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Abstract

We discuss a branch of Ramsey theory concerning vertex Folkman
numbers and how computer algorithms have been used to compute
a new Folkman number. We write G → (a1, . . . , ak)v if for every
vertex k-coloring of an undirected simple graph G, a monochromatic
Kai

is forced in color i ∈ {1, . . . , k}. The vertex Folkman number
is defined as Fv(a1, . . . , ak; p) = min{|V (G)| : G → (a1, . . . , ak)v ∧
Kp 6⊆ G}. Folkman showed in 1970 that this number exists for p >

max{a1, . . . , ak}. Let m = 1+
Pk

i=1
(ai−1) and a = max{a1, . . . , ak},

then Fv(a1, . . . , ak; p) = m for p > m, and Fv(a1, . . . , ak; p) = a + m

for p = m. For p < m the situation is more difficult and much less is
known. We show here that, for a case of p = m−1, Fv(2, 2, 3; 4) = 14.

1 Introduction

Let G be a simple, undirected graph with vertex set V (G) and edge set
E(G). The chromatic number of G will be denoted by χ(G), and the
independence number of G by α(G). For positive integers ai, we write
G → (a1, . . . , ak)v if for every vertex k-coloring of G, a monochromatic
Kai

is forced in some color i ∈ {1, . . . , k}. Let

Hv(a1, . . . , ak; p) = {G : G→ (a1, . . . , ak)v ∧Kp 6⊆ G} .

The graphs in the set H = Hv(a1, . . . , ak; p) are called Folkman graphs.
Folkman [2] (also [6]) showed thatH is non-empty for p > max{a1, . . . , ak}.
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Hv(a1, . . . , ak; p; n) will denote the set of Folkman graphs with n vertices.
Folkman graphs are maximal when the addition of any other edge will
create the forbidden Kp. Similarly, a Folkman graph is minimal when the
deletion of any edge causes the graph to lose the Folkman property. We
define the vertex Folkman numbers by

Fv(a1, . . . , ak; p) = min{|V (G)| : G ∈ Hv(a1, . . . , ak; p)} .

The Ramsey number R(r, l) is the smallest number n such that all edge
2-colorings of Kn contain either a monochromatic Kr in the first color or a
monochromatic Kl in the second color [3]. A graph G is an (r, l)-Ramsey
graph if G has no Kr and α(G) < l. The set R(r, l; n) is the set of all
(r, l)-Ramsey graphs on n vertices.

Let m = 1 +
∑k

i=1
(ai − 1). If G → (a1, . . . , ak; p) then χ(G) ≥ m [13].

By the pigeon-hole principle it is easy to see that Fv(a1, . . . , ak; p) = m

for p > m.  Luczak et al. [7] showed that Fv(a1, . . . , ak; p) = ak + m for
p = m. For p < m much less is known. Only one nontrivial value is known
for p = m − 2: Fv(2, 2, 2, 2; 3) = 22 computed by Jensen and Royle [4] in
1995. Most research has focused on the case p = m− 1. For a summary of
other results see [6].

In 2000, Nenov [13] showed that 10 ≤ Fv(2, 2, 3; 4) ≤ 14; he proved
the upper bound using the 14-node graph Γ3, depicted in Figure 1. No
graph with fewer than 14 vertices is known to exist in Hv(2, 2, 3; 4). It
is shown here that there are no such graphs and thus, Fv(2, 2, 3; 4) = 14.
Nenov and Nedialkov also studied several other parameter situations in
[10, 11, 12, 13, 14, 15, 16, 17]. For the purposes of this paper, references to
Folkman graphs will mean graphs in Hv(2, 2, 3; 4) unless otherwise stated.

Proving exact values of Folkman numbers by hand is often very difficult
since deriving the lower bound requires a non-existence proof. Computers
can be of great help, but because showing non-existence often entails large
searches, the algorithms must be carefully designed to work as efficiently
as possible.

To find the exact value of Fv(2, 2, 3; 4) with the aid of computers, there
are two main approaches. One approach is to check all graphs of order < 14
for inclusion in Hv(2, 2, 3; 4), starting with graphs of order 10. If a graph
is found to be Folkman, then the current order is the Folkman number. If
not, the next higher order must be checked. A second approach is to find
all Folkman graphs on 14 vertices and drop a vertex from each one in all
possible ways. If one of the resulting graphs is Folkman, then 13 is the new
upper bound and the process can be repeated on the Folkman graphs with
13 vertices. Once no smaller Folkman graphs are obtained, the Folkman
number has been found.



Figure 1: The Nenov graph Γ3 from [13].

2 Testing for the Folkman Property

Regardless of the approach, we must have an algorithm for testing whether
or not a graph is in Hv(2, 2, 3; 4). From the set parameters, any graph that
contains K4 can be discarded. For the remaining graphs, any colorings of
a graph that don’t have a K2 in the first or second colors must force a
K3 in the third, otherwise the graph is not Folkman. Such colorings occur
when two independent sets are colored with the first and second colors,
forcing any remaining vertices not in the union of the two independent sets
to contain a K3 in the third color.

The algorithm for determining if G ∈ Hv(2, 2, 3; 4) is fairly straightfor-
ward: Discard G if it contains a K4 or χ(G) ≤ 4. Otherwise, check that
for each pair of independent sets A, B ⊂ V (G), the induced subgraph on
V (G) \ (A ∪ B) contains a K3. A pseudo-code outline of the algorithm
is presented as Algorithm 2.1, InH2234. For this to be efficient, we need
Lemma 2.1.



Algorithm 2.1: InH2234(G)

if K4 ⊆ G or χ(G) ≤ 4
then return ( false )

M = AllMaxCliques(G)
T = {{a, b, c} : a, b, c ∈ V (G) and abc is a triangle in G}
for each A, B ∈M

do







C ← V (G) \ (A ∪B)
if C doesn’t contain a triangle in T

then return ( false )
return ( true )

Lemma 2.1 In InH2234 it is sufficient to consider only maximal inde-

pendent sets when determining whether G ∈ Hv(2, 2, 3; 4).

Proof. Let A, B be maximal independent sets in G and let V (G)\ (A∪B)
induce a subgraph S in G. In order for G ∈ Hv(2, 2, 3; 4), S must contain
a K3. Now let A′ ⊂ A and B′ ⊂ B. Since K3 is a subgraph of S, it follows
that the induced subgraph on V (G) \ (A′ ∪B′) also contains a K3. Thus,
in Algorithm 2.1 it is sufficient to consider only the maximal independent
sets A and B. �

For graphs of order 14, the number of maximal independent sets is
usually very small (around 40), so the complexity of the algorithm is not
a great obstacle. The algorithm AllMaxCliques [5] is used to find these
sets. Although AllMaxCliques returns maximal cliques, if the input is
G, the result will be maximal independent sets in G.

For efficiency, it is also necessary to have a precomputed table of tri-
angles in G. This table is used to check if an induced subgraph contains
a triangle. The table is not very large, with an upper bound of 364 ele-
ments for K14. The algorithm to build the table is a simple triple-nested
search over all vertices. With at most 14 vertices, the O(n3) complexity is
insignificant.

3 Computing Fv(2, 2, 3; 4)

For a single graph, InH2234 is virtually instantaneous, but the number of
graphs that need to be examined explodes as the order increases. For exam-
ple, there are 12,346 graphs on 8 vertices, which takes about 0.97 seconds
to analyze. However, to analyze all 165,091,172,592 on 12 vertices would



take about 96 days on a 1 GHz Pentium III CPU. Although distributing the
computation over many computers is possible with graphs on 12 vertices,
it would still not be a practical solution for graphs on 13 vertices.

There is an alternative, however, that avoids examining all graphs on
less than 14 vertices. If it were possible to generate all the Folkman graphs
on 14 vertices, the existence of Folkman graphs on 13 vertices could be
decided by dropping a vertex in all possible ways from each graph and
testing for the Folkman property.

We write G − v to denote a graph with deleted vertex v and edges
incident to v. Let S = Hv(2, 2, 3; 4; 14) and D = {G−v : G ∈ S}, then there
is a Folkman graph on 13 vertices if and only if D ∩Hv(2, 2, 3; 4; 13) 6= ∅.

The difficulty lies in generating S, but two observations help: (1) The
Ramsey number R(3, 4) = R(4, 3) = 9 guarantees that all graphs of order≥
9 have either a K4 or a K3, and (2) the Folkman graphs in Hv(2, 2, 3; 4; 14),
by definition, do not have a K4, so they must have a K3 due to (1).

To find all maximal Folkman graphs we extend those graphs on 11 ver-
tices without K4 and χ ≥ 4 to graphs on 14 vertices. The restriction on χ

is possible because all the Folkman graphs have χ ≥ 5. Each graph is ex-
tended by connecting three independent vertices to all triangle-free subsets
in all possible ways. Subsets with triangles are avoided so that a K4 is not
formed. Furthermore, it is enough to consider extending only those graphs
where the addition of any edge forms a triangle. The result will include
all maximal Folkman graphs but Hv(2, 2, 3; 4) can easily be recovered from
this subset. Figure 2 illustrates the extension. The algorithm is called
Extend:

1. For each graph G of order 11 (a) that is K4-free, (b) that has chro-
matic number at least 4, and (c) where the addition of any edge forms
a triangle, do steps 2, 3, 4, and 5 below. The graphs are generated
using geng from the nauty software package [8] and then filtered for
(a), (b), and (c) using simple, custom algorithms. [easy]

2. Extend G to 14 vertices by efficiently adding K3 and incident edges.
Each new vertex is incident with a maximal triangle-free subset to
avoid creating a K4. This is done in all possible ways with obvi-
ous isomorphs skipped (e.g., permutations of the new vertices). The
output will contain all maximal Folkman graphs in addition to other
Folkman and non-Folkman graphs. [hard]

3. Eliminate isomorphs using nauty software tools. [easy]

4. Collect graphs for which the addition of any edge forms a K4. [easy]

5. Filter for Folkman property. This is a more expensive test so it should
be performed after step 4. [easy]
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Figure 2: Illustration of the extension process.

In addition to the custom built algorithms InH2234 and Extend, the
software packages nauty [8] and Condor [1] were crucial. nauty includes
highly optimized and efficient tools for handling graphs. Developed by
Brendan McKay from the Australian National University, nauty contains
programs to quickly generate all non-isomorphic graphs of a given order
as well as identify and eliminate isomorphic graphs. nauty has been used
in numerous research projects for many years. Condor is a distributed
processing package created at the Computer Science Department at the
University of Wisconsin.

The advantage of the procedure Extend is that finding all graphs on 11
vertices without K4 is feasible: There are 138,892,304 such graphs. The ex-
tension process is computationally challenging, yet easy to parallelize; the
work was divided over the machines in the RIT Computer Science Depart-
ment labs using Condor. Various types of machines were used: Sun Blade
150, Sun Blade 1500, and Sun Fire 880. With the distributed processing
only moderate computational effort was required.

To find all Folkman graphs on 14 vertices, the maximal Folkman graphs
were reduced using the algorithm ReduceSize. This algorithm inputs a
graph and removes edges in all possible ways, outputting only those that are
Folkman. ReduceSize was applied to all of the maximal Folkman graphs.
The resulting set of non-isomorphic graphs combined with the maximal
graphs is the complete set of Folkman graphs on 14 vertices. Isomorphs
were eliminated using nauty. The set included the Nenov graph Γ3. The
processing time for this stage was small.

To verify the correctness of the results, the approach just described was
slightly modified: All the Folkman graphs on 14 vertices were generated by
extending graphs on 10 vertices instead of 11. The process is as follows:



Extend graphs on 10 vertices by adding an independent set of 4 vertices and
connecting them to maximal triangle-free subsets of the graph in all possible
ways. However, by using an independent set of order 4, the extensions avoid
graphs which have no independent set of order 4. This is not a problem,
as the missing graphs are those Folkman graphs which are in the Ramsey
graph set R(4, 4; 14), computed in [9].

Since the extension from 10 to 14 vertices is guaranteed to generate
all maximal Folkman graphs with α(G) ≥ 4, the other maximal Folkman
graphs were extracted from R(4, 4; 14). This set was then reduced, using
ReduceSize as before. The final set of non-isomorphic graphs was exactly
the same as previously found after extending from 11 vertices and reducing.

To ensure that no graph on 13 vertices is in Hv(2, 2, 3; 4), the last algo-
rithm ReduceOrder drops a vertex in all possible ways from each of the
Folkman graphs on 14 vertices and the algorithm InH2234 then checks for
the Folkman property. No Folkman graphs were found on 13 vertices, thus
proving that Fv(2, 2, 3; 4) = 14.

4 Results

|E(G)| maxdeg(G) mindeg(G) α(G) |Aut(G)|
# # # # #

42 1 7 527 4 451 3 1507 1 11367
43 6 8 11080 5 5759 4 10557 2 802
44 51 9 393 6 5996 5 160 4 44
45 453 10 227 7 21 6 2 7 1
46 2279 7 1 8 10
47 4555 14 2
48 3628 16 1
49 1138
50 114
51 2

Table 1: Properties of graphs in Hv(2, 2, 3; 4; 14).

G |E(G)| maxdeg(G) mindeg(G) α(G) |Aut(G)|
Γ3 42 8 4 7 14
F16 45 7 5 4 16

Table 2: Properties of Γ3 and F16.
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Figure 3: The Folkman graph F16 with |Aut(G)| = 16.

Table 1 lists various properties of all Folkman graphs in Hv(2, 2, 3; 4; 14).
There are 12,227 such graphs in total; interestingly, all of them have chro-
matic number equal to 5. Among them, there are 591 maximal graphs, 1213
minimal graphs, and 8 bicritical graphs (those which are both maximal and
minimal).

The order of the automorphism group of the Nenov graph Γ3, pictured
in Figure 1, is equal to 14. The graph F16, presented in Figure 3, has
the largest automorphism group among all 12,227 graphs in Hv(2, 2, 3; 4),
with |Aut(F16)| = 16. Let g1 = (0 1), g2 = (3 4)(6 7)(8 9)(10 11)(12 13),
and g3 = (2 3)(4 5)(7 8)(11 12) be the permutations of the set {0, . . . , 13}.
Then the full automorphism group of F16 is generated by g1, g2, and g3.

Table 2 lists the specific properties of these two graphs in relation to
the properties shown in Table 1. Notice that Hv(3, 3; 4) ⊂ Hv(2, 2, 3; 4). It
was shown in [12, 18] that Fv(3, 3; 4) = 14. The graph Γ3 is in Hv(3, 3; 4),
but F16 is not.
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