A CASE FOR A PARALLELIZABLE HASH

Alan Kaminsky and Stanistaw P. Radziszowski
Department of Computer Science
Rochester Institute of Technology

Rochester, NY

ABSTRACT

On November 2, 2007, NIST (United States National Insti-
tute of Standards and Technology) announced an initiative
to design a new secure hash function for this century, to
be called SHA-3. The competition will be open and it is
planned to conclude in 2012. These developments are quite
similar to the recent history of symmetric block ciphers—
breaking of the DES (Data Encryption Standard) and emer-
gence of the AES (Advanced Encryption Standard) in 2001
as the winner of a multiyear NIST competition. In this pa-
per we make a case that parallelizability should be one of
the properties sought in the new SHA-3 design. We present
a design concept for a parallelizable hash function called
PHASH based on a block cipher, and we discuss PHASH’s
performance and security.

1. INTRODUCTION

This paper is concerned with unkeyed hash functions H :
{0,1}* — {0,1}™, where in practice the input length can be
bounded by some large constant, say 2%. The well known
Merkle-Damgard iterated hash template is used in almost
all practical hash functions. For messages spanning sev-
eral blocks, the chaining mechanism forces the blocks of
the message to be processed sequentially. Even at the level
of the individual blocks, only small parts of each round in
the compression function can be parallelized due to the se-
quential structure of typical compressions. This may be not
a big problem for short messages, but, as we will argue, it
will likely become a problem in the future when there will
be an increasing need to hash very long inputs.

The two most widely used practical hash functions are
MDS5 [16, 12, 18] and SHA-1 [10, 12]. Both follow the se-
quential chaining Merkle-Damgard template, and both have
a relatively large number of rounds, 64 and 80, respectively,
which have to be executed in sequence. Apart from only
minor possibilities of low level parallelization within each

978-1-4244-2677-5/08/$25.00 ©2008 IEEE

round, both designs are inherently sequential. Moreover, the
new hash functions of the SHA-2 family [10] with longer
hashes, which were added to the standard by NIST in 2002,
and the newer block cipher based hashes Whirlpool [15, 19]
and Maelstrom-0 [7], follow the same fundamental design
principle, and thus all of them are equally inherently sequen-
tial.

Dramatic progress on collision finding techniques for
MD5 and SHA-1 in recent years [4, 17, 20, 21] prompted
NIST to announce on November 2, 2007 a new initiative to
design a secure hash function for this century, to be called
SHA-3[11]. The competition will be open and it is planned
to conclude in 2012 [11]. These developments are quite
similar to the recent history of symmetric block ciphers—
breaking of the DES (Data Encryption Standard) and emer-
gence of the AES (Advanced Encryption Standard) in 2001
as the winner of a multiyear NIST competition.

In this paper we argue that parallelizability of the new
SHA-3 should be stressed strongly during the competition.
Section 2 presents use cases motivating a parallelizable hash
function. Section 3 presents a design concept for a par-
allelizable hash function called “PHASH.” Section 4 com-
pares PHASH with related work. Section 5 discusses the
performance of PHASH. Section 6 discusses the security of
PHASH.

2. USE CASES

The DES block cipher has been used for over 30 years since
its standardization in 1977; it was the NIST approved stan-
dard block cipher for nearly 25 years until its replacement
by the AES block cipher in 2001. A new standard hash
function can be expected to be used for a similar span of
years. Computers nowadays—including most of our stu-
dents’ laptops—have multicore CPUs and nearly a terabyte
of disk space. A hash function that must be computed with a
sequential algorithm, as all Merkle-Damgard iterated hash
functions must be, cannot utilize the full performance of
multiprocessor machines and is not a good choice for a hash
function that will be used for many years. We argue that the

1of7

SHA-3 initiative should strongly encourage the development
of parallelizable hash functions.

For short messages (say up to 1 Mb) conventional hash
functions seem fast enough, even on sequential machines.
Parallelizability is much more critical for large inputs; it
will make a great difference when hashing many terabytes
of data. For example, we can foresee use cases like these:

¢ A consumer hashes a two-hour high resolution movie
to see if it was downloaded correctly and to verify the
digital signature on the hash of the movie (as part of a
digital rights management system, perhaps). The same
applies to all kinds of content, such as games and mul-
timedia.

« A laboratory hashes a massive protein sequence
database and adds a digital signature. A scientist down-
loads the database, hashes it, verifies the integrity of the
download, and verifies the signature to authenticate the
database’s origin. The same applies to any large collec-
tion of data, such as global financial records databases
and large scale computational science simulations.

« A user hashes the entire file system while backing it
up, so that five years later the user can instantly check
whether the backup was corrupted.

< A computer’s hard disk is seized by police for a crim-
inal investigation. An image of the disk is created and
the hash of the entire disk image is computed. As
copies of the disk image are made, hashes of the copies
are used to prove chain of custody. Forensics ana-
lysts can testify in court that the disk image copies they
analyzed were the same as the original, because their
hashes were the same. [13]

Parallelizability is also critical when hash functions have
to be computed at very high speeds—for example, to com-
pute hashed message authentication codes (HMACS) in
hardware on very high speed networks. The hash calcula-
tions may not be able to keep up with the data stream unless
multiple blocks of the data stream can be hashed in parallel
by multiple processors.

These examples use a hash function for two separate
goals, checksumming (to verify the data’s integrity) and au-
thentication, as part of an HMAC or digital signature (to
verify the data’s origin). Mathematically, both operations
are the same, and the only difference is the size of the data.
Checksumming is usually associated with large data sets,
authentication with short messages.

Some maintain that since functions for checksumming al-
ready exist (such as CRCs), hash functions need not be used

for checksumming large inputs. Thus, hash functions can
be confined to authenticating short inputs, and so there is no
need for SHA-3 to be a parallelizable hash function that is
efficient on large inputs.

We argue that in practice, hash functions are in fact used
for checksumming, and that this is not likely to change in
the future. Recognizing this, hash functions in the current
Secure Hash Standard are already designed to handle large
input sizes—2%* bits for SHA-1 and SHA-256, 2128 bits for
SHA-384 and SHA-512. However, actually trying to com-
pute the SHA-1 hash of a two-million-terabyte (284-bit) file
in the sequential chaining mode would be suicide. A par-
allelizable SHA-3 is crucial for hashing even the already-
standardized input sizes. In addition, application designers
have an easier job if they don’t have to use different func-
tions for checksumming and for authentication. Just com-
pute SHA-3(x) for any x and no more needs to be done.

Others argue that, while hashing large messages is im-
portant, the hash function design itself should concentrate
on compression only. Hashing large messages should be
addressed by designing one or more modes of operation
for the hash function (analogous to the modes of operation
for a block cipher, such as CBC mode or counter mode).
These two components, compression and mode of operation,
should be designed separately, and so, again, there is no need
to consider parallelizability when designing the hash func-
tion for SHA-3.

We consider this to be a risky and shortsighted approach.
Whenever a hash function deals with more than one message
block it must define how to combine the results of compres-
sion on multiple blocks. Almost all hash applications require
more than one block. We cannot leave the mode of opera-
tion unspecified for SHA-3, as was done for block ciphers,
because the results of compressing each block must some-
how be merged together to yield a single hash value. Hence,
once SHA-3 defines how to merge multiple blocks it will
be too late to reconsider the mode without ending up with
an awkward design with different modes for different data.
Both the compression function and the mode of operation
must be defined in the SHA-3 standard, and the total design
must be parallelizable to be able to hash large messages ef-
ficiently.

3. PARALLEL HASH FUNCTION

Here we propose a design concept for a hash function
that can be computed in parallel, dubbed “PHASH.” The
PHASH computation comprises three phases: message
padding and length encoding, compression, and reduction.
The compression phase uses a compression function as a

20f7

K bits

plaintext

ciphertext
C(U,l)

Figure 1. The PHASH compression function

building block. We describe the compression function first,
then the three phases of the PHASH computation.

Compression function. Following Biham [3], PHASH uses
a block cipher for message compression; the size of the
hash value is the same as the cipher’s block size. Any se-
cure block cipher can be used. The cipher takes a K-bit
key and a B-bit plaintext block as input and produces a
B-bit ciphertext block as output. This will be denoted as
ciphertext = E (key, plaintext), where E stands for “encrypt.”

The PHASH compression function (Figure 1) takes two
inputs: a (K + B — N)-bit uncompressed value U and an N-
bit counter I. The compression function produces a B-bit
compressed value C(U, 1). Let U [a..b] denote bits a through
b inclusive of U, where bits are numbered from most to least
significant starting at 0. The compression formula is

CU,l)=E(U[0.K-1],U[K..K+B=N=1]|[{I)) (1)
That is, the first K bits of U are the block cipher key; the
last (B — N) bits of U are concatenated with (1), the N-bit
encoding of the counter, to form the B-bit plaintext; and the
block cipher’s output ciphertext yields the B-bit compressed
value.

PHASH can use either of two recent block ciphers specif-
ically proposed for hash functions: W, the block cipher of
Whirlpool [15], and ., the block cipher of Maelstrom-0
[7]. W uses K =512 and B = 512. .# uses K = 1024 and B
=512.

Another possibility is to use the Rijndael block cipher [5].
When originally proposed as an AES candidate, Rijndael
supported block sizes of 128, 192, and 256 bits; however,
only the 128-bit block size was standardized as AES. We re-
fer to Rijndael with a 256-bit block size as “AESplus.” AE-
Splus uses K = 256 and B = 256.

NIST is seeking hash sizes of 224, 256, 384, and 512 bits
for SHA-3. PHASH with W or .# yields a 512-bit hash;
that value can be truncated for a 384-bit hash. PHASH with
AESplus yields a 256-bit hash; that value can be truncated
for a 224-bit hash.

~[Cuslemlculcn] -

L[Sl s Cose Cosr] - - [Cm[o] Cona

Figure 2. PHASH computation tree with cipher W,
L =512, and R =128

M essage padding and length encoding phase. Like SHA-
1 and the SHA-2 family, the PHASH computation begins by
padding the message to be hashed and adding the message
length.

Let N, the number of bits in the counter, also be the num-
ber of bits used to encode the message length. SHA-1 and
SHA-256 use N = 64; SHA-384 and SHA-512 use N = 128.
For these hash functions the choice of N does not affect
the actual hash computation. However, as will be seen, for
PHASH it does.

Let M, a bit string, be the message to be hashed. Let |[M|
be the length of M in bits. |M| must be less than 2N. Append
the following bits to M: a 1 bit; zero or more 0 bits; and
the value of |[M| expressed as an N-bit binary number, most
significant bit first; such that the resulting bit string’s length
is a multiple of (K-++B—N). Call the resulting bit string X.

Compression phase. Split X into (K+4B—N)-bit blocks.
Let there be L such blocks; L = |X|/(K+B—N). Let X; be
the i-th block. For each block X;, compute the compressed
block C;i:

Ci =C(X,i) (2)

That is, each message block is compressed together with its
own block number as the counter. At the end of the message
compression phase we have L compressed blocks C;,0 <i <
L-1.

Note that if the number of bits used to encode the mes-
sage length (N) is increased, thus increasing the size of the
counter, each application of C will absorb fewer bits of the

3o0f7

message, thus increasing the hash computation time. N must
be chosen to give the desired tradeoff between the hash’s se-
curity, computation time, and the maximum allowed mes-
sage length.

Reduction phase. Following Bellare et al. [1, 2], PHASH
compresses all the message blocks X; independently, then
combines the compressed blocks C; together. This provides
parallelizability and incrementality. However, PHASH uses
a different reduction scheme designed to improve the hash’s
security.

The PHASH reduction phase is as follows. If after the
compression phase there is only one compressed block C,
then Cg is the hash of the original message. Otherwise, com-
pute reduced blocks D; from the compressed blocks C;:

Rj+R-1

D| = 62 C, 0<j<[L/R]-1 3)
i=R

taking Ci = 0 for i > L. That is, for each group of R con-
secutive compressed blocks, the blocks in the group are bit-
wise XORed together. This yields [L/R] reduced blocks D;.
Concatenate these reduced blocks, and append zero or more
0 bits such that the resulting bit string’s length is a multiple
of (K+B—N). Replace the original bit string X with this
new bit string. Apply the compression and reduction phases
to this new X. Keep repeating the compression and reduc-
tion process until the result is a single compressed block,
and that is the hash of the original message.

The PHASH computation can be depicted as a tree (Fig-
ure 2). Ateach level of the tree, each group of R input blocks
Xi is reduced into a single output block D;. For security, the
final reduced block Dg is run through the compression func-
tion (encrypted) one last time, unless the final reduced block
consists of just one compressed block Co.

Example. Consider an example of PHASH using ., with
K =1024 bits, B = 512 bits, counter size N = 96 bits, and R =
128. At each level of the reduction tree, an input string X of
184,320 bits (= 128 x (1024+512—96) bits) yields an output
string D of 512 bits, a reduction factor of 360. A message
of up to 184,223 bhits (about 22 kilobytes) requires only one
level in the tree (not counting the final compression). A mes-
sage of up to 66,355,103 bits (about 8 megabytes) requires
two levels in the tree. A maximum-size message of 2% —1
bits requires 11 levels in the tree.

Implementation. While PHASH is designed to be paral-
lelizable, it can easily be implemented as a sequential pro-
gram. PHASH can even be implemented in streaming mode,
without requiring the entire message to be stored in memory.

The PHASH algorithm can be naturally realized in hard-
ware, in conventional programming languages such as C and

X | X X% X | X [X | X | X, | length(x) |

30 Lo g Gy

C C C C C

_j_L_l _j_L_l
c c
\ 1
vy
c
l
c
H(X)

Figure 3. Damgard’s parallel hash

X [X [% [[X [X | X [%]

30 Lo g Gy

C C C C

H(X)

Figure 4. XHASH

assembly, and in object oriented programming languages
such as C++ and Java. Since modern block ciphers (includ-
ing AES, W, and .#) are designed to be implemented on
low-end 8-bit processors as well as high-end 32- and 64-
bit processors, PHASH can be implemented on low-end and
high-end processors as well.

4. RELATED WORK

Parallelizable hashes. Damgard’s 1989 paper [6] briefly
describes a design for a parallelizable hash function. Two
more recent papers discuss parallelizable hash function de-
signs in detail: one by Bellare, Guérin and Rogaway [1] in
1995 and one by Bellare and Micciancio [2] in 1997. The
latter paper, focusing on unkeyed parallelizable hashes, is
more directly relevant to our work; the former paper focuses
on keyed MACs.

The parallelizable hash function in [6] is based on a com-
pression function that maps a 2B-bit input into a B-bit out-
put. The hash function is simply a binary tree of compres-
sion functions (Figure 3). At each level of the tree, the com-
pression functions can all be computed in parallel. The out-
put of the tree is compressed together with the hash of the
message length, yielding the hash of the input message.

40of7

In [2], the authors study a very simple and tempting idea
called XHASH, where the hashes of individual blocks are
combined with XOR (Figure 4). This is clearly paralleliz-
able. Unfortunately, it is shown that if the number of blocks
is at least as large as the number of bits in the hash, one
can, with high probability, construct a preimage attack on
XHASH. Other ways of combining the hashes of individ-
ual blocks are also discussed in [2], but apparently none of
them was studied further in the literature, perhaps because
their security relies on far from well understood difficulty
of finding short vectors in integer lattices, certain weighted
knapsack problems, or special group theoretical problems.

PHASH uses the main parallelizability idea from
XHASH, with reduction via XOR. To guarantee security it
is sufficient to limit the number of blocks combined in a sin-
gle XOR; this foils the XHASH attack described in [2]. We
prevent this attack by re-encrypting the intermediate results
with the block cipher every R blocks. R = 128 seems a rea-
sonable choice but could be reduced to increase security. In
contrast to Damgard’s parallel hash, PHASH has a much
shallower reduction tree, the number of levels being about
the base-360 logarithm of the number of input blocks (for
the example given earlier) as opposed to the base-2 loga-
rithm. Since the levels of the reduction tree have to be com-
puted sequentially, PHASH requires less computation time
than Damgard’s parallel hash if both use a similar compres-
sion function.

Compression: block cipher vs. special purpose function.
The compression functions in essentially all practical hashes
were designed especially for those hash functions. Almost
every cryptography textbook will briefly discuss the possi-
bility of obtaining hash compression from a block cipher,
but such suggestions are typically quickly dismissed for two
reasons [18]: the strings produced by block ciphers are too
short, and block ciphers are too slow. Other researchers ar-
gue in addition [8] that special-purpose hash compression
functions permit more flexibility in the design, since we
don’t need to worry about secret keys and invertibility un-
der each fixed key.

We respond to these criticisms of block-cipher-based hash
functions in general, and PHASH in particular, as follows.
Since PHASH can use a block cipher with a 512-bit block
such as W or ., PHASH meets the hash size requirement
of SHA-3. Speed is not an issue; the block-cipher-based
Whirlpool hash function has been shown to be faster than
SHA-512 on a sequential machine [9, 14]. Because PHASH
absorbs more input bits than Whirlpool on each application
of the block cipher, PHASH on a sequential machine will
be faster still, and will be orders of magnitude faster on a
parallel machine.

As for the potential of more flexibility in the design of
hashes using special-purpose compression functions, so far
this approach has proved disastrous. We see successful at-
tacks on MD5 and SHA-1 because of poor designs of the
compression functions. Even more, Biham [3] has argued
that we should use the much better understood block cipher
design principles in hashes. Doing so would easily prevent
all current attacks, and there is no evidence that cipher-based
compression should be slower. As it is, it seems that current
hash compression functions try to hide their weaknesses by
employing a large number of rounds, instead of using fewer
but more powerful rounds as block ciphers do.

5. PERFORMANCE OF PHASH

Following some general observations about PHASH’s
performance, some initial throughput measurements for
PHASH are reported below. A thorough study of optimized
hardware and software implementations still needs to be
done for PHASH, as was done for Whirlpool [9, 14].

Sequential performance. The performance of PHASH us-
ing W can be determined relative to the performance of
Whirlpool. While Whirlpool absorbs only 512 bits of the
message with each application of W, PHASH absorbs 928
bits. For large inputs, the time needed for the reduction
phase is negligible compared to the compression phase.
Thus, PHASH using W should run nearly twice as fast as
Whirlpool on a sequential machine.

Parallel performance. If multiple processors are available,
and if the original message blocks X; can be accessed di-
rectly (for example, if the message is stored in a file), the
compressed blocks C; can be computed in parallel. Since
each block is compressed independently, this is a “mas-
sively parallel” computation that requires no synchroniza-
tion or communication between the processors, resulting in
a speedup almost equal to the number of processors. Like-
wise, at each level of the reduction tree the reduced blocks
D; can be computed in parallel. The reduction tree levels
themselves must be computed in sequence. However, since
the number of levels grows only as the base-360 logarithm
of the message size, the reduction computation occupies a
decreasing fraction of the total computation as the message
size increases. A parallel implementation of PHASH should
therefore yield very good performance as the message sizes
scale up.

Incremental re-hashing. Besides parallelizability, another
nice property of PHASH (not seen in standard hashes) is
that small length preserving changes in the message permit
a very fast update of the hash value by recomputing only
the affected intermediate quantities along paths of a very

50f7

shallow reduction tree. This would require caching the D
blocks at each level of the reduction tree; however, the length
of these blocks is much smaller than the length of the origi-
nal message.

Throughput measurements. One hardware implemen-
tation and performance study of PHASH has been done
[22]. Sequential versions of three hash functions—SHA.-
512, Whirlpool, and PHASH—were implemented on a Xil-
inx Vertex-5 LX330 FPGA. All three hash functions gener-
ated a 512-bit hash. The PHASH implementation used the
W block cipher (which Whirlpool also uses) with a counter
size N of 128 bits. The SHA-512 implementation attained a
throughput of 1.8 Gbps; Whirlpool, 7.7 Gbps; and PHASH,
15.1 Gbps. Sequential PHASH did in fact run nearly twice
as fast as Whirlpool and ran over eight times faster than
SHA-512.

Parallel versions of PHASH with 2, 4, 8, and 16 instances
of W were also implemented. These attained throughputs
of 28.9, 55.6, 101.0, and 182.6 Ghps, respectively. The
speedups relative to sequential PHASH were 1.9, 3.7, 6.7,
and 12.1, respectively.

6. SECURITY OF PHASH

While a formal proof of PHASH’s security still needs to be
done, some simple observations can be made.

Block cipher security. First, our design is quite close to
that considered by Bellare and Micciancio [2]. Roughly
speaking, if we trust the security of the block cipher used
in PHASH’s compression function, then we should trust the
security of PHASH, provided the block cipher is not used in
such a way that PHASH can be attacked without breaking
the block cipher.

XHASH attack. The attack against XHASH in [2] is likely
to succeed if R, the number of message blocks XORed to-
gether, is close to B, the number of bits in the hash value.
The attack relies on finding a linear dependency among R
random vectors in GF(2B). For PHASH, the probability of
finding a linear dependency among 128 random vectors in
GF(25%?) is vanishingly close to zero, so PHASH should
not be susceptible to the XHASH attack. Note that PHASH
proffers a tradeoff in the choice of R: increasing R reduces
the computation time, since fewer encryptions are needed in
the reduction phase, but also increases the likelihood of a
successful XHASH attack. A choice of R = 256 may still be
secure enough; a choice of R = 64 or 32, while more secure,
would increase the computation time somewhat.

Preimage resistance. Like all hash functions based on
block ciphers, finding the input to PHASH that yielded a

given output reduces to finding the plaintext and key that
yield a known ciphertext. If PHASH’s block cipher is re-
sistant to a ciphertext-only attack, it seems that PHASH is
preimage resistant.

Second preimage and collision resistance. It is possible to
find second preimages and collisions in PHASH in 2N opera-
tions, where N is the number of bits in the counter. Consider
PHASH computing the hash of a message with two input
blocks Xg and X1. The high-order bits of Xy give a key for
the block cipher; the low-order bits of X concatenated with
a counter of 0 give a plaintext; the resulting ciphertext is the
compressed block Cq. Similarly, X; yields C;. The reduced
block Do is Co & Cy. Now, pick a different input block X;;
compress that to yield C/; and compute Cj; = C] @ Dq. If we
can find an input block X that compresses to Cg, then the
message (Xg||X1) will be a second preimage having the same
hash value as the original message (Xo||X1). To find Xg, pick
an arbitrary key, decrypt C{, and see if the low-order N bits
of the resulting plaintext have the required counter value (0);
if so, X{ is the key concatenated with the high-order bits of
the plaintext. If the block cipher behaves as a random map-
ping, the probability of success is 2~N. Collisions can be
found in a similar fashion.

Thus, the counter size N can be used to tune PHASH’s
security level. A larger counter size gives an increased se-
curity level, at the price of increased hash computation time.
For SHA-3, a B-bit hash function is required to have a se-
curity level of B/2 bits against collision attacks [11]; this
would require PHASH’s counter to be B/2 bits long. Also
for SHA-3, a B-bit hash function is required to have a secu-
rity level of B—m bits against second preimage attacks when
the input message lengths are 2™ bits or less [11]; this would
require PHASH’s counter to be B—m bits long.

PHASH can achieve all these required security levels sim-
ply by making the counter size N equal to the cipher’s block
size B. Parameterized this way, PHASH operates similarly
to a block cipher in counter mode; successive compressed
blocks C; are the encryptions of successive counter values,
with the encryption keys being determined by the input mes-
sage bits. We feel, however, that this buys only a small
amount of additional security at an excessive price in per-
formance.

Length extension attack. PHASH is not susceptible to a
length extension attack. Since PHASH’s final value is al-
ways the result of an encryption, it is not possible to con-
struct the hash of a message M, given the hash of a message
M3 but not My itself, where M> consists of M1 (including
padding and message length) followed by additional data.
To carry out a length extension attack would require break-
ing the block cipher.

6 of 7

7. CONCLUSION

Parallelizable hash functions will be needed to hash the
increasingly-large inputs we foresee in the coming years.
While PHASH’s security has not yet been rigorously ana-
lyzed, the PHASH design concept shows that it is possible
to design an efficient, secure, parallelizable hash function.
Any future standard hash function should allow parallel im-
plementations.

In the SHA-3 competition announcement, “flexibility” is
listed as the last criterion that will be used to judge the can-
didate hash functions, and the following is stated as one ex-
ample of flexibility: “Implementations of the algorithm can
be parallelized to achieve higher performance efficiency”
[11]. We feel that parallelizability should be stressed much
more strongly in the competition. A hash algorithm with
an inherent limit on its performance—one that cannot ex-
perience a speedup on a parallel computer—is inferior to a
hash algorithm that does not have this limit, assuming the
hashes’ security levels are equal. SHA-3 proposals that al-
low parallel implementations should be judged superior to
non-parallelizable hash functions.

REFERENCES

[1] M. Bellare, R. Guérin, and P. Rogaway. XOR MACs:
new methods for message authentication using finite
pseudorandom functions. In Advances in Cryptology—
CRYPTO ’95, 15-28.

[2] M. Bellare and D. Micciancio. A new paradigm for
collision-free hashing: incrementality at reduced cost.
In Advances in Cryptology—EUROCRYPT ’97, 163—

192.
[3] E. Biham. Recent advances in hash func-
tions: the way to go. June 24, 2005. http:

/I ww. cs. technion.ac.il/~bi ham Reports/
Sl i des/ hash- f unc- kr akow 2005. ps. gz

[4] J. Black, M. Cochran, and T. Highland. A study of the
MDS5 attacks: insights and improvements. In Proceed-
ings of the 13th International Workshop on Fast Soft-
ware Encryption, 2006, 262—-277.

[5] J. Daemen and V. Rijmen. AES submission doc-
ument on Rijndael, Version 2, September 1999.
http://csrc.nist.gov/CryptoTool kit/aes/
rijndael /Ri jndael . pdf

[6] 1. Damgard. A design principle for hash functions. In
Advances in Cryptology—CRYPTO ’89, 416-427.

[7] D. Gazzoni Filho, P. Barreto, and V. Rijmen. The
Maelstrom-0 hash function. In Proceedings of the 6th
Brazilian Symposium on Information and Computer
Systems Security, 2006.

7of7

[8] V. Klima, posts at the NIST Cryptographic Hash Fo-
rum, 2007. hash- f or um@i st . gov
[9] M. McLoone, C. Mclvor, and A. Savage. High-speed
hardware architectures of the Whirlpool hash function.
In Proceedings of the 2005 IEEE International Confer-
ence on Field-Programmable Technology, 147—-153.
[10] National Institute of Standards and Technol-
ogy. Secure hash standard. FIPS 180-2, 2002.
http://csrc.nist.gov/publications/fips/
fipsl180-2/fips180- 2. pdf
[11] National Institute of Standards and Technology. An-
nouncing request for candidate algorithm nominations
for a new cryptographic hash algorithm (SHA-3) fam-
ily. Federal Register, 72(212):62212—62220, Novem-
ber 2, 2007. http://csrc.nist.gov/groups/
ST/ hash/federal _register. htm
[12] A. Menezes, P. van Oorschot, and S. Vanstone. Hand-
book of Applied Cryptography. CRC Press, 1996.

[13] J. Patzakis. Maintaining the digital chain of
custody. In Infosecurity Europe Conference,
2003. http://ww.infosec.co.uk/files/

gui dance_software_04_12 03. pdf

[14] N. Pramstaller, C. Rechberger, and V. Rijmen. A
compact FPGA implementation of the hash function
Whirlpool. In Proceedings of the 2006 ACM/SIGDA
International Symposium on Field Programmable
Gate Arrays, 2006, pages 159—-166.

[15] V. Rijmen and P. Barreto. The Whirlpool Hash Func-
tion, 2003. http://paginas.terra.com br/
i nf ormati cal/ paul obarret o/ Wi rl pool Page.

ht m
[16] R. Rivest. The MD5 message-digest al-
gorithm. Internet RFC 1321, 1992.

http://ww. ietf.org/rfc/rfcl321.txt

[17] A. Satoh. Hardware architecture and cost estimates for
breaking SHA-1. In Proceedings of the 8th Interna-
tional Conference on Information Security (ISC 2005),
2005, pages 259-273.

[18] B. Schneier. Applied Cryptography, Second Edition.
John Wiley & Sons, 1996.

[19] W. Stallings. The Whirlpool secure hash function.
Cryptologia, 30(1):55—67, 2006.

[20] X.Wang and H. Yu. How to break MD5 and other hash
functions. In Advances in Cryptology—EUROCRYPT
2005, 19-35.

[21] X. Wang, Y. Yin, and H. Yu. Finding collisions in
the full SHA-1. In Advances in Cryptology—CRYPTO
2005, 17-36.

[22] P. Zalewski. FPGA design and performance analysis of
SHA-512, Whirlpool and PHASH hashing functions.
Rochester Institute of Technology Computer Engineer-
ing M.S. Thesis, May 2008.

