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Abstract:

We consider alternating Turing machines with the bound

on the number of alternations given by some function. By

restricting the class of machines to those operating in polynomial

time we obtain the hierarchy of classes between U ~p (then>o n

sum of polynomial-time hierarchy of Stockmeyer) and PSPACE. We

exhibit some problems to be complete in a special sense in the

class of problems solvable by alternating Turing machines

performing at most f(n) alternations. Also conditional

inequalities between classes are derived. The second part

of the paper relates these results to the measure STA intro

duced by Berman [2]. Several properties of that measure are

presented.

Key words: alternation, nondeterminism, complexity classes,

PSPACE, PTlME, bounded alternation, STA measure.
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PART I

I. Introduction

Deep conviction and intuition that the class PTIME

(problems solvable by deterministic Turing machines running

in polynomial time) is properly included in the class PSPACE

{problems solvable by Turing machines using polynomial amount

of memory) has supported many investigations considering

complexity classes probably lying essentially between PTIME

and PSPACE. The most kno~m candidate for such a class is

NPTI~ffi (the class of problems solvable in polynomial time

by nondeterministic Turing machines). We know that:

PTII1E C NPTIME C PSPACE,

but whether these inclusions are proper remains an open

(I )

question. The first inclusion, called t~e P ~ NP conjecture,

was ~osed by Cook in (7) and has been studied intensively

in (1], [2], [3], [4), [8], (17], [18] among others.

The works of Stockmeyer and Wrathall have provided

new insight into the second inclusion. They constructed the

hierarchy called "the polynomial-time hierarchy",

{~~: k ~O } , of which the first step ~l is equal to NPTIME.

They proved that this hierarchy has the property:

NPTIME ~p
k

C PSPACE.
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In the first part of the paper we investigate what

Drobably isa nonempty gap between the sum of Stockmeyer's

hierarchy k U ~P and PSPACE. stockmeyer proved that a
>0 k

sufficient condition for the proper inclusion:

U
k>o

LP
k ¥ PSPACE (2 )

is that the polynomial-time hierarchy is infinite, but we

do not know whether this condition is necessary. If the

reader is convinced that (2) does not hold (or better still, if

he can prove it), we suggest that he stoF reading the text

at this point.

The heart of Stockmeyer's hierarchy is the finite

number of alternating quantifiers leading some relation

computable in polynomial time on a deterministic machine.

Using the notion of an alternating Turing machine (Chandra

and Stockmeyer [61) we extend this classification by letting

the numher of alternations to be dynamic and bounded by some

function.

On the other hand from [61 we know that alternating

7uring machines running in polynomial time (abbreviate

ATMpol) recognize exactly the problems lying in PSPACE.

Sections II and III recall the basic facts regarding

the polynomial-time hierarchy of Stockmeyer and alternating

Turing machines. The next section gives a new proof of the

theorem that PSPACE i3 equal to the class of languages

accepted by alternating Turing machines running in polynomial
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time (ATIfpol). In the ~roof we use a special kind of reduction

that preserves the number of alternations. In the later sections

we exploit this technique to show that some problems are

complete in the class of languages recognizable by ATMpol

with the number of alternations bounded by some function

f (n) (abbreviate ASTATE(f(n»). These classes appear to be

probable candidates to lie properly between~ ~~ and PSPACE.

We present three problems complete in the class ASTATE (f(n»:

the first is based on a diagonalization method, the second is

a restricted version of quantified

the third is a game.

Boolean formulas B whilew

Towards the end of the first part of the paper we sketch

a program of further research.

The second part of the work relates these results to

the STA measure defined by Berman [2]. The class STA(s(n),

t(n), a(n» denotes the class of languages which can be

recognized by AT~1 with simultaneous bounds on space, time

and alternations given by the functions s(n), t(n) and a(n).

Several ~roperties of STA measure are derived, among others

such as STAlool,pol,pol) = STA(pol,exp,pol). The classes

ASTATE(f(n» considered in part I a~pear to be a special

case of the STA measure, since we have the equality

ASTATE(f(n» = STA(pol,pol,f(n».
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II. Preliminaries

a) The Dolynomial-time hierarchy of Stockmeyer.

By the polynomial-time hierarchy we shall mean the following

family of classes of languages:

o:F.:', rrI?
~ ~

where:

1. ~p
o

rrP
o PTIME,

2. LE ~ ;+1

3 KEno
. n+1

iff there exist a relation REnP and a
n

polynomial P. such that:

x~ L e> 31 y I < p ( Ixl) R (x , y) ,

iff there exist a relation Sf ~ ~ and a

polynomial r, such that:

XEK e> V lyl<r(lxl) S(x,y).

This definition, due to Wrathall [181 differs from the

original one, but she proved that they are equivalent.

The most important properties of this hierarchy are as

fo11o\oIS [17J , [181:

a) PTIME C ~I? C u ~? C PSPACE,
~ - i>O ~

b) ~ P
1

rrl

NPTIME,

co-NPTIME {L:L E NPTIME},
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c ) ~ p U 11 P c ~p n II p
n n - n+1 n +1 for all n>O.- ,

for all n>O the problem whether the inclusion is

proper remains open,

d) ~p =~p ~ (VJ·>i)~I? =~p.
i i+1 - J i '

for any i~O we do not know whether the hypothesis

of the implication is true.

We will use the family of problems,{Bn : n>o} and Bw stricly

connected with the polynomial-time hierarchy.

Let us denote:

the finite sets of Boolean
variables,

Qx. • •• Qx.
J1 Jkj

where Q is the existential
quantifier j or universal
quantifier V.

Then Bn , Bw are defined as follows:

Bn = {F(X1, ... xn ): F(X1 , ... ,Xn ) is the Boolean formula

with the set of variables U {X.:1< i < n} and
1 -

C3X1 ) (VX2) (jx3 ) ••• (QnXn) F (Xl' ... ,Xn ) = l},

00

U Bn .
n=l

Let us note that B1 is exactly equal to the NPTIME

complete set of satisfiable Boolean formulas (Cook (7 ]).

In [17], (18] it is showed that Bw is log-space complete

in PSPACE and Bn is log-space complete in ~ ~ .
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b) Alternation.

By an alternating Turing machine (ATM) we shall mean the

machine defined by Chandra and Stockmeyer [6 ]. The

alternating Turing machine is a nondeterministic Turing

machine, where the set of states Q is divided into existential

states E anq universal states U (Q=E UU,E n u =~)

The essential difference between nondeterministic and alter

nating machines isin the notion of accepting computation. The

formal definition is rather complicated, but briefly speaking

the procedure for checking if the input x is accepted by

an A f ATM is the following:

Since we are dealing only with recursive languages,

we can assume without loss of generality, that all computations

of A (treated as a nondeterministic machine) for input x

are finite. Consider the computation tree of A for x:

accepting computation

o

The nodes of the tree represent the configurations of

machine A, the root is the initial configu~ation of A for x.
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~e call the configuration existential (marked 3 ) if

its state belongs to the set E and universal (marked ~) if

its state belongs to U. The sons of a node C are those

configurations of A which are direct succesors of C (still

A treated as an nondeterministic machine). The leaves of the

tree are the terminal configurations of A.

We label all leaves which are accepting configurations

by 1, other leaves by o. Then, proceeding from the bottom to

the top, label all nodes of the tree taking Boolean sum (product)

of the labels of the node's sons, if the node is an existential

(universal) configuration. Finally, x is accented iff the

root of the tree is labeled by 1.

In other words, x is accepted iff in the computation

tree of A for x we can choose a subree D, such that all

nodes of D are labeled by 1 and the labeling "agrees" with

the type of node (existential: one outcoming branch; univer

sal: alloutcoming branches are included in the subtree D).

Alternating Turing machine .~fATM accepts x in fewer than k

steps if there exists a subtree D as described above, which

has der.th no greater than k.

The fundamental theorem [61, which we will use, says that:

ATI~m(pol} = PSPACE, (3)

where ATIrm(?ol} denotes the class of languages recognizable

by alternating Turing machines running in polynomial time.
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Other ~roperties of ATr1 were studied by Paul and Reischuk

[141. They show that alternation is more powerful than

nondeterminism.

In this paner we assume that the initial configura

tion of an alternating machine is existential.
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III. Connections between polynomial-time hierarchy and

alternation.

The theorem describing the computational power of alternating

uring l!lachines, ATD1E (pol) = PSPACE, is proved in [6 J by

a direct simulation of a machine operating in polynomial time,

and vice versa. ~e shall prove the same theorem, but using

another technique. Our proof uses the PSPACE complete set

B - we show directly that it is cOMplete in ATI1.~(pol} and
w

hence we can conclude the equality (3). The transformation

of the proof, anart from providing a better understanding of

the theoreM, has two advanteges. In the new proof it is easy

to count the number of alternations required for the solution

of a probleM. Furthermore, our proof, after some slight modifica-

tions, will ?ermit us to show similar results dealing with

classes lying bet,.,een U{ ~P: n> O} and PSPACE.
n

Theorem 1:

Proof:

ATIME(~ol) PSPACE

The proof ?roceeds in two steps.The first, an obvious one,

is to show that B €ATn1E(ool}. In the second it is demon-w -

strated that each language L€A~I~m(pol) can be reduced in

polynomial time to B . Hence we have:
w

L€PSPACE <o)L< . B <o)L€ATIl1E('?ol}
- pol-t~me w .'

because both classes PSPACE and ATIME(pol} are closed under
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polynomial-time reducibility.

1) Bw fATIME(pol).

Consider the following alternating program:

1. Given Boolean formula ex of length n deter~ine

the number k - the number of changes of the type of

quantifier;

2.Q:=E;i:=1;

3. if Q=E then existentially execute for all xfXi {x:=O,x:=l};

4. if Q=U then universally execute for all xfXi {x:=O,x:=l};

5. if i<k then

(i:=i+1; Q:=if

6. if a (Xl ' ... , XI';:)

Q=E then U else E; ~ to 3);

1 then ACCEPT else REJECT;

The above program can be easily rewri tten into a formal

alternating Turing machine running in time 0(n2 ). The do

minant time factor is produced by instruction 6.The correctness

of ~~e al~orit~~ follows directly from the definition of an

accepting conputation of A':'I~.

2) Bw is polynomial-time complete in ATIME(pol).

Let us take an arbitrary alternating Turing machine

M f ATMpol running in time pen) for some polynomial p. On

the accepted input x of lenqth n, machine M will

execute no more than t=p(n) steps. Denote by L the

language accepted by machine M. In polynomial time we will

eterministically produce for each x a Boolean formula ax'
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such that:

x€ L <* a € B •
x III

The construction of ax requires the following lemma:

Lenuna:

The relation x€ L can be defined by the formula of the

form:

where:

't.
t j

€ U {l, ... ,m}
j=1

for i=l, ... ,t and m - the range of

nondeterminism of machine M,

Remark 1:

Al though formula (4) can seem to be the same as that considered

by Chandra and Stockmeyer [6 ] in the proof of (3),

there is an essential difference. They are dealing only with

standard alternating Turing machines, which change the type

of the state on every move. In such a model the number of

alternations is always proportional to the running time of

the machine. In our model, the machines alternate only at some

points of the computation. Moreover,the changes of quantifiers

are not synchronized on the levels of the computation tree.

In such a manner the number of alternations can reflect some

aspects of the internal complexity of t.l-te problem salven on an

alternating Turing machine.
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Proof of the lemma:

The Yi's represent a finite path in the computation tree

of M for x, such that all configurations on y. are of the
~

same type (E or U) and Yi is maximal, i.e. it cannot be extended

without changing the type of configuration. Hence all possible
t

codes of Y
i

are contained in the set U {1, ... ,m}j .
j=1

Given a sequence of Yi's we can easily check in polynomial

time whether their concatenation Y1Y2 ... Yj is admissible,

that means all y.' s are maximal when passing the computation
~

tree along the path Y1 · •• y j • Hence the following functions

are computable in a cornmon polynomial time bound:

I
true if Y1Y2 .•. Yj is admissible,

pj (Y1'···'Yj)x

false otherwise,

configuration of ~~ if Y1Y2 ... Yj is admissible,
which is computed
from the initial
configuration for x
along the path Y1 ... Yj

for j=l, ... ,t.

undefined otherwise,
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For example, consider the computation tree of M for x of

the form:

type of the initial configuration of M

COnfigUration~3 ~for x

e have:
3

{l,2}j,Yi E 'U1 t=3, m=2,
J=

1 (11) 2 (11,1) 1 (121) 2 (2,11)Px = Px = Px Px true,

2 2
Px (1,1) = Px (21,1)

1
Px (22) = false.

Let us denote:

{

true if c~ (Y 1 , ... Yj )

false otherwise,

is an accepting
configuration
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i i
(Y1'· .. ,Yt)vPx (Y1 Y·)I\(ACC

i I
, •• ,1. X

. i+1( ) if i is odd,
Px(Y1'··· ,Ytl=t I P x Y1'···'Yi +1

i
(Y1,···,Yi )1\ ACC i

(Y1'··· ,Yt ) if i isPx x even.

Now by the induction on t>1 we can prove that R can be

written as:

t i
vi Px (Y1'···'Yt )

i=1

and

if t is even, (5)

t-1
vi
i=1

i
p
·x

if t is odd. (6)

1 1Vor t=1,2 the formulas (6) and (5) have the form (Px 1\ c x )

and p~ 1\ (c~ v IP~) v (p; 1\ c~) respectively (C~=ACC~).

Then the formulas:

1 1
(]Y1 ) p X I\. C X '

(]Yl) (V
y2

) (P~ 1\ (C~

(7 )

( 8)

define the relation x €L for t=1,2. Obviously, (7)deals with

an ordinary nondeterministic computation. In (8) the first

part says that it is possible to accept x without alternation

2 2and formula (p I\. C ) describes a :r:x>ssible accepting computation withx x

one change of quantifier.
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Generalizing to an arbitrary ~1, formulas (5) and

(6) preceded by a sU1tabie prefix of quantifiers describe

the possibility that x f L is accepted in i=O,1, •.. ,t-1

alternations.

This completes the proof of the lemma, since formulas

(5) and (6) are computable from x'Y1' .•. 'Yt in a common

polynoflial tiMe bound. 0

Remark 2:

Now, it would be possilbe to transform R directly to

some Boolean formula a, such that R = (3S)a, using a well

known method for expressing the next-move relation by a

propositional formula (where S is a set of additional

Boolean variables). However we are interested in eliminating

the quantifier (3S), therefore we proceed in another way.

o

In the final part of the proof of theorem 1 we

shall use the circuit value problem CVP which is log-space

complete in PTIME (Ladner [13]). In the circuit value

problem, we are given a list L of assignments to

C1 ' ... 'Cn of the form:
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Ci:=O,

Ci :=l,

Ci :=C
j

AC k , j ,k<i

Ci :=Cj v Ck , j ,k<i

Ci:=iCj , j<i,

such that each Ci occurs on the left exactly once. The problem

is to determine the £inal Boolean value of Cn'

Let x, Y
i

denote the binary code of x, Y
i

. Treating

x and Y.'s as sets of propositional variables and using the
1

completeness of CVP in PTlME, we can transform, in polynomial

time, the relation R to some instance B of CVP, such that:

(9)

where x, Y2""'Yt occur in B only as some assignments of

the type Ci:=O or Ci : =1. These initial values of Ci enc0de

the arguments of R, while the structure of R is reflected

in the graph of the circuit B.

Consider two formulas:
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where:

C. ~ 0 if C. :=0 eL
1 1

C. ~ 1 if C. :=1 e L
1 1

C. ~ C. II Ck if C. :=C. liCk eL
l. 1 J 1 J1

C. ~ C. v Ck if C. :=C. vCk
eL

1 J 1 J

C. ~ I C. if C. :=1 C. eL
1 J 1 J

It is easy to note, that for given R(x, Yl""'Yt):

(10)

where the set of Boolean variables S is defined as follows:

The set S is composed from those variables whose values are

not coded directly by R(x'Yl""'Yt)'

Finally we can define formula a as:x

ax =r'(~'~"""(~t
U S) ) if Yt is bounded by V

a 2 (x'Yl'···' (Yt U S) ) if Yt is bounded by :3

Obviously ax can be determined in polynomial time. Taking

into consideration (9) and (10) this completes the proof of

the theorem.

o
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The proof of the completeness of Bw in ATlME(pol) may

appear to be rather unnecessarily complicated, but that

technique was used to obtain the following corollary:

Corollary 1:

The transformation from the proof of theorem 1 preserves

the number of alternations. That is to say, the alternating

Turing machine ~1€ATMpol making t alternations on input x

can be reduced in polynomial time to an instance of Bw with

t alternations of quantifiers.

The resulting formula ax is a propositional formula,

but not in C~F-form (conjunctive-normal form). On the other

hand, using standard techniques for describing polynomial-time

computations ~Tith Boolean formulas we obtain CNF - formula

with leading existential quantifier. An interesting open

question a~ises, whether we can prove theorem 1 using formulas

from Bwn CNF, but in such a manner, that the corollary 1 holds.
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IV. Bounded alternation - preliminaries

An alternating Turing machine A e ATMpol accepts an

input x in k changes of the state type (alternations),

if it is possible to choose an accepting subtree D of the

computation tree D' of machine A for input x, such that for

all ~aths from the root to leaves in D the number of changes

of the type of configuration (existential ~ universal) does

not exceed k.

Definition

a) ~achine A e AY~pol has the ty?e-state complexity f{n) iff

A accepts x in f{n) changes of the state type (alternations),

for all accepted inputs x of length n.

b) ASTATE(f(n) is the class of languages, such that:

L e ASTATB(f(n» iff there exists an alter~ating Turing machine

A e AT!1pol, such that A accepts Land

A has state type co~nlexity f{n).

o

From the definition we can immediately obtain the following

properties of the classes ASTATE{f(n»:

1. f(n) ~ g(n) ~ ASTATE(f(n» ~ ASTATE{g{n»,

- directly from the definition.

2. If f(n) is monotonic and not bounded by any polynomial

then ASTATE{f{n» = PSPACE,
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- from the assumption we are restricted to the class of

ATMpol, hence with the exception of finite interval,

every machine from ATMpol has state type complexity

fen). Then ASTATE(f(n})

to PSPACE (theorem 1) .

3. ASTATE(O) = ~i,

ATlME(pol}, which is equal

- from the assumption the initial configuration of every

machine A € ATM(pol} is existential. Then the class

ASTATE(O} is equal to the class of languages recognizable

by nondeterministic Turing machines running in polynomial

time.

Property 3 can be easy generalized to:

o
4. ~k ASTATE(k-l} for k~l,

Proof:

~ Repeat exactly the proof of theorem 1 with t=const=k

in all places where t denotes the length of the

alternating sequence Yl' ..• 'Yt.

Note that corollary 1 is important here.

C Take arbitrary L€~~. Then there exists a relation

R € PTlME, such that:

x€L'" 3Yl JJ.Y2··· QYk R(x'Y1' ... 'Yk)'

where the range of quantifiers is restricted to Yi's

of length bounded by some polynomial p(lxl}. ~he

language L is accepted by the following alternating
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ring machine A € ATHpol with state type complexity

k-1) :

1) t:=p( Ixl); i:=1; S:=E;

2)while i.s..k do

if S=E then eXistentially construct y. of length t;
. 1

if S=U then universally construct Yi of length t;

if S=E then S:=U else S:=E; i:=i+1

3) if R(x'Yl' .•. 'Yk) then ACCEPT else REJECT;

The above description of the al ternating algorit.l-un can easily be

transformed to a machine A € ATM pol with state type complexity

(k-1) .

Now, using the properties of Stockmeyer's polynomial-time

hierarchy, let us note that:

o

5. ASTATE(i) ASTATE (i+1) ~ (~j) (j~i ~ ASTATE(j)=ASTATE(i)),

-directly from d) section IIa).

6. ASTATE(const)

- from 4 this

df <Xl

= U ASTATE (i)
i=O

section.

<Xl

U T,p
i=O k

<Xl 0

7. Bw € ASTATE (const) ~ PSPACE = k~O T,k '

from 6 this section, using the fact that T,~ is closed

under log-space reducibility and from log-space completeness

of Bw in PSPACE.
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8. BU) e ASTATE (en/log n) for some c>O,

- from the syntax of Boolean formula we can easy derive

that the number of alternations of quantifiers is

bounded by n/log n, then we use the alternatmg n-achine frcK\l.

section 111/1 for k = n/log n.

9. For any unbounded monotonic function f(n):

kVOk~ C ASTATE(f(n)) C PSPACE,

- first inclusion follows from properties 6 and 1, the

second one from properties 2 and lof this. sectioo.. For

any function fen) both inclusions are open problems when

we ask if they are proper.

o
In the following section we shall investigate the

classes ASTATE(f(n)) for certain functions f(n). All results

are conditional, in the sense that, if PTI~m = PSPACE or

~O~ = PSPACE, then all the hierarchy vanishes, but it seems

as implausible as the e~uality PTIME = PSPACE or PTIME = NPTIME.
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v. Bounded alternatIon - completeness

The function f is regular if it is an unbounded,

monotonic, polynomial-time computable function from positive

integers to positive integers. In this section we shall in-

vestigate classes of problems solvable by alternating Turing

machines with the state type complexity f(n), where f is

any regular function. In general, we do not know whether the

class ASTATE (f (n)) is closed under polyn:mial-t:iJre Turing reducibility.

We will say that a reduction r of the class of machines

C C ATMpol to some problem P preserves the number of alterna-

tions if:

1) r is a reduction, i.e. for every input x and machine

M €C

x is accepted by M ~ p=r(x,M)€ P

2) There exists a machine K € ATMpol recognizing P, such

that the number of alternations made by K on an input

p=r(x,M) is not greater than the number of alternations

made by machine M on input x.

Further, the problem P is polynomial-time complete in the

class C preserving state type complexity if P can be recognized

by some machine from the class C and there exists a reduction

[rom C to P computable in polynomial time and preserving the

umber of alternations.

In the sequel the class of languages ASTATE(f(n)) will

be identified with the class of appropriate machines, in this

case with the class of machines ATMpol with state type complexity

f(n) •
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Using the method of Baker, Gill and Solovay [ 1 ] we prove

the following existential theorem:

Theorem 2:

There exists a polynomial-time complete problem in the

class ASTATE(f(n)) preserving state type complexity.

Proof:

Every alternating Turing machine can be converted to a

machine from the class ATMpol,and with at most f(n) changes

of the type of state, by attaching two clocks terminating

computations, if time or number of alternations exceeds

some predetermined value. We can thereby produce a list

of machines accepting all languages from the class ASTATE

(f(n)) and such, that each machine from the class ATMpol

with state type complexity f(n) is represented in the list

by some machine from the class ATMpol with the same state

type complexity.

We will denote by Ai the i-th machine from the liRt

and, without loss of generality, we can assume that Pi(n)

is a strict u~per bound on the running time of Ai' where

Pi(n)= i+ni . As usual, the binary code of a sequence xl' ... '

xk will be denoted by <xl' ... ,xk >.

Conside~ the set of binary strings:

K = {<i,x,On> : A. accents x in time not greater than n}.
~ -

We shall prove that the set K is polynomial-time complete

in ASTATE (f(n) and the reduction oreserves the number of
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alternations.

First note, that K f ASTATE(f(n»~ An alternating

machine M f ATMpol recognizes K by constructing and

simulating machine A. for n steps. Obviously M has
l.

the same state type complexity as Ai' that means f(n).

Let S be an arbitrary language from the class

ASTATE (f (n) ) Then the set S is accepted by some machine

Ai. The reduction is given by the function g computable

in polynomial time:

g(x) = <i,x,OPi(lx l».

Hence we have:

Xf S <* A. accepts x <*
l.

<* A. accents x in time < Pi(lxl) and f( Ixl )alterna-
l.

tions

<* <j. , x, OPi ( Ix I»f K.

Finally, note that the number of alternations after the

reduction remains exactly the same.

o

Now we can conclude the following corollary:

Corollary 2:

If the polynomial-time hierarchy of Stockmeyer {~~ i>O}
1.

is infinite then:

u ~p ~ ASTATE(f(n).
k>O k
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Proof:

From property 9 section IV we know that:

u ~P C ASTATE(f(n».
k>O k

Assume {~Pk: k>O} is infinite and ASTATE(f(n» - U ~P
-l~>O kO

Consider the set K from the proof of the previous theorem.

There has to exist i~O , such that K E ~~. The class
~

~~ is closed under polynomial-time reducibility [17] ,[18]).
~

Thus fran the completenes s of K in ASTATE (f (n) ) \"e receive:

U ~P = ASTATE(f(n» C ~~,
k>O k ~

which contradicts with the infinity of the family {~::k~O}

o

It would be quite interestingto find a regular function

f bounded by some polynomial, such that there exists a set

S complete in ASTATE(f(n» and the reduction decreases the

number of alternations. However, under weaker condition, i.e.

function f (n) = log n; \ole can formulate the follm'1ing corollary:

Corollary 3:

Proof:

ASTATE (log n) then PSPACE C U ASTATE(c·logn)
-k~

Take an arbitrary language L E PSPACE and transform it to

Bw in polynomial time p(n). The resulting formula a has

length not greater than p(n), so the number of alternations

in a is bounded by p(n). From the assumption that Bw E
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ASTATE(log.n) we can decide whether a E Bw by alternating

Turing machine making log(p(n» alternations. But there

exists some constant c, such that log(p(n» ~ c.log n, so

L can be recogni zed in c· log n alternations.

The ASTATE(f(n» complete problem K exhibited in theorem

2 is somewhat sophisticated. On the basis of the set Bw we

can find a more natural problem complete in the class

ASTATE(f(n». Consider the set Bw restricted to these

formulas, in which the number of alternations of quantifiers

is bounded by f(n), where n is the length of the formula.

Denote this set by Bw/f(n).

Theorem 3:

The set Bw/f(n) is ~olynomial-time complete in ASTATE(f(n))

and the reduction preserves the state type complexity.

Proof:

Repeat exactly the reduction to the set Bw from the

,?roof of theorem 1, replacing t=p (n) by t=f (n) in all

?laces where t denotes the length of an alternating

As an application of theorem 3 we can derive:

Corollary 4:

%J flog n -2 PTIHE ~ ASTATE (log n) C PTIME

Proof:

Immediate from theorem 3.

o

o
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Using once more the proof of theorem 1 we will establish

another problem complete in the class ASTATE(f(n)). Let

us recall the circuit value problem CVP which is log-space

complete in PTIME. Consider the following two-person game:

Game description (CVP (f) )

Input is an instance of CVP problem restricted to a list

of assignments of the form:

Ci:=CjvCk ,

Ci:=CjACk ,

Ci :=1 C j '

j,k<i,

j,k<i,

j<i, i<n

with the sequence of positive integers (al, .•. ,af ), where

f=f(n) (notice that there are no assignments C.:=O and
1.

C.:=l). There are two players, the player I starts. Move
1.

r consists of putting 0 or 1 to the first a r not yet

assigned variables C .• If there is an insufficient number
1.

of unassigned variables then the player who is to move,

puts some values to the remaining variables and the gaem

is finished.

The player I wins iff the complete assingment which

has been produced at some move of the game makes the value

of cvp true.

Theorem 4~

The problem of decidfng, for any given input of the CVP(f)

game, whether the first player has a winning strategy is polyno-
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mial-tirne complete in ASTATE(f(n» and the reduction

preserves the number of alternations.

Proof:

Similar to the proof of the theorem 3.

Remark 3:

The game described above with the sequence of integers

(a 1 , ... ,an ), a i =l for i=l, ... ,n, is similar to the game

Gw(CNF) considered in [15] and the CVP-game in this case is

~SPACE-com?lete as many other games described in [15 ]

~nd [9 1. So, the interesting case is, for example, to

consider the game on CVP for the function fen) equal to

log n

Finally, we shall ?resent one more conditional corollary:

Corollary 5:

If there exists a problem P polynomial-time complete in

PSPACE, such that P E ASTATE(f(n)) then:

PSPACE C u ASTATE(f(pol)) ,
pol

In narticular if fen) = (log n)k then:

PSPACE C U k for k;;;"l.
c~O

ASTATE(c(log n) )

Proof:

An arbitrary language L E PSPACE can be transformed in
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the polynomial time p(m) to the problem P and recognized

by some ~achine from the class ASTATE (f(n), where n=p(m)

o
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VI. Final remarks

The obvious generalization of the probleI'\s considered in

the 1?reviou~ sections is to define the hierarchies:

A1
= ASTATE(log n + k), { A1

: k~O }
k k

A2 ASTATE (k.~log n) , {A2 k ;;;;'0 }
k k

A3 ASTATE ((log n) k) {~ k ~ 0 } ,
k

and to denote:

ASTATE(log n + const) u ~,
k>O

ASTATE(clog n) = U
k>O

ASTATE(po! (log»

From property 1 of section IV, we knmv that the hierarchies

{A~ : k ;;;;. 0 } , i=1, 2,3 form chains. The function f(n) used in the

previous sections can be equal to any of the functions

ap1?earing here as the bound of state type complexity. Then

we can consider conditional inequalities between these

classes, the infinity of the hierarchies and so on. A few

exam~les of such relations were shown in sections IV

and V. Another possible one can be stated as follows:
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Corollary 6:

If the hierarchy { ~ k ~O} is infinite then:

o

ASTATE(poly(log» ~ PSPACE

Proof:

The inclusion follows from property 9 of ~on IV. Assume

that {1 : k ~ 0 } is infinite and PSPACE ~ ASTATE (pol (log) ) .

Consider the set Boo complete in PSPACE. There has to exist

some k ~ 0, such that Boo € 1. Take an arbitrary language

L € PSPACE. Because of corollary 1, L can be reduced in the

polynomial time ~(n) to Boo preserving the number of alternations.

Then we can recognize L on an alternating Turing machine with

state type complexi~y bounded by:

and the inequalities hold almost everywhere. Now we can con-

elude that PSPACE S A~+1 which contradicts with the infinity

of the hierarchy {A~: k ~ O} .

Another a.uestion arising here is if there exists any

relation between the class ASTATE(f(n» and subclasses of

PSPACE defined by computations with bounded amount of

memory to some fixed polynomial nk .
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PART II

VII. STA measure.

The ASTATE(f(n» classes considered in the previous chapters

are the special case of the classes implied by the complexity

measure STA introduced by Bermen [2 I. We say that a language

L is in the class STA(s(n) I ten) I a(n» if there exists a

single-tape machine M € A'lMwhich accepts L and for every

X € L, Ix I=n there is an accepting subtree D' of the

computation tree D of M for x, such that:

1. The length of any configuration in 0' is bounded by

s (n) I

2. The depth of the subtree 0' is bounded by ten) I

3. The state-type complexity of 0' is bounded by a(n).

Hence the class STA(s(n), ten) I a(n» denotes the class

of languages which can be recognized by alternating TM with

simultaneous bounds on space, time and alternations given

by functions sen) I ten) and a(n). By replacing some coordinate

of STA by a class of function C we shall mean the sum of

respective classes STA over C. We will use the following

classes of functions:

c·log=

pol

exp

EE

{c' log n: c ~ 0 } I

k
{n:k~O},

k
{2

n
: k ~ 0 } I

{2EXP : Exp E exp}.
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The special cases of the function a(n) are:

det - only deterministic machines(without alternations),

o - ordinary nondeterministic machines (without alternations),

k - the constant number of alternations.

We also use '*' to indicate no limit in the given coordinate.

Some classes defined by the STA measure can be related to the

well known time and space classes in the straightforward manner:

PTU1E = STA(pol, pol, det), (11)

PSPACE= STA(pol,exp,O)= STA (pol,~ol,pol).

Remark 4: There is a slight difference between STA measure

defined here and that introduced by Berman. We

always assume that the initial configuration of

an alternating machine is existential.
o

considered in the oart I can beThe classes ASTATE(f(n))

denoted by:

ASTATE (f (n) ) = STA(pol,pol,f(n)). (12)

The next theorem is a generalization of Savitch's

result that PSPACE = NPSPACE. If we denote NPSPACE=

STA(pol,exp,O) then by simple induction it is possible to

show that PSPACE = STA(pol,exp,k) for any constant k. We

will prove even more, namely the last equality will hold if

we replace the constant k by any polynomial.
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Theorem 5:

Proof:

PSPACE STA(pol,exp,pol) . (13)

C: immediately from (11).

~: Let L be an arbitrary language from the class STA(pol,exp,pol).

Then there exists a machine M e ATM recognizing the language

L and operating in space nk with the number of alterna

tions bounded by n r for some fixed integers k and r. we ~l

construct a deterministic algorithm A accepting the language

L and using a polynomial amount of memory.

The construction of A:

Denote by ~ the next-move function of machine l1 and by

1*r- the transitive closure of ~. Given two configurations

nk we can deterministlcally check

1-*-- C2 and all intermediate configura-

C1 , C2 of M of length

2kin space n whether C1

tions between C1 and C2
have length not exceeding k

n •

Moreover, the following predicates Compl and Comp2 are

also computable in deterministic space n 2k

*Comp1(C 1 ,C2 ) * C1 ~ C2 , C1 is an existential configura-

tion, C2 is a universal configuration,

all configurations appearing between C1 and

C2 are existential and not longer than nk ,
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Comp2(C l ,C2 ) ~ C1 ~ C2 ' Cl is a universal configuration,

C2 is· an existential configuration and all

configurations appearing between C1 and C2

are universal and not longer than nk

The predicates Compl, Comp2 com~ute whether it is possible

to pass from a configuration Cl to C2 using machine M in the

space bound nk with only one alternation at the last applica-

tion of the next-move function of M.

We shall use one more predicate:

ACC(C) ~ M starting from configuration C, accepts C, operates

in space nk and does not make any alternation along

the accepting computation for C.

Let us note, that ACC(C) is also computable in deterministic

2k kspace n for C of length n. . There are two cases: C can

be an existential or universal configuration. In the first

case ACC(C) denotes that M accepts C nondeterministically and

we can use Savitch's theorem NSPACE(s(n)) C DSPACE(s(n)2). The

second case is symmetric.

Now we can construct a recursive procedure TEST(C)

checking if the alternating machine M starting from an

arbitrary configuration C of length nk accepts C in the

kspace bound n .
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TEST(C) * ACC(C) v

(3C1)[comp1 (C,C1) A

[ACC (C
1

) v

(.lJ. C2 ) (Comp2 (C
1

,C 2 ) => TEST (C2 ) )] ] ,

where all'configurations have length not exceeding n
k

(the quantifiers are bounded to the configurations of

length nk ). Finally, the algorithm A has the following form:

A: 1. C:=initial configuration of M for input x of

length n, the length of C is nk .

2. If TEST(C) then ACCEPT else REJECT.

Since the machine M operates in space nk , algorithm A

recognizes the language L, i.e. x € L iff A accepts x.

The recursive calls of the procedure TEST we implement

in a natural way on a stack. The quantifiers are realized

by simple looping over all the configurations of M of

length nk The depth of the recursion in the procedure TEST

is bounded by n r /2 which is equal to half the number

of alternations made by M (we terminate the computation of TEST

without accepting if the depth of the recursion exceeds n r /2).

Let T(i) denote a memory requirement of the procedure

TEST for configurations C on which machine M alternates

at most 2i times. Then we have:

rT (0)

1T (H1)
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Then the total memory requirement of the algorithm A

is bounded by T(nr/2}~ 2n2k+r . Hence the language L belongs

to the class PSPACE, which terminates the proof of the

theorem. o

As a corollary we can obtain some trade-offs between

time and number of alternations using the STA-notation.

Corollary 7:

1. STA(pol,pol,pol}

2. STA(exp,exp,exp}

Proof:

1. from (11) and (13)

STA(pol,exp,O}

STA(exp,EE,O}

STA(pol,exp,pol}

STA(exp,EE,exp)

2. direct "upward translation" of the point l(for similar

techniques see Book [3] ,[4]).
o

Remark 5:

Another interesting trade-off property of the STA

measure was obtained by Berman [2]:

U
c>1

cn cn 2
STA(2 , 2 cn} U STA(2cn , 2cn , cn}.

c>l
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VIII. Compendium of complexity classes.

The STA measure is monotonic with respect to its three

arguments. However it seems to be a very difficult question

at which points STA is strictly monotonic. We shall regard

the classes STA(s(n), t(n), a(n)) only for reasonabl~ cases,

i.e. for function s,t,a satisfying s(n) ~ t(n) A a(n) ~ t(n).

Fixing space and time we will be changing the function a(n),

which bounds the number of alternations. The resulting

complexity classes are gathered in Table 1.

Time, space and the number of alternations are bounded

by the following classes of functions:

TIME: pol, exp, EE,

SPACE: log, pol, exp,

ALT det- deterministic computations

o - nondeterministic computations

k - constant

klogn, n , pol, expo

The first three columns in the table denote the parameters

of STA, the fourth is the resulting complexity class1and in the

last one \ole include some remarks. The classes from the fourth

column form a nondecreasing~n. From the hierarchy theorem

DSPACE(f) ~ DSPACE(2f )
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we know that in this chain there are at least two points where

the succesive classes are different. However, so far we are

unable to specify exactly any such point.
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TABLE I.

SPACE TIME ALT CLASS REMARKS

log pol det DLOGSPACE

log pol 0 NLOGSPACE

log pol k STA(log,pol,k)

log pol n k kSTA(log,pol,n )

U k
log pol pol PTIME [ 6] , = k

STA(log,pol,n )

------------------------ ----------------- --------------------------

} ?
pol pol det PTIME P = NP conjecbure

pol pol 0 NPTIME

pol pol k-1 ~P [ 17] , [18] ,=ASTATE(k-1)
k

pol pol logn ASTATE(logn) sec.V

pol pol f(n)~1ogn ASTAT~ (f (n) ) sec.V

pol pol pol PSPACE [ 6] , = U STA(pol,pol,nk )
k

------------------------ ----------------- --------------------------

pol exp det PSPACE

pol exp pol PSPACE th.5
k

STA(P01,eXp,2
nk

)pol exp 2n

k
pol [6] ,=U n

)exp exp EXPTIME STA(pol,exp,2
k

------------------------ ----------------- -------------------------

exp exp det EXPTn1E

}
exponential version

0 NEXPTIME the
.,

exp exp of P=NP conjecture

exp exp pol STA (exp,exp,pol)
k

[ 6] , =
n

)exp exp exp EXPSPACE U STA(exp,exp,2
k

------------------------ ----------------- --------------------------

exp EE det EXPSPACE

exp EE exp EXPSPACE Cor.7.2

exp EE EE EE-TIME
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Table I is not complete, in the sense that there

are known complexity classes, which cannot be embedded

directly into this scheme (or possibly we do not know how

to do it). For instance, the class EXPLINTlME= U,DTlME(2cn )
c>

lies between PTlME and EXPTlME and we can't precise it more

exactly.

Some interesting results dealing with STA complexity

classes were obtained in classifying the complexity of

a few decidable logical theories:

1. The decision problem for the theory of real addition

is complete in the class STA(*, 2cn , n) -- Bruss,

Meyer [5], Berman [2] .

2. The elementary theory of Boolean algebras is complete

. Cn [1n the class STA( *,2 , n) -- Kazen 111.

3. The decision problem for Presburger arithmetic is

complete in the class STA( * ,2 29n , n) -- Berman [2]

Let us mention also the work of Kintala and Fischer [10]

on bounded nondeterminism, where the technique for restricting

the computations and the resulting complexity classes seem to

have a similar structure as in the present paper.
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