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Abstract. We derive a new upper bound of 26 for the Ramsey
number R(K5 − P3,K5), lowering the previous upper bound
of 28. This leaves 25 ≤ R(K5 − P3,K5) ≤ 26, improving on
one of the three remaining open cases in Hendry’s table, which
listed Ramsey numbers for pairs of graphs (G, H) with G and
H having five vertices.

We also show, with the help of a computer, that R(B2, B6) =
17 and R(B2, B7) = 18 by full enumeration of (B2, B6)-good
graphs and (B2, B7)-good graphs, where Bn is the book graph
with n triangular pages.
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1 Introduction

For graphs G and H, a (G, H)-good graph is a graph that does not
contain G as a subgraph and whose complement does not contain H, and
a (G, H;n)-good graph is a (G, H)-good graph on n vertices. The Ramsey
number R(G, H) is the smallest integer n such that no (G, H;n)-good
graph exists. We define R(G, H) as the set of all (G, H)-good graphs and
R(G, H;n) as the set of all (G, H;n)-good graphs. The values and best
known bounds for various types of Ramsey numbers are gathered in the
dynamic survey Small Ramsey Numbers [8].

For two graphs D and F define D + F to be the graph obtained by joining
each vertex in D to each vertex in F . If n is a positive integer, we define
Bn = K2 + Kn to be the book graph with n pages. We will refer to this
K2 as the ‘spine’ of a book graph. For the two cases we study, it was
known that 17 ≤ R(B2, B6) ≤ 18 [9] and R(B2, B7) ≤ 20 [2].

In 1989, Hendry [3] compiled a table of Ramsey numbers for connected
graphs G and H where both G and H have five vertices. Here, for the
number R(K5−P3,K5) we show that the only possible values are 25 or 26
(note that K5−P3 is a K4 with an additional vertex connected to two of its
nodes). The previous upper bound, R(K5−P3,K5) ≤ 28, is from Hendry’s
table and the lower bound is implied by the result R(K4,K5) = 25 [7].
This latter result is also essential to our improvement of the upper bound
to 26. The computations related to the number R(K5 − P3,K5) required
only a few hours of a standard desktop computer, while those related to
book graphs were more cpu intensive, and were completed in a few days.

2 Enumerations for R(K5 − P3, K5)

In order to obtain the new upper bound for R(K5−P3,K5), it is helpful to
enumerate the sets R(K4 − P3,K5) and R(K5 − P3,K4). It is known that
R(K4 − P3,K5) = 14 and R(K5 − P3,K4) = 18 [1]. Using straightforward
algorithms, the 1092 graphs in R(K4 − P3,K5) and the 3454499 graphs
in R(K5 − P3,K4) were enumerated. We tested the correctness of these
algorithms by exactly reproducing the publicly available sets R(K4,K4)
and R(K3,K5) [4].

The program nauty [5] was used to eliminate isomorphisms. The data are
summarized in Tables I and II.



n |R(K5 − P3,K4;n)| # Edges Contains K4 # Edges
1 1 0 0
2 2 0-1 0
3 4 0-3 0
4 10 1-6 1 6
5 26 2-8 2 6-7
6 92 3-12 8 6-12
7 391 5-16 29 7-12
8 2228 7-21 149 8-16
9 15452 9-27 751 10-19

10 107652 12-31 3946 12-24
11 557005 15-36 10649 15-28
12 1455946 18-40 6780 18-32
13 1184231 33-45 0
14 130816 41-50 0
15 640 50-55 0
16 2 60 0
17 1 68 0

Table I. Statistics of R(K5 − P3,K4).

The last two columns offer counts and the corresponding edge ranges of
all (K5 − P3,K4)-good graphs which contain K4 as a subgraph. In other
words, those graphs which are (K5−P3,K4)-good but not (K4,K4)-good.

n |R(K4 − P3,K5;n)| # Edges Contains K3 # Edges
1 1 0 0
2 2 0-1 0
3 4 0-3 1 3
4 8 0-4 1 3
5 15 1-6 2 3-4
6 36 2-9 4 3-6
7 78 3-12 7 4-7
8 190 4-16 11 5-9
9 308 6-17 18 6-12

10 326 8-20 13 8-13
11 110 10-22 5 10-15
12 13 12-24 1 12
13 1 26 0

Table II. Statistics of R(K4 − P3,K5).

Here, the last two columns offer counts and the corresponding edge ranges
of all (K4−P3,K5)-good graphs which contain K3 as a subgraph. In other
words, those graphs which are (K4 − P3,K5)-good but not (K3,K5)-good.



3 R(K5 − P3, K5) ≤ 26

Given a vertex x in a (K5 − P3,K5)-good graph F , define F+
x to be

the subgraph induced by the vertices adjacent to x and F−x to be the
subgraph induced by the vertices non-adjacent to (and not including)
x. Clearly, F+

x is (K4 − P3,K5)-good and F−x is (K5 − P3,K4)-good.
Because R(K4 − P3,K5) = 14 and R(K5 − P3,K4) = 18 [1], the degree of
a vertex in a (K5−P3,K5; 26)-good graph is bounded by 8 and 13, inclusive.

Walker [10] proved a result similar to that in Lemma 1 below for com-
plete graphs. The proof from [10] still holds for our case as follows.

Lemma 1 If ni is the number of vertices of degree i in a (K5−P3,K5;n)-
good graph and E(G, H, n) denotes the maximum number of edges in a
(G, H;n)-good graph then

0 ≤
13∑

i=8

(2E(K4 − P3,K5, i) + 2E(K5 − P3,K4, n− i− 1)

+ 3i(n− i− 1)− (n− 1)(n− 2))ni.

Using n = 26 in Lemma 1, along with our data from Tables I and II, yields
the constraint

0 ≤ −12n8 − 7n9 + 3n11 + 3n12, (1)
and we know

26 = n8 + n9 + n10 + n11 + n12 + n13. (2)

It is easy to see that there is no nonnegative integer solution with n8 ≥ 6.

A similar approach for n = 27 yields an inequality similar to (1) with
all negative coefficients, proving there is no (K5 − P3,K5; 27)-good graph.
When n = 25, we cannot draw any useful conclusions from the resulting
inequality.

Lemma 2 The sum of the degrees of the vertices of any K4 contained in
a (K5 − P3,K5; 26)-good graph cannot exceed 34. Furthermore, any K4 in
a (K5 −P3,K5; 26)-good graph must have at least two vertices of degree 8.

Proof: Let F be a (K5 − P3,K5; 26)-good graph with K4 as a subgraph.
Let X =

{
xj

}4

j=1
be the vertex set of the K4. To avoid creating K5 − P3,

the neighborhoods of each vertex xj , other than the vertices in X, must be
disjoint. By counting the vertices adjacent to each vertex xj that are not



in X, we have

4∑
j=1

(deg(xj)− 3) + 4 ≤ 26.

So,
4∑

j=1

deg(xj) ≤ 34.

Because the minimum degree of a vertex is 8, this inequality will hold only
if there are at least two vertices in X of degree 8.

2

Lemma 3 If a (K5−P3,K5; 26)-good graph has two K4’s, then they must
be disjoint.

Proof: Let F be a (K5 −P3,K5; 26)-good graph with two K4’s that share
a vertex. Let L denote the vertex set of the two K4’s. Note that if they
shared more than one vertex, a K5 − P3 would be created. By Lemma 2,
L must have at least three vertices of degree 8. Observe, from (1) and (2),
that there can be no more than 5 vertices of degree 8.

Case 1: Suppose there are exactly three vertices of degree 8 in L.
One of these must be the shared vertex. In order to comply with Lemma 2,
each K4 must have two vertices of degree 9, for a total of four vertices of de-
gree 9. However, by (1), it cannot be the case that both n8 ≥ 3 and n9 ≥ 4.

Case 2: Assume there are exactly four vertices of degree 8 in L. By
(1), there can be at most one vertex of degree 9. The remaining vertices
must be of degree 10 or greater. But with the assumption that L has
exactly four vertices of degree 8, every configuration of the degrees
contradicts Lemma 2.

Case 3: Let there be exactly five vertices of degree 8 in L. Then,
by (1), there can be at most one vertex of degree less than or equal to 10.
This requires L to contain a vertex of degree greater than or equal to 11,
which is impossible by Lemma 2.

Thus, if a (K5 − P3,K5; 26)-good graph has two K4’s, then they
may not share a vertex. 2

Theorem 1 R(K5 − P3,K5) ≤ 26.



Proof: Let F be a (K5 − P3,K5; 26)-good graph. There must exist at
least one K4 or else the graph would be (K4,K5; 26)-good, contradicting
R(K4,K5) = 25. Fix a vertex from the K4. The remaining 25 vertices
must also contain at least one K4. By Lemma 3, these two K4’s must be
disjoint. Since the K4’s are disjoint, Lemma 2 implies that there are at
least four vertices of degree 8. By (1), there can then be at most one vertex
of degree 9. Thus, at least one of the K4’s must contain two vertices of
degree 10 or greater, which contradicts Lemma 2. 2

Our approach was not effective at further lowering the upper bound, but
it is possible that an approach similar to that taken in [6] or [7] could
prove successful. We also attempted to construct a (K5 − P3,K5; 25)-good
graph by extending the set of 350904 known (K4,K5; 24)-good graphs. We
then tried altering the neighborhoods of specific vertices from graphs in
R(K4,K5; 24) to construct new (K5−P3,K5; 24)-good graphs. These efforts
were not successful, but they were also not exhaustive.

4 Two Ramsey Numbers for Books

Fully enumerating the sets R(B2, B6) and R(B2, B7) gives justification for
Theorems 2 and 3 below. Data for (B2, B6;n)-good graphs are presented
in Table III. Data for (B2, B7;n)-good graphs are presented in Table IV.

Theorem 2 R(B2, B6) = 17.

We use a one-vertex extension algorithm similar to that described in [7].
Any new vertex added to a (B2, B6;n)-good graph must be prevented from
covering any K2 contained in a K3 or any P3. Additionally, it must hit
any K1,6, and the ‘spine’ of any B5. The algorithm ultimately yields all
vertex sets to which the new vertex can connect.

These results were checked using a separate one-vertex extension algorithm
which added a vertex to a (B2, B6;n)-good graph and joined it in every
possible way. The resulting set of graphs was then filtered to remove all
graphs which were not (B2, B6;n + 1)-good. The two algorithms produced
identical results.

Theorem 3 R(B2, B7) = 18.

The first one-vertex extension algorithm used for Theorem 2 was modified
slightly to generate R(B2, B7). We applied the second extension algorithm
to generate graphs on up to 12 vertices and to generate graphs on greater
than 16 vertices. Because the number of intermediate graphs is too large



and this algorithm is very slow, we were unable to generate those graphs
on 13 through 16 vertices due to time and space constraints. The two
algorithms yielded identical results for the cases tested.

edges number of vertices n
e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 sum
0 1 1 1 1 1 1 1 7
1 1 1 1 1 1 1 6
2 1 2 2 2 2 9
3 1 3 4 5 5 18
4 2 6 9 10 2 29
5 5 14 20 9 48

6 3 17 37 35 2 94
7 12 50 87 9 158
8 6 55 161 44 266
9 2 45 235 173 2 457
10 22 272 534 16 844

11 6 229 1166 111 1512
12 1 138 1724 640 2503
13 49 1742 2575 1 4367
14 12 1247 6913 24 8196
15 2 611 12057 383 13053

16 1 197 13515 3606 17319
17 41 9821 18290 28152
18 10 4679 51619 16 56324
19 1 1443 84728 161 86333
20 1 309 82705 2530 85545

21 58 48951 24822 73831
22 12 18101 114410 132523
23 3 4412 254684 3 259102
24 2 812 295854 24 296692
25 1 152 190280 615 191048

26 36 71277 10254 81567
27 11 16779 65668 82458
28 4 2991 173717 176712
29 1 561 209420 209982
30 1 158 124637 124796

31 50 38747 15 38812
32 18 6751 431 7200
33 6 863 3314 4183
34 3 216 8561 8780
35 2 103 8655 8760

36 1 58 3845 3904
37 24 835 859
38 9 99 108
39 3 11 6 20
40 2 6 8

41 1 18 19
42 1 1 41 43
43 1 31 32
44 1 11 12
45 1 4 5

46 1 1
47 1 1
48 1 1 2
49 1 1 2
50 1 1

sum 1 2 4 9 22 69 255 1232 7502 52157 313837 974603 631116 25774 117 3 2006703

Table III. Number of (B2, B6;n)-good graphs with e edges.

This full enumeration of R(B2, B6) shows that R(B2, B6) = 17, with
three critical graphs on 16 vertices.



edges number of vertices n
e 8 9 10 11 12 13 14 15 16 17 sum
1 1 7
2 2 11
3 5 23
4 11 1 39
5 23 4 1 67

6 52 22 1 132
7 99 82 5 248
8 167 233 22 483
9 237 523 107 914
10 272 972 457 3 1726

11 229 1484 1683 22 3424
12 138 1846 4886 203 1 7075
13 49 1765 10373 1550 1 13738
14 12 1249 16149 8569 4 25983
15 2 611 18741 33427 36 52817

16 1 197 16340 90836 543 107917
17 41 10479 172098 7749 190367
18 10 4765 227707 66967 3 299452
19 1 1450 211682 335550 16 548699
20 1 310 139383 1030461 202 1170357

21 58 64793 2023072 3598 2091521
22 12 21006 2601178 61936 2684132
23 3 4801 2224981 635231 2865016
24 2 863 1286044 3374689 4661598
25 1 158 510455 9717128 4 10227746

26 38 141805 16254780 278 16396901
27 11 28687 16660092 15645 16704435
28 4 4850 10849383 374556 11228793
29 1 884 4622454 3438516 8061855
30 1 219 1334479 14158181 2 15492882

31 63 277504 29275327 4 29552898
32 23 47385 33114201 28 33161637
33 7 8345 21890140 828 21899320
34 3 1849 8910524 28309 8940685
35 2 517 2355110 407886 2763515

36 1 174 443185 2204437 2647797
37 58 73919 5053747 5127724
38 21 15168 5600518 5615707
39 7 4148 3309850 3314005
40 4 1338 1115058 21 1116421

41 1 499 223498 186 224184
42 1 206 27665 1594 29466
43 81 2535 8037 10653
44 30 516 19995 20541
45 12 383 24083 24478

46 6 299 13259 13564
47 3 204 3735 3942
48 2 118 681 1 802
49 1 70 85 156
50 30 10 1 41

51 12 8 20
52 5 20 25
53 3 22 25
54 2 9 11
55 1 3 4

56 1 1 1 3
57 1 1
58 1 1
59 1 1
60 1 1

61 1 1
62 1 1
63 1 1
64 1 1

sum 1301 9042 85845 977156 10263586 63849857 114071080 17976009 71695 65 207305998

Table IV. Number of (B2, B7;n)-good graphs with e edges. The data for
n ≤ 7 is identical to that of Table III, so they are not included.

This full enumeration of R(B2, B7) shows that R(B2, B7) = 18, with 65
critical graphs on 17 vertices.



One of the three (B2, B6; 16)-good graphs is presented in Figure 1 below.
This graph is isomorphic to one previously found by Rousseau [9]. For the
remaining two, one can be obtained by adding either of the edges AC or
BD; the other by adding both AC and BD.

Figure 1. One of three (B2, B6; 16)-good graphs.

Figure 2 shows one (B2, B7; 17)-good graph. To maintain the symme-
tries present in Figure 2 and to avoid creating ambiguities, the 17th vertex,
X, is not shown. The four vertices adjacent to X are indicated as such.
Note that there is no vertex in the center of the graph.

Figure 2. A (B2, B7; 17)-good graph.
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