m ≥ 6.

Of particular interest are the vertex Folkman numbers Fv(2, . . . , 2︸ ︷︷ ︸
r

; q),

also written as Fv(2r; q). Equivalently, these numbers can be defined as the
order of the smallest (r + 1)-chromatic graphs containing no Kq. Nenov
[13] proved various bounds for Folkman numbers of this variety, however
here we focus only on problems with q close to m. If m = r + 1 then we
consider only the case of ai = 2 for all 1 ≤ i ≤ r. From the proof of  Luczak
et. al. [7] we know that Fv(2r; r + 1) = r + 3.

This leads us next to vertex Folkman numbers of the form Fv(2r; r).
In the trivial case of r = 2 clearly Fv(2, 2; 2) does not exist. Chvátal [1]
proved Fv(23; 3) = 11, and Nenov [11] proved Fv(24; 4) = 11. The solution



for the remainder of the cases of this form is complete with Nenov’s proof
that Fv(2r; r) = r + 5 for r ≥ 5 [11].

Finally, we consider vertex Folkman numbers of the form Fv(2r; r − 1).
Again, directly by definition Fv(23; 2) does not exist. For r = 4, Jensen
and Royle [6] showed that Fv(24; 3) = 22. For r ≥ 6, Nenov [14] proved
that Fv(2r; r − 1) = r + 7. This leaves only Fv(25; 4), of which Nenov [14]
proved the bounds 12 ≤ Fv(25; 4) ≤ 16 and identified as “the only unknown
number of the kind F (2r; r − 1).”

In the remainder of this paper, we will show that Fv(25; 4) = 16 by
computationally proving that Fv(25; 4) > 15. Computationally proving
Folkman number lower bound such as this is not easy. To do so requires
showing that every graph on 15 vertices is not in Hv(24; 4). Even with
isomorph rejection it is computationally intractable to generate all graphs
on 15 vertices: There are 31,426,485,969,804,308,768 such non-isomorphic
graphs [10]. Therefore, we must use certain theoretical properties to prove
that only a subset of all graphs on 15 vertices can possibly be in Hv(25; 4),
and then enumerate and test that subset. Thus, the proof is part theoretical
and part computational: We theoretically show that some graphs on 15
vertices cannot be in Hv(25; 4) and then computationally enumerate the
rest and show that they are also not in Hv(25; 4). Our method for doing this
is based on that used by Coles and Radziszowski [2] to prove Fv(2, 2, 3; 4) =
14.

In addition to proving the lower bound, we also find all graphs on 16
vertices in Hv(25; 4) which are witnesses to the bound Fv(25; 4) ≤ 16. This
is done using the same process of theoretical elimination, computational
enumeration, and testing used to prove the lower bound.

2 Algorithms

In order to determine if the graphs we computationally enumerate are
in Hv(25; 4), we must test to see if they meet the Folkman property of
Fv(25; 4). Given some graph G to test, this means that G v→ (25) and
K4 * G must hold. Since G v→ (25) if and only if χ(G) > 5, we can test
G ∈ Hv(25; 4) by simply verifying χ(G) > 5 and K4 * G. As Nenov has
already proven that Fv(25; 4) ≤ 16, it is sufficient to computationally prove
that Fv(25; 4) > 15.



2.1 Theoretical constraints

We first define a maximal-Folkman graph.

Definition 2.1. For Folkman number F (a1, . . . , ai; q), a graph G is a
maximal-Folkman graph if and only if G ∈ H(a1, . . . , ai; q) and for all
u, v ∈ V (G), u 6= v, {u, v} /∈ E(G) it holds thatG+{u, v} /∈ H(a1, . . . , ai; q).
The set of all maximal-Folkman graphs is written as Hmax(a1, . . . , ai; q).

Consider any Kq-free graph G. Observe that any supergraph H of G on
the same set of vertices, such that addition of any edge to H creates Kq,
also satisfies χ(G) ≤ χ(H). Any such H is a maximal-Folkman graph with
the same parameters as G, and every G has at least one such maximal-
Folkman supergraph. Hence, in our case, it is sufficient to find all graphs
in Hmax

v (25; 4) from which we can derive Hv(25; 4) via the ReduceSize
algorithm of [2] (shown later as Algorithm 1).

Now, let us consider other attributes of potential G ∈ Hv(25; 4) on 15
vertices. Because K4 * G and R(4, 3) = 9 [15], it follows that G has a
K3. Thus, G can be seen as a 12-vertex graph G′ with an added K3 and
corresponding edges. For each vertex in the K3 we will add all possible
edges to a corresponding triangle-free subset in G′. This is illustrated in
Figure 1.

Obviously K4 * G′. Also, since χ(G) ≥ 6 and the addition of an
independent set can increase chromatic number by at most one, we know
that χ(G′) ≥ 5. Finally, since we are only trying to obtain G ∈ Hmax

v (25; 4)
we can restrict ourselves to only those G′ which are connected graphs (since
G must be K4-free maximal).

2.2 The extension algorithm

The above constraints allow us to tractably enumerate a set of 15-vertex
graphs containing all 15-vertex graphs in Hmax

v (25; 4), using the following
algorithm called Extend:

1. For every G′ which (a) has 12 vertices, (b) is connected, (c) has no
4-clique, and (d) has χ(G′) ≥ 5, perform steps 2–4 below. All 12-
vertex, connected graphs can be generated using the geng utility of
the nauty software package [8] and then filtered for properties (c) and
(d).

2. Extend G′ by adding K3 and incident edges to it. Each vertex in the
added K3 is made incident to all vertices of a maximal triangle-free



K3

G′

maximal
triangle-free

sets

Figure 1: G as a K3-extension to triangle-free subsets in G′

subset1. This is done in all possible ways for all maximal triangle-free
subsets of G′, skipping obvious isomorphisms (e.g., permutations of
the vertices in K3). The output will contain all the maximal-Folkman
graphs containing G′, as well as other Folkman and non-Folkman
graphs.

3. Eliminate isomorphs using nauty’s canonization functionality.

4. Filter out graphs with χ(G) ≤ 5. Since we started with graphs that
had no 4-clique and our extension algorithm does not allow the cre-
ation of a 4-clique, our final output will be graphs G such that K4 * G
and χ(G) ≥ 6. This implies that G ∈ Hv(25; 4).

2.3 The reduction algorithm

The Extend algorithm will generate all 15-vertex graphs in Hmax
v (25; 4).

However, if we want all graphs of that order in Hv(25; 4), we must reduce
the maximal-Folkman graphs to produce all their non-maximal-Folkman

1Just to be clear, a “maximal triangle-free” subset S of G′ is such that S contains no
triangles and the addition of any new vertex from V (G′) to S induces a triangle in S.



subgraphs. This can be done with the ReduceSize algorithm of [2], given
here as Algorithm 1 for convenience.

Algorithm 1 ReduceSize(G) for some Hv(a1, . . . , ai; q)
if G ∈ Hv(a1, . . . , ai; q) then

output G
for all e ∈ E(G) do
G← G− e
ReduceSize(G)

end for
end if

3 Results

3.1 Computing the lower bound Fv(25; 4) > 15

Through theoretical constraints we applied we were able to substantially
reduce our search space. There are only 41,364 connected graphs with 12
vertices, with no K4 and chromatic number at least 5. While the K3-
extension substantially expanded that set, the computation remained quite
tractable.

We implemented the Extend algorithm described above and executed
it for this case. The computation took place on a modern dual-core desk-
top and was completed in a matter of hours. It produced no maximal-
Folkman graphs for Fv(25; 4). We verified this computation by performing
a 4-extension yielding a 3-independent-set2 starting from a set of 11 vertex
graphs and received the same result. This shows that Hmax

v (25; 4) contains
no 15-vertex graphs. Therefore, we have computationally determined that
Fv(25; 4) > 15.

3.2 Witnesses to the upper bound Fv(25; 4) ≤ 16

As noted previously, Nenov [14] proved that Fv(25; 4) ≤ 16. He did so by
showing that R(4, 4; 16) ⊆ Hv(25; 4). We performed another extension and
reduction process similar to the one we used to show Fv(25; 4) > 15 in order
to determine if there were any other witnesses of Fv(25; 4) ≤ 16. This time

2Specifically, the 4-extension was performed by a regular 3-extension using a 3-
independent-set followed by extending by one more vertex which could have edges to
vertices in that 3-independent-set.
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Figure 2: The 16-vertex witness W2 ∈ Hv(25; 4)

however, we extended 12-vertex graphs by a K4. This extension produced
no Folkman witnesses. Since all of these extended graphs had a K4, the
only remaining graphs on 16 vertices to test were the graphs of R(4, 4; 16),
and Nenov had already proved they were such witnesses. Therefore, 16-
vertex graphs in Hv(25; 4) are exactly those in R(4, 4; 16). From [9] we
know that |R(4, 4; 16)| = 2. We will call these two graphs W1 and W2 and
describe their properties.

3.2.1 Witness W1 ∈ Hv(25; 4)

The first witness graph W1 was described by Greenwood and Gleason [5]
and is derived from the Paley graph of order 17. A Paley graph Pq for some
prime q, q ≡ 1 mod 4, is a graph on q vertices {0, . . . , q− 1}, in which two
distinct vertices u and v are adjacent if and only if |u− v| ≡ x2 mod q, for
some x. The witness W1 is formed by removing any single vertex from P17.



3.2.2 Witness W2 ∈ Hv(25; 4)

The second witness graphW2 is less well known. It is shown in Figure 2 with
its vertices labelled for the sake of discussion. Its symmetrical properties are
captured by eight graph automorphisms derivable from three automorphism
generators.

1. (0 7)(1 6)(2 5)(3 4)(8 15)(9 14)(10 13)(11 12)

2. (0 15)(1 14)(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)

3. (1 6)(2 10)(3 12)(4 11)(5 13)(9 14)

The first two generators are fairly straightforward: They describe graph
symmetry about the horizontal and vertical axes.

The third graph automorphism generator of W2 is more subtle and
first requires an examination of the orbits of W2, i.e. groups of vertices
such that each vertex can be swapped with any of the other vertices in
the group through one of the graph automorphims of W2. The four orbits
of W2 are O1 = {0, 7, 8, 15}, O2 = {1, 6, 9, 14}, O3 = {2, 5, 10, 13}, and
O4 = {3, 4, 11, 12}. The third automorphism generator operates on each of
the orbits seperately: It fixes O1 in place, flips O2 about the horizontal axis,
flips O4 about the vertical axis, and flips O3 about both the horizonal and
vertical axes. It is worth noting that by composing these three generators,
an automorphism of W2 can be produced to fix any one of the four orbits
while performing symmetrical flips on the rest.

4 Conclusion

By computationally proving Fv(25; 4) > 15 and using Nenov’s upper bound
of Fv(25; 4) ≤ 16, we have proven that Fv(2, 2, 2, 2, 2; 4) = 16. We have also
shown that the two graphs of R(4, 4; 16) are the sole 16-vertex witnesses of
the upper bound.
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