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Abstract

Proposed in 1942, the Graph Reconstruction Conjecture posits
that every simple, finite, undirected graph with three or more vertices
can be reconstructed up to isomorphism to the original graph, given
the multiset of subgraphs produced by deleting each vertex along
with its incident edges. Related to this Reconstruction Conjecture,
existential reconstruction numbers, ∃rn(G), concern the minimum
number of vertex-deleted subgraphs required to identify a graph up
to isomorphism.

We discuss the resulting data from calculating reconstruction
numbers for all simple, undirected graphs with up to ten vertices.
From this data, we establish the reasons behind all high existential
reconstruction numbers (∃rn(G) > 3) for |V (G)| ≤ 10 and iden-
tify new classes of graphs that have high reconstruction numbers for
|V (G)| > 10.

We also consider 2-reconstructibility – the ability to reconstruct
a graph G from the multiset of subgraphs produced by deleting each
combination of two vertices from G. The 2-reconstructibility of all
graphs with nine or less vertices was tested, identifying four graphs
in this range with five vertices as the highest order of graphs that
are not 2-reconstructible.

1 Introduction

In this paper, all graphs are assumed to be simple, finite and undirected.
To distinguish between sets and multisets, [., ..., .] denotes a multiset. Given
graph G, V (G) is the set of vertices of G and |V (G)| is the order of G. If
v is a vertex of G, then G − v is the graph obtained from G by deleting



vertex v and its incident edges – a vertex-deleted subgraph of G. The
deck of G, D(G), is the multiset of vertex-deleted subgraphs of G defined
by [G − v0, ..., G − vn−1] where {v0, ..., vn−1} = V (G) and n = |V (G)|.
Each member of D(G) is referred to as a card. A subdeck of graph G is a
multisubset of D(G).

Proposed in 1942 by Kelly and Ulam, the Graph Reconstruction Con-
jecture states that for all graphs G and H with three or more vertices,
D(G) = D(H) iff G and H are isomorphic, denoted G ∼= H [4, 9]. Al-
though open in the general case, the conjecture has been proven to hold for
several classes of graphs such as disconnected graphs, regular graphs and
trees [4, 8, 14]. Also, McKay confirmed by calculation that every graph
G where |V (G)| ≤ 11 is reconstructible, even when D(G) is reduced by
isomorphism type [10].

An issue related to the Reconstruction Conjecture is that of reconstruc-

tion numbers. While the Reconstruction Conjecture is concerned with the
possibility of reconstructing any given graph up to isomorphism from its
full deck, reconstruction numbers consider the subdeck size of a graph re-
quired to reconstruct it up to isomorphism. Specifically, in this paper we
consider existential reconstruction numbers.

Definition 1. The existential reconstruction number of G, ∃rn(G), is the
minimum number of vertex-deleted subgraphs of G required to reconstruct
G up to isomorphism.

It is known that in most cases, a given graph G is reconstructible from a
small subset of cards from D(G). In fact, Bollobás proved probabilistically
that almost all graphs can be reconstructed with only three cards of a deck
[3]. In this paper, for any graph G where ∃rn(G) > 3, G is considered to
have a “high” reconstruction number. These appear to be relatively rare
for small orders as well, as among more than twelve million graphs up to
ten vertices there are only thirty-five of them.

It is also noteworthy that for any graph G on at least three vertices
∃rn(G) ≥ 3, and in all cases ∃rn(G) = ∃rn(G). In addition, several pre-
dictions can be made regarding the existential reconstruction numbers of
disconnected graphs by the work of Myrvold and others [12, 13].

Theorem 1 ([12, 13]). Given disconnected graph G, where not all con-

nected components are isomorphic, ∃rn(G) = 3.

Theorem 2 ([13]). Given disconnected graph G = pKc, ∃rn(G) = c + 2,
for p, c ≥ 2.

In other words, graphs of the form pH are the only disconnected graphs
where high ∃rn values are possible. Among these, for any graph G = pKc

with p, c ≥ 2, ∃rn(G) = c + 2. In 2002, Asciak and Lauri proved that this



is the only class of disconnected graphs with such high ∃rn values relative
to |V (H)|.

Theorem 3 ([1]). Given disconnected graph G = pH, where H is not a

complete subgraph, ∃rn(G) ≤ |V (H)|.

We calculated existential reconstruction numbers for all graphs with
up to ten vertices. This was achieved by our algorithms using the nauty

software package developed by McKay [11] and Condor created at the Com-
puter Science Department at the University of Wisconsin [5]. Nauty pro-
vided efficient isomorph-free exhaustive generation of graphs and identifi-
cation of isomorphs. Condor was used to perform calculations in parallel
across machines on the RIT CS department local network for efficiency.
A sketch of the algorithm used to find reconstruction numbers is given in
Section 3.

2 Results

2.1 Existential Reconstruction Number Counts

Table 1 shows the counts of graphs with their determined ∃rn values ar-
ranged by order n.

Table 1: ∃rn(G) counts

H
H

H
H

H
∃rn

n
3 4 5 6 7 8 9 10

3 4 8 34 150 1044 12,334 274,666 12,005,156
4 3 4 8 6
5 2 2 2 4
6 2
7 2

In addition to finding ∃rn value counts, the software also recorded every
graph G with ∃rn(G) > 3. By analyzing these graphs, we were able to
determine the reason behind the high existential reconstruction number
found for every graph G with |V (G)| ≤ 10. With the exception of one
counter-example, every graph found with a high ∃rn value could be placed
in one of a few classes. Most of these classes can be used to identify an
infinite number of graphs of larger order with high existential reconstruction
numbers. Determining upper bounds on ∃rn(G) is usually even harder, and
is not addressed in the proofs of this paper. The exact values of ∃rn(G)
listed here are the results of exhaustive computations.
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Figure 1: ∃rn(G) = ∃rn(H) = 4
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Figure 2: Four graphs proving ∃rn(H) > 3

2.2 Classes of Graphs with a High ∃rn

2.2.1 Disconnected Graphs of the Form pKc

It is already known from Theorem 2 that there exist graphs G in this
class such that ∃rn(G) > 3 since ∃rn(pKc) = c + 2. Graphs 2K2, 2K4,
4K2, 2K3, 3K2, 3K3, 2K5, 5K2 were all calculated to have their expected
reconstruction numbers. And since ∃rn(G) = ∃rn(G) for every graph G,
their complements were identified as having high reconstruction numbers
as well.

2.2.2 Other Disconnected Graphs of the Form pH

It is not true that for every graph G = pH , where H is not complete,
∃rn(G) > 3, however only two such cases were found from our calculations.
These are given in Figure 1.

Given what we already know regarding reconstruction numbers, the ∃rn

value of graph 2C4 (G from Figure 1), is not surprising. C4
∼= K2,2

∼= 2K2,
and D(K1 ∪ K3) has three cards in common with D(2K2). As one might
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Figure 3: ∃rn(G) = 4

expect, D(K1 ∪ K3) has three cards in common with C4. It is because
D(2K2) and D(C4) are both multisets of isomorphic cards that we require
only one graph with three cards from its deck in common with theirs to
prove that they have high existential reconstruction numbers.

It is also true that D(2C4) is a multiset of isomorphic cards. So by
constructing graph K1 ∪ K3 ∪ C4, we have a graph with three cards in its
deck isomorphic to 2C4, proving that ∃rn(2C4) > 3. By Theorem 3, it
must be true that ∃rn(2C4) ≤ 4 as well.

However, the high ∃rn value for graph H does not seem to be so easy to
explain. We use several graphs to determine that all possible multisubsets
of D(H) with three elements are also shared by the decks of other graphs.
Such graphs are given in Figure 2.

Deleting each vertex from the top row of H in Figure 1 creates a set
of four isomorphic cards which we label A, and deleting vertices from the
bottom row of H leaves us with another set of isomorphs to be labeled B.
Figure 2 shows four graphs nonisomorphic to H whose decks contain all
possible multisubsets with three elements from D(H). The labeled vertices
indicate those which can be deleted to recreate cards A or B from D(H).

2.2.3 Redundantly Connected Cycles

Redundantly connected cycles in this paper refer to a new class of graphs
identified as having high existential reconstruction numbers. Notation
va ∼ vb states that vertex a is connected to vertex b and, in the follow-
ing definition, vc,i is the ith vertex of cycle c.

Definition 2. We define RCCn,j to be a graph with n ≥ 2 “redundantly
connected cycles”, each of length j ≥ 3. To compose graph RCCn,j we
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Figure 4: Graph H for RCC2,5

begin with graph F = nCj . In each component of F , vc,i ∼ vc,(i+1) mod j

where 0 ≤ i ≤ j − 1 and 0 ≤ c ≤ n − 1. Then by adding edges between
the cycles of F such that vc,i ∼ vd,(i+1) mod j for c 6= d, we create graph
RCCn,j .

G in Figure 3 is the graph RCC2,5. This was a sample RCC graph
identified by computations with a high ∃rn value. However, given the
following theorem, we see that for every graph H in this class ∃rn(H) > 3.

Theorem 4. ∃rn(RCCn,j) > n + 1, for all n ≥ 2 and j ≥ 3.

Proof. For any graph G = RCCn,j , D(G) is a multiset of isomorphic sub-
graphs. Therefore, to prove ∃rn(G) > n + 1 we need only construct one
graph H 6∼= G such that D(H) shares n + 1 elements with D(G)

To construct H , first delete any single vertex vc,p from G, giving us
a card from D(G). Next, choose any set of vertices from the resulting
subgraph labeled vd,q, where d < n, and q is fixed, q 6= p. All vertices from
this set are connected to the same set of vertices K. By re-adding deleted
vertex vc,p and placing edges connecting it to each v ∈ K, we create graph
H .

It is easy to see that H − vc,p is isomorphic to a card from D(G).
However, because vc,p is connected to every vertex in K, H − vd,q is also
isomorphic to a card from D(G) for each d. Also, since H is not regular,
H 6∼= G.

As an example, Figure 4 shows graph H where D(H) shares three cards
in common with D(RCC2,5), obtained by deleting vertices v0,4, v1,4 and
new vc,p.
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Figure 5: G = RCC2,4 = K4,4 and H = RCC3,3 = K3,3,3

RCC2,5 was the first and only graph in our results which led to the
RCC class. The astute reader may be curious why this was the case as
RCC2,3, RCC2,4 and RCC3,3 are in the range of graphs with ten or less
vertices as well. The reason for this is that they are also complements of
pKc, and their high ∃rn values were already explained. Overlaps between
RCC graphs and pKc complements are discussed below.

Remark 1. RCCn,4
∼= K2n,2n

Proof. All vertices of graph RCCn,4 labeled vc,p where p is even are con-
nected to all vertices vc,q, where q is odd, and no others.

Remark 2. RCCn,3
∼= Kn,n,n

Proof. All vertices of RCCn,3 labeled vc,p are connected to all vertices vc,q ,
where p 6= q, and no others.

These proofs are illustrated in Figure 5 with bipartite and tripartite
groupings of vertices indicated. At this point we have no clear idea on how
to establish in general the exact value of ∃rn(RCCn,j) for all n, j.

2.2.4 Pairs of Complete Graphs Connected by bK2

To discuss this class of graphs, a new notation is helpful.

Definition 3. For c1, c2 ≥ 1, 1 ≤ b ≤ min(c1, c2), graph Kc1
↔b Kc2

is formed by disjoint graphs Kc1
and Kc2

with b additional edges forming
partial matching between vertices of the two complete subgraphs.



Figure 6: Examples of Kc1
↔b Kc2

graphs

Because the two subgraphs being connected are complete, the orders of
the subgraphs and the number of one-to-one edges connecting them specifies
a unique graph up to isomorphism. The graphs K2 ↔2 K3, K4 ↔2 K3,
K4 ↔3 K4 and K5 ↔3 K3 are presented in Figure 6.

Theorem 5 below specifies a range of values of c1, c2 and b for
G = Kc1

↔b Kc2
, for which it must be the case that ∃rn(G) > 3.

Theorem 5. For any graph G = Kc ↔
b Kc, where c ≥ 3 and 2 ≤ b ≤ c−1,

∃rn(G) > 3.

Proof. Given graph G = Kc ↔b Kc, D(G) contains 2b ≥ 4 copies of
Kc ↔

b−1 Kc−1, subgraph A, and 2(c − b) ≥ 2 copies of Kc ↔b Kc−1,
subgraph B, exclusively. Therefore, to prove ∃rn(G) > 3 we must show
that there exist graphs nonisomorphic to G whose decks contain three el-
ements of A, two of A and one of B, two of B and one of A, and finally
three copies of B, whenever such combinations are possible in D(G).

Given graph H = Kc+1 ↔b−1 Kc−1, a subgraph isomorphic to A is
created for each vertex deleted from Kc+1 not connected to Kc−1. This
means that H contains c − b + 2 ≥ 3 copies of A in its deck.

With graph I = Kc+1 ↔b Kc−1, we obtain b ≥ 2 copies of A and
c − b + 1 ≥ 2 copies of B by deleting each vertex from Kc+1. Therefore,
from D(I) we can extract a multisubset with two copies of A and one copy
of B and a multisubset with two copies of B and one copy of A.

Finally we consider J = Kc+1 ↔b+1 Kc−1. By deleting vertices from
Kc+1 we can obtain b+1 ≥ 3 copies of B. (Note that Kc+1 ↔b+1 Kc−1 has
parameters violating Definition 3 for b = c−1. But since there are only two
copies of B in the multiset D(Kc ↔b Kc) for b = c− 1, the construction of
J is not necessary in this case.)



Table 2: ∃rn values for Kc ↔b Kc, 3 ≤ c ≤ 5

G ∃rn(G)

K3 ↔2 K3 4
K4 ↔2 K4 4
K4 ↔3 K4 5
K5 ↔2 K5 4
K5 ↔3 K5 5
K5 ↔4 K5 5

The constructions of graphs H , I and J imply ∃rn(G) > 3, since all of
them are clearly not isomorphic to Kc ↔b Kc.

The calculated ∃rn(G) values for all graphs in this class on up to ten
vertices are given in Table 2. At this point we have no simple method for
determining the exact value of ∃rn(Kc ↔b Kc) based on b and c.

2.3 High ∃rn Exception

The only graph with a high existential reconstruction number that did not
fit in the above categories is P4 with ∃rn(P4) = 4. This can easily be
proven as follows. There are two possible multisubsets of order three in
D(P4). The two graphs that share each of these subdecks in their own
decks are shown in Figure 7. Since P4 has so few vertices, it may just be a
degenerate case. Note also that P4

∼= P4, which explains the odd number
of graphs G of order four with ∃rn(G) = 4.

3 Algorithm

The following is an enhanced form of an algorithm used by Baldwin for her
own Master’s Project on graph reconstruction numbers [2].

The algorithm for calculating ∃rn(G) for graph G involves considering
all graphs whose decks have at least three cards in common with D(G).
These are found by first taking each unique subgraph H from D(G) and
determining every graph I , where I − v ∼= H for some vertex v. Since this
technique is bound to generate isomorphs, a canonical labeling of each new
I that is calculated is placed in a hash table.

As each new graph I is added to the hash table, D(I) is determined.
Each card from D(I) that is found to be isomorphic to a card from D(G)
that has not yet been matched up is marked. If three or more cards from
D(I) are matched with cards from D(G) the results are added as a row to
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Figure 7: ∃rn(P4) = 4

a relation matrix. When completed, the rows from the relation matrix will
represent the matches between the decks of all graphs I and D(G), where
D(I) shares at least three cards with D(G).

With the relation matrix completed, we use it to test each possible
subdeck of D(G) of size n, beginning with n = 3, to see if it is unique to
D(G). If we find one subdeck that is not in common with any D(I) in the
relation matrix, then ∃rn(G) = n. If all subdecks of size n are contained in
the deck of at least one of the I graphs, then n is incremented and testing
begins for all possible combinations of the new subdeck size. As long as G

is reconstructible, a value for ∃rn(G) will be found before n > |V (G)|.
When implementing the algorithm, computations were performed in-

dividually for each group of graphs of a given order and fixed number of
edges. By doing this, we were able to take advantage of the fact that
∃rn(G) = ∃rn(G) by computing ∃rn for all graphs below the appropriate
edge count and simply assigning that value to their complements. In this
way the time needed to compute existential reconstruction numbers was
almost halved.

4 2-Reconstructibility

Kelly proposed that the Reconstruction Conjecture can be generalized by
considering the reconstructibility of graphs from subgraphs created by delet-
ing some number k vertices instead of just one [7, 8]. The deck of graph G

where each card is created by deleting a combination of k vertices is denoted
as Dk(G). Graph G is said to be k-reconstructible iff it is reconstructible
up to isomorphism given Dk(G).

In addition to finding existential reconstruction numbers, calculations



Figure 8: Two graphs with the same 2-vertex deleted decks

testing 2-reconstructibility were completed for all graphs G up to nine ver-
tices. In these calculations, seven of the eleven possible graphs with four
vertices were found not to be 2-reconstructible. This is not surprising con-
sidering the low number of vertices from the original graph compared to
the number being deleted.

There were four graphs found with five vertices that were not 2-recon-
structible. These were the two graphs pictured in Figure 8 and their com-
plements. It is easy to verify by hand that these two graphs have the same
2-vertex deleted decks.

For all graphs G, where 6 ≤ |V (G)| ≤ 9, G was found to be 2-reconstruct-
ible. So as the Reconstruction Conjecture essentially poses that for every
graph G, where |V (G)| ≥ 3, G is 1-reconstructible, we might also wonder
whether for every graph H , where |V (H)| ≥ 6, H is 2-reconstructible.

5 Further Work

The resulting data and analysis from this paper point to several topics
that are worth further research. Most interesting of these is whether there
exists a graph G of odd prime order such that ∃rn(G) > 3, a question
that has been brought up elsewhere [6]. In the same paper it has also
been suggested that there are no graphs G with an odd number of vertices
where ∃rn(G) > 3, but this is not the case as implied by Theorem 2.
The question of prime order graphs becomes even more interesting with
our results, since every class of graphs found here having high existential
reconstruction numbers requires that its members have a composite number
of vertices. Such graphs of prime order are very likely to exist, yet finding
one with the smallest order seems to be not easy at all.

Other considerations could include what other classes of graphs might
exist whose members must have high ∃rn values. Also, we might try to
think of a simple method for precisely determining ∃rn(Kc ↔b Kc) and
∃rn(RCCn,j) in general. Finally, as asked in Section 4, does there exist
any graph G with |V (G)| ≥ 6 such that G is not 2-reconstructible?
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