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Abstract

This paper studies lower bounds for classical multicolor Ramsey numbers, first
by giving a short overview of past results, and then by presenting several general
constructions establishing new lower bounds for many diagonal and off-diagonal
multicolor Ramsey numbers. In particular, we improve several lower bounds for
Rk(4) and Rk(5) for some small k, including 415 ≤ R3(5), 634 ≤ R4(4), 2721 ≤
R4(5), 3416 ≤ R5(4) and 26082 ≤ R5(5). Most of the new lower bounds are
consequences of general constructions.
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1 Introduction and Notation

In this paper we study undirected loopless graphs and edge-colorings, where, technically,
an edge joining u and v is a set {u, v}. Often however we will denote the same edge by
(u, v), or equivalently by (v, u).

A (k1, k2, . . . , kr)-coloring, r, ki ≥ 1, is an assignment of one of r colors to each edge in
a complete graph, such that it does not contain any monochromatic complete subgraph
Kki

in color i, for 1 ≤ i ≤ r. Similarly, a (k1, k2, . . . , kr; n)-coloring is a (k1, . . . , kr)-
coloring of the complete graph on n vertices Kn. Let R(k1, . . . , kr) and R(k1, . . . , kr; n)
denote the set of all (k1, . . . , kr)- and (k1, . . . , kr; n)-colorings, respectively. The Ramsey
number R(k1, . . . , kr) is defined to be the least n > 0 such that R(k1, . . . , kr; n) is empty.
In the diagonal case k1 = . . . = kr = m we will use simpler notation Rr(m) and Rr(m; n)
for sets of colorings, and Rr(m) for the Ramsey numbers.

In the case of 2 colors (r = 2) we deal with classical graph Ramsey numbers, which have
been studied extensively for 50 years. Much less has been done for multicolor numbers
(r ≥ 3). Another area of major interest has been the study of generalized Ramsey
colorings, wherein the forbidden monochromatic subgraphs are not restricted to complete
graphs. Stanis law Radziszowski maintains a regularly updated survey [22] of the most
recent results on the best known bounds on various types of Ramsey numbers.

In Section 2 we given an overview of previous results on bounds for multicolor num-
bers, focusing mostly on recursive lower bound constructions. Section 3 reviews an old
construction described by Giraud in 1968, which produces Schur and cyclic colorings from
smaller colorings, and which seems to have been nearly forgotten. In Section 4 we present
a sequence of new general constructions, and in Section 5, we describe some K3-avoiding
constructions. Section 6 presents some lower bounds implied by explicit constructions
obtained from heuristic computer searches.

Many specific new lower bounds are obtained throughout the paper as corollaries to
general constructions, for example 634 ≤ R4(4), 2721 ≤ R4(5), 15202 ≤ R4(6), 62017 ≤
R4(7), 3416 ≤ R5(4), and 26082 ≤ R5(5). All of these bounds improve lower bounds
listed in the survey Small Ramsey Numbers [22]. All lower bounds discussed in this
paper, including several off-diagonal cases, are gathered and indexed in Section 7.

2 Previous Work

In 1955, Greenwood and Gleason [14] proved the general upper bound

R(k1, . . . , kr) ≤ 2 − r +
r∑

i=1

R(k1, . . . , ki−1, ki − 1, ki+1, . . . , kr). (1)

Inequality (1) is strict if the right hand side is even and at least one of the terms in
the summation is even. It is suspected that this upper bound is never tight for r ≥ 3
and ki ≥ 3, except for the case r = k1 = k2 = k3 = 3, since R(2, 3, 3) = R(3, 2, 3) =
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R(3, 3, 2) = R(3, 3) = 6 and R3(3) = 17. The latter is the only known nontrivial value
of a classical multicolor Ramsey number, determined in the same paper by Greenwood
and Gleason [14]. It was later proved by Kalbfleisch and Stanton that there are exactly
two nonisomorphic (3, 3, 3; 16)-colorings [18]. One of them is a well known coloring with
vertices in GF (24), where the edge {u, v} has color i, 0 ≤ i < 3, if u − v is in the
i-th cubic residue class. Interestingly, while the other coloring doesn’t have such nice
algebraic description, each of the colors in both colorings induces, up to isomorphism, the
same graph.

The general lower bound inequality

Rr(3) ≥ 3Rr−1(3) + Rr−3(3) − 3, r ≥ 4, (2)

obtained constructively by Chung [5], implies the best known lower bound for the 4 color
case, 51 ≤ R4(3). It is known that R4(3) ≤ 62 [9], while (1) gives an upper bound of only
66. It seems that any further improvements would require a breakthrough in what we
know about upper bounds, since we believe that the true value of R4(3) is much closer, if
not equal to, 51.

Perhaps the only open case of a classical multicolor Ramsey number,
for which we can anticipate exact evaluation in the not-too-distance future is R(3, 3, 4).
It is known that this number is equal to either 30 or 31 [17][21]. Note that (1) only gives
us R(3, 3, 4) ≤ 34. Both above improvements over (1) were obtained with the help of
complicated and intensive computations. No other cases of upper bounds which improve
on (1) are known.

One of the most successful techniques in deriving lower bounds are constructions based
on Schur partitions, and closely related cyclic and linear colorings. We now define these
concepts.

A sum free set S of integers is a set in which x, y ∈ S implies that x + y /∈ S. A Schur
partition of the integers from 1 to n, [1, n], is a partition into sum free sets. The Schur
number, s(r), is the maximum n for which there exists a Schur partition of [1, n] into r
sets. A Schur partition is symmetric if x and n − x are always in the same set. Schur
partitions give rise to K3-free colorings of complete graphs as follows. Given a Schur
partition, S1 . . . Sr of of [1, n], we can construct the coloring of Kn+1 by associating color
i with the set Si and by identifying the vertices of Kn+1 with the integers from 0 to n.
Given a pair of vertices u and v, determine the set Sj containing |u−v| and color the edge
joining u and v with the associated color j. Such a coloring is also called a linear coloring.
A linear coloring is a cyclic coloring if the associated Schur partition is symmetric.

The Schur numbers are known for 1 ≤ r ≤ 4, the values being 1, 4, 13, and 44, respec-
tively. For larger values of r, we have only some lower bounds. In 1994, a construction
method that produced the best known lower bound 160 ≤ s(5), yielding immediately
162 ≤ R5(3), was described by Exoo [7]. For the record, we have discovered that if, in
the resulting (3, 3, 3, 3, 3; 161)-coloring, the colors 2 and 3 are merged, then we obtain a
(3, 5, 3, 3; 161)-coloring, and thus 162 ≤ R(3, 3, 3, 5). This improves the previous bound
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of 137. No other combination of colors gives an improvement. In 2000, Fredricksen and
Sweet [11] worked with higher parameters establishing lower bounds 538 ≤ R6(3) and
1682 ≤ R7(3), also by improving on previous Schur partition constructions.

In 1983 Chung and Grinstead [6] proved an inequality equivalent to (3), valid for any
fixed t ≥ 1. They also showed that the limit of Rr(3)1/r exists and is at least 3.16, though
it might be infinite. This is in contrast to the famous open problem whether the limit of
R(k, k)1/k exists.

(2s(t) + 1)
1
t = ct < lim

r→∞Rr(3)
1
r . (3)

Note that c1 = c2 = c3 = 3 and c4 ≈ 3.07. The bound 3.16 for the constant c5 in [6]
follows from 157 ≤ s(5), which at the time was the best known bound on s(5). A slight
improvement

3.199 < lim
r→∞Rr(3)

1
r

can be derived by using 536 ≤ s(6) obtained in [11].
Various authors used similar techniques even earlier for studying general constructions

and lower bound asymptotics of Rr(k) for fixed k ≥ 3 and r → ∞. Namely, Abbott
and Moser [3] in 1966, Giraud [12], [13] in 1968, Abbott and Hanson [2] in 1972, and
Fredricksen [10] in 1975. In particular, in [2] it is shown that for each k there exists a
positive constant dk such that

Rr(k) ≥ dk(2k − 3)r, (4)

which when combined with the proof of another old result by Abbott [1],

Rr(pq + 1) > (Rr(p + 1) − 1)(Rr(q + 1) − 1), (5)

leads to bounds similar to (3) for avoiding Kk instead of K3. Song En Min in [27] obtained
(6), which generalizes (5) as follows

R(p1q1 + 1, ..., prqr + 1) > (R(p1 + 1, ..., pr + 1) − 1)(R(q1 + 1, ..., qr + 1) − 1). (6)

Since we are not aware of any discussion of inequalities (5) or (6) in many years,
we note a special, yet illustrative, case of the Abbott-Song construction for r = 4, and
pi, qi = 2 for i = 1, 2, 3, 4 (general cases are discussed further in later sections). This
case leads to the lower bound 2501 ≤ R4(5), which improves the bound of 1833 given by
Mathon [20]. Fix any (3, 3, 3, 3; 50)-coloring C on 50 vertices, for example to one found
by Chung [5]. We build a (5, 5, 5, 5; 2500)-coloring D on 2500 vertices formed by pairs
of vertices in C as follows. For vertices x and y let C(x, y) denote the color of the edge
{x, y} in C. We define D((p, q), (r, q)) = C(p, r), and in the remaining cases for q 6= s let
D((p, q), (r, s)) = C(q, s). Note that D is formed by 50 vertex-disjoint Chung’s colorings
C at the “lower” level, with many of the same on top of them treated as K50,50,...,50. In
any monochromatic K5 in D at most 2 vertices can belong to the same lower level block

the electronic journal of combinatorics 11 (2004), #R35 4



of 50 vertices inducing C, so there must be a triangle at the “higher” level, which is a
contradiction. Thus D has no monochromatic K5. In Section 5 we improve further this
bound to 2721 ≤ R4(5).

A simpler, but weaker form of (6) can be obtained as follows [26]. Consider r = s + t,
and let p1 = ... = ps = qs+1 = ... = qr = k − 1 and q1 = ... = qs = ps+1 = ... = pr = 1,
then (6) becomes (7), and thus (7) is weaker, though more concise.

Rs+t(k) > (Rs(k) − 1)(Rt(k) − 1) (7)

For the sake of completeness, we note that a different approach was used by Mathon,
who constructed some colorings based on association schemes [20].

Finally, we include lower bound recurrences (8), (9), (10), and (11) found by Robertson
in [23] and [24]. In (11) we require k1 < k2. Then for r, k, l, ki ≥ 3 we have:

R(3, k, l) ≥ 4R(k, l − 2) − 3, (8)

R(3, 3, 3, k1, k2, . . . , kr) ≥ 3R(3, 3, k1, . . . , kr) + R(k1, k2, . . . , kr) − 3, (9)

R(k1, k2, . . . , kr) > (k1 − 1)(R(k2, k3, . . . , kr) − 1), (10)

and
R(k1, k2, . . . , kr) > (k1 + 1)(R(k2 − k1 + 1, k3, . . . , kr) − 1). (11)

Constructions (8) and (9) lead to some best known lower bounds for specific parameters
(cf. [22]). (10) can be easily obtained from (6). Our Theorem 7 in Section 5 improves (8)
significantly.

Some theorems in this paper are based on results described by Xu Xiaodong in the
manuscript [28]. The latter contains even a few further sharpenings of lower bounds, but
at the price of increasing the complexity of the assumptions, and not necessarily leading
to interesting improvements of specific lower bounds.

3 Giraud’s Cyclic Construction

A cyclic (k1, . . . , kr; n)-coloring of Kn over Zn will be represented by a partition {Ci}r
i=1

of {1, . . . , n − 1} with the property that j ∈ Ci implies n − j ∈ Ci, for all 1 ≤ i ≤ r and
1 ≤ j < n. The color of the edge (j1, j2), 0 ≤ j1 < j2 < n, is equal to i if and only if
j2 − j1 ∈ Ci. Note that Ci can be thought of as a set of distances in Zn, where all the
edges between vertices with circular distance d ∈ Ci are assigned color i.

Let L(k1, . . . , kr) denote the maximal order of any cyclic (k1, . . . , kr)-coloring. It can
be considered as a special case of generalized Schur partitions defining symmetric Schur
numbers discussed in previous section. Many lower bounds for specific Ramsey numbers
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were established by cyclic colorings using the inequality R(k1, . . . , kr) ≥ L(k1, . . . , kr) + 1.
Similarly, the recurrence in Theorem 1 below can be applied to derive lower bounds
for multicolor Ramsey numbers. The original 1968 construction for generalized Schur
partitions is due to Giraud [12], who later observed [13] (both papers in French) that it
also yields a recursive construction for cyclic colorings. Our proof of the same does not
explicitly use Schur partitions, and we believe that it is the first one in English.

Theorem 1 [Giraud 1968] For ki ≥ 3, i = 1, . . . , r,

L(k1, . . . , kr, kr+1) ≥ (2kr+1 − 3)L(k1, . . . , kr) − kr+1 + 2.

Proof. Consider any cyclic (k1, . . . , kr; n)-coloring G over Zn given by the partition
{Ci}r

i=1 of {1, . . . , n − 1}. We construct a cyclic (k1, . . . , kr, kr+1; m)-coloring H on m =
(2kr+1 − 3)n− kr+1 + 2 vertices over Zm by defining the corresponding partition {Di}r+1

i=1

of {1, . . . , m − 1} as follows. For 1 ≤ i ≤ r we let

Di = {j + λ(2n − 1) | (j ∈ Ci) ∧ (0 ≤ λ < kr+1 − 1)},
and

Dr+1 = {j + λ(2n − 1) | (n ≤ j ≤ 2n − 1) ∧ (0 ≤ λ < kr+1 − 2)}.
One can easily check that Di’s form a partition of {1, . . . , m − 1}, and that j ∈ Di

implies m − j ∈ Di. We have to show that H does not contain any monochromatic Kki

in color i. Suppose that S ⊂ Zm, |S| = s, induces all the edges in color i. Without loss
of generality we may assume that 0 ∈ S, since otherwise we can subtract min(S) from all
elements without changing colors between vertices.

We first consider colors i for 1 ≤ i ≤ r. For x > y, if x, y ∈ S then x − y ∈ Di, and
hence 0 6= (x − y) (mod 2n − 1) ∈ Ci. Since Ci ⊂ Zn, by taking y = 0 ∈ S in the latter
we obtain s distinct values of x ∈ S modulo 2n− 1, furthermore all in Zn. Consequently,
the set T = {x (mod 2n−1) | x ∈ S} ⊂ Zn induces a complete graph Ks of color i in G,
and thus s < ki. To complete the proof, consider color r+1, and let S = {0, x1, . . . , xs−1}.
Observe that xt ∈ Dr+1 for 1 ≤ t ≤ s− 1, i.e. we can write xt = jt + λt(2n− 1), for some
n ≤ jt ≤ 2n − 1 and 0 ≤ λ ≤ kr+1 − 3, since (0, xt) has color r + 1. For xt1 , xt2 ∈ S the
edge (xt1 , xt2) cannot have color r + 1 unless |xt1 − xt2 | ≥ n, and hence there exists at
most one xt ∈ S for each fixed λt. This implies that s − 1 ≤ kr+1 − 2, and finishes the
proof. ♦

Corollary 1 R4(4) ≥ 634 and R(3, 6, 6) ≥ 303.

Proof. Using Theorem 1, a cyclic (4, 4, 4; 127)-coloring described by Hill and Irving [15]
implies the existence of a cyclic (4, 4, 4, 4; m)-coloring for m = 5 · 127 − 2 = 633, which
in turn gives the lower bound R4(4) ≥ 634. Similarly, using a cyclic (6, 6; 101)-coloring
found by Kalbfleisch [16] Theorem 1 implies the second bound. ♦

the electronic journal of combinatorics 11 (2004), #R35 6



4 Building-Up Colorings

We start this section with a theorem which actually is a special case of the result by Song
[27] with a suitable choice of pi’s and qi’s equal to 1 in (6). This special case is interesting
in itself, and furthermore enhancements of this construction will appear later in the paper.

Theorem 2 If kj ≥ 2 for 1 ≤ j ≤ r, then for all i = 1, . . . , r − 1

R(k1, . . . , kr) > (R(k1, . . . , ki) − 1)(R(ki+1, . . . , kr) − 1). (12)

Proof. Let s = R(k1, . . . , ki) − 1 and t = R(ki+1, . . . , kr) − 1. Consider any i-coloring
C1 ∈ R(k1, . . . , ki; s) of Ks with the vertex set U = {u1, . . . , us}, and any (r − i)-coloring
C2 ∈ R(ki+1, . . . , kr; t) of Kt with the vertex set V = {v1, . . . , vt}. Let C1(up, uq) ∈
{1, ..., i} and C2(vp, vq) ∈ {i + 1, ..., r} be the colors of the corresponding edges in C1 and
C2, respectively. We define an r-coloring F ∈ R(k1, . . . , kr; st) of Kst on the vertex set
U × V as follows:

F ((up1, vq1), (up2, vq2)) =

{
C2(vq1 , vq2) if p1 = p2,
C1(up1, up2) otherwise.

Observe that in F the edges which receive one of the first i colors induce an s-partite
Kt,...,t, colored accordingly to C1, and the edges of colors from the set {i + 1, ..., r} in-
duce s disjoint copies of Kt, all of them colored as in C2. Consequently, no forbidden
monochromatic Kkj

in color j is created for any j, and thus F ∈ R(k1, . . . , kr; st). The
theorem follows. ♦

There is a similarity between the recurrences (6) and (12), and between their construc-
tive proofs as well. They differ in that (6) keeps the number of colors fixed when increasing
orders of forbidden cliques, while (12) increases the number of colors but preserves clique
orders.

Using the value R2(4) = 18 [14] and lower bounds 128 ≤ R3(4) [15], 102 ≤ R2(6)
and 205 ≤ R2(7) (cf. [20], [22], [25]), Theorem 2 implies 2160 ≤ R5(4), 10202 ≤ R4(6)
and 41617 ≤ R4(7). Of course for such diagonal cases, inequality (7) would have been
sufficient. The last two bounds were also known to Richard Beekman [4] in 2000. By
using 51 ≤ R4(3) and 162 ≤ R5(3) in (5) with p = q = 2 for r = 4 and r = 5, we obtain
2501 ≤ R4(5) and 25922 ≤ R5(5), respectively, which are better than the bounds which
could be obtained by using Theorem 2. Still better bounds for R4(5) and R5(5) will be
derived later.

The following construction for 2-color Ramsey numbers was presented in [29]. Given
a (k, p; n1)-graph G and a (k, q; n2)-graph H , such that G and H both contain an induced
subgraph isomorphic to some Kk−1-free graph M on m vertices, the authors construct a
(k, p + q − 1; n1 + n2 + m)-graph. For k ≥ 3 and p, q ≥ 2, this implies R(k, p + q − 1) ≥
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R(k, p) + R(k, q) + m − 1. The next theorem extends this idea to multiple colors and
employs product graphs, thereby improving Abbott’s inequality (5).

Theorem 3 If p, q, r ≥ 2 and p ≥ q, then

Rr(pq + 1) ≥ Rr(p + 1)(Rr(q + 1) − 1).

Proof. Consider any colorings G ∈ Rr(p+1; s) with V G = {u1, ..., us}, s = Rr(p+1)−1,
and H ∈ Rr(q + 1; t) with V H = {v1, ..., vt}, t = Rr(q + 1) − 1. In order to prove the
theorem, we will construct an r-coloring F ∈ Rr(pq + 1; st + t − 1) with the vertex set
VF = (VG × VH ) ∪ (VH \ {v1}). Note that F has the right number of vertices since
(st + t − 1) + 1 = Rr(p + 1)(Rr(q + 1) − 1). The structure of F induced on VG × VH is
similar to that in the proof of Theorem 2. In addition, F contains a recolored copy of H
with one vertex deleted, and the connecting edges.

More formally, the coloring of the edges of F is constructed as follows. We begin
by letting F ((ui1, vj1), (ui2, vj2)) to be the same as G(ui1, ui2) if j1 = j2, and H(vj1, vj2)
otherwise. Observe that at this stage of the definition F [VG ×VH ] ∈ Rr(pq + 1; st) is as
in the Abbott’s construction (5). Let Ui = {(ui, vj) | 1 ≤ j ≤ t} and Vj = {(ui, vj) | 1 ≤
i ≤ s}. Note that Hi = F [Ui] is isomorphic to H for each 1 ≤ i ≤ s, and Gj = F [Vj]
is isomorphic to G for each 1 ≤ j ≤ t. Actually, F contains at least st subcolorings
isomorphic to H , namely those induced by any t-set containing exactly one element in
each Vj .

We recolor all edges induced in U1 by applying any permutation π without fixed points
to colors {1, . . . , r}. After this recoloring it still holds that H1 ∈ Rr(q + 1; t), but now
every edge in H1 has different color than the corresponding edge in H . No edges in
all other Hi’s and Gj ’s were recolored. Next, we color the edges of F [VH \ {v1}] with
the same colors as the corresponding edges in H1 (after recoloring), namely F (vj, vm) =
π(H(vj, vm)) = H1(vj, vm) for 2 ≤ j, m ≤ t. We complete the coloring of F by defining
F ((ui, vj), vm) = G(u1, ui) for all 2 ≤ i ≤ s, and F ((u1, vj), vm) = H1(v1, vm), for all
1 ≤ j ≤ t and 2 ≤ m ≤ t.

We will prove that F does not contain any monochromatic Kpq+1. Suppose that
D ⊂ VF , |D| = d, induces all edges in the same color c, for some 1 ≤ c ≤ r. Partition D
into D1 ∪ D2 ∪ D3 by defining

D1 = D ∩ ({u1} × VH ), d1 = |D1|,
D2 = D ∩ (VH \ {v1}), d2 = |D2|,
D3 = D ∩ ((VG \ {u1}) × VH ), d3 = |D3|.

Since Di’s form a partition of D we have d = d1 + d2 + d3. Our goal is to show d ≤ pq.
Observe that F [D1] and F [D2] are subcolorings of H1 ∈ Rr(q + 1; t), which implies
d1, d2 ≤ q. Hence we can further suppose that d3 ≥ 1, since otherwise d ≤ 2q ≤ pq. We
consider four cases.
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Case 1: d1 + d2 ≤ 1. In this case d1 = 0 or d2 = 0, so D induces in F a subcoloring on
d ≤ d3 + 1 vertices similar to the construction of Theorem 2, since all the edges in Kd on
D have colors as before recoloring H1. Hence d ≤ pq.

Case 2: d1 ≥ 2, d2 = 0. For each 1 ≤ i ≤ t, let us denote ni = |D∩Vi|, mi = |D1∩Vi|, and
ki = |D3 ∩ Vi|, and introduce the corresponding sets of indices for nonempty intersections
I1 = {i | mi > 0} and I3 = {i | ki > 0}. Clearly, we have mi + ki = ni, mi ∈ {0, 1},
and ki ≤ p. Note further that d1 ≥ 2 and recolored H1 enforce ki = 0 whenever mi = 1,
so I1 ∩ I3 = ∅. This means that D is partitioned into |I1| = d1 singletons in U1 and
|I3| sets of at most p elements each. Any set formed by a singleton in D1 ∩ Vi and |I3|
representatives one from each nonempty D3 ∩ Vi induces a subcoloring in an isomorph of
H , hence |I3| + 1 ≤ q. Putting it together, and using p ≥ q, we have

d =
t∑

i=1

ni =
∑
i∈I1

mi +
∑
i∈I3

ki ≤ |I1| + |I3|p ≤ q + (q − 1)p ≤ pq.

Case 3: d1 = 0, d2 ≥ 2. The reasoning is the same as in the Case 2, if the roles of D1 and
D2 are interchanged. The bound on d would still hold even if the vertex v1 were included
in V F .

Case 4: d1, d2, d3 ≥ 1. Consider vertices x = (u1, vj1) ∈ D1, y = vj2 ∈ D2 and z =
(ui, vj3) ∈ D3. By the assumption we know that F (x, y) = F (x, z) = F (y, z) = c. From
the construction we see that H1(v1, y) = c, and thus all the vertices in D2 ∪ {v1} span a
monochromatic clique in H1. This implies that d2 ≤ q − 1, and so d1 + d2 ≤ 2q − 1. Note
that (u1, vj3) /∈ D. Next observe that F ((u1, vj3), (ui, vj3)) = c, consequently for j = j3,
and similarly for all j, (D3 ∩ Vj)∪ {(u1, vj)} induces a monochromatic subcoloring in Gj ,
and therefore we have |D3 ∩ Vj | + 1 ≤ p.

Define I2 = {j |vj ∈ D2}, and let I1 and I3 be as in the Case 2. Similarly as before,
we have a partition of D into d1 +d2 ≤ 2q−1 singletons and at most q−1 blocks D3∩Vj .
Now, however, each of the latter blocks can have at most p − 1 elements. Hence, using
p ≥ q, we obtain

d = |I1| + |I2| + |I3|(p − 1) ≤ q + (q − 1) + (q − 1)(p − 1) ≤ pq.

This completes the proof. ♦

This theorem improves Abbott’s construction (5) by the term t − 1. In particular,
using p = q = 2 and the lower bounds R4(3) ≥ 51 and R5(3) ≥ 162 (cf. [22]), we obtain
new lower bounds R4(5) ≥ 2550 (which will be improved again by Corollary 5 in Section
5) and R5(5) ≥ 26082, respectively.

We cannot always improve over Song’s generalization (6) of (5), because of the way the
recoloring of H was used in the proof. We can however do so in the following restricted
case.
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Theorem 4 If pi, q, r ≥ 2, pi ≥ qi and qi ∈ {1, q} for 1 ≤ i ≤ r, then

R(p1q1 + 1, . . . , prqr + 1) ≥ R(p1 + 1, . . . , pr + 1)(R(q1 + 1, . . . , qr + 1) − 1).

Proof. This is a simple generalization of the proof of previous theorem. ♦

Theorem 5 For k, l ≥ 3, let G be a (k, l; 2n)-graph, and suppose that for some partition
VG = V1 ∪ V2 the induced subgraphs G[V1] and G[V2] are isomorphic. Then, given any
(s, 3; m)-graph, we have

R(s, k, l) ≥ mn + 1.

Proof. Consider graph H with V H = V1 = {v1, . . . , vn} isomorphic to G[V1] and
G[V2], and any (s, 3; m)-graph P with the vertices U = {u1, . . . , um}. We build from H ,
P and an isomorphism φ : G[V1] → G[V2], φ(v) = v′, a 3-coloring F ∈ R(s, k, l; mn)
with the vertex set U × VH by defining the colors of edges as follows. For each fixed
i, 1 ≤ i ≤ m, the edge ((ui, vj1), (ui, vj2)) has color 2 if (vj1 , vj2) ∈ EH , otherwise it
has color 3. Next, if (ui1 , ui2) ∈ EP then we set F ((ui1, vj1), (ui2, vj2)) = 1. Finally, for
i1 < i2 and (ui1 , ui2) 6∈ EP we use colors 2 or 3 depending on the adjacency in G, namely
F ((ui1, vj1), (ui2, vj2)) has color 2 if (vj1, v

′
j2) ∈ G, otherwise it has color 3.

One can easily see, as in the previous proofs, that F has no Ks in color 1. Since P has
no K3, any Kp in color 2 or Kq in color 3, by the construction, may involve vertices with
at most two distinct coordinates ui. However, in this case such a monochromatic clique
is induced in an isomorph of G, hence p < k and q < l. This completes the proof. ♦

We won’t give any new bounds that follow immediately from Theorem 5, but we will
have two strong new bounds from a generalization, which follows.

Theorem 6 Let G ∈ R(k1, . . . , kr; 2n + 1), for ki ≥ 3, 1 ≤ i ≤ r, and suppose that
for some partition VG = V1 ∪ V2 ∪ {w} the induced subcolorings G[V1] and G[V2] are
isomorphic. Then, given any (3, s1, . . . , st; m)-coloring with a vertex of degree d in color
1, we have constructively

R(s1, . . . , st, k1, . . . , kr) ≥ mn + d + 1.

Proof. We only outline the proof, which is a generalization of Theorem 5 to more
colors, with an observation permitting the use of n + 1 points of G, instead of n, d times.
The color avoiding Ks is now split into t colors with clique bounds s1, . . . , st, and instead
of two colors avoiding Kk and Kl we now have r colors with bounds k1, . . . , kr. Observe
further that we can add extra d points to the construction by augmenting d copies of
H ∼= G[V1], corresponding to d neighbors of a vertex x in P in color 1, by a copy of vertex
w. Since P has no triangles in color 1, we will be adding edges between different copies
of H with only at most one of them being augmented by w, so we can still follow the
original structure of G as in the proof of Theorem 5. ♦
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Corollary 2 R5(4) ≥ 3416 and R4(6) ≥ 15202

Proof. In both cases we will use Theorem 6 applied to a cyclic coloring G on 2n + 1
vertices, which can easily be split into parts as required. Consider the (4, 4, 4; 127)-coloring
from [15], and thus setting n = 63, and the (3, 4, 4; 54)-coloring found in [19], which has
vertices of degree 13 in color 1. Theorem 6 implies R5(4) ≥ 54 · 63 + 13 + 1 = 3416. For
R4(6), consider two colorings used in the proof of Corollary 1 in Section 3; a (6, 6; 101)-
coloring setting n = 50 and a (3, 6, 6; 302)-coloring built there. The latter has vertices of
degree 101 in color 1. Applying Theorem 6 gives R4(6) ≥ 302 · 50 + 101 + 1 = 15202 ♦

5 Avoiding Triangles and Merging Colors

Theorem 7 If k ≥ 3 and l ≥ 5, then R(3, k, l) ≥ 4R(k, l − 1) − 3.

Proof. For suitable k and l, let m = R(k, l−1)−1, and consider any (k, l−1; m)-graph G
with V G = {v1, v2, ..., vm}. We will prove the theorem by establishing a (3, k, l)-coloring on
4R(k, l−1)−4 = 4m vertices. Using colors from the set {1, 2, 3}, we construct a 3-coloring
F ∈ R(3, k, l; 4m) on the vertex set VF =

⋃4
i=1 Ui, where Ui = {(ui, vj) | 1 ≤ j ≤ m}.

For each i, 1 ≤ i ≤ 4, we color the edges induced by Ui with colors 2 and 3 according to
G, namely, F ((ui, vj1), (ui, vj2)) = 2 if (vj1 , vj2) ∈ EG , otherwise F ((ui, vj1), (ui, vj2)) = 3.
Next, we color the edges between Ui1 and Ui2 , for i1 ∈ {1, 2} and i2 ∈ {3, 4} by letting

F ((ui1, vj1), (ui2, vj2)) =




1, if j1 = j2;
2, if (vj1 , vj2) ∈ EG ;
3, if (vj1 , vj2) 6∈ EG , and j1 6= j2,

and for (i1, i2) ∈ {(1, 2), (3, 4)} by

F ((ui1, vj1), (ui2, vj2)) =
{

3, if j1 = j2;
1, if j1 6= j2.

Clearly, F has the right number of vertices. From the construction, it is straightforward
to observe that F does not contain any triangles in color 1, nor Kk in color 2. We need
to prove that the coloring F does not contain any Kl in color 3.

Suppose otherwise, and let S ⊂ VF be the set of l vertices inducing a monochromatic
Kl in color 3. Let Si = S ∩ Ui, and denote si = |Si|, for i = 1, 2, 3, 4. We have |S| =∑4

i=1 si = l, and observe that l ≥ 5 implies si > 1 for some i. By symmetry, without loss of
generality, we may assume that s1 ≥ 2, which in turn by construction immediately implies
s2 = 0. We next claim that s1 + s3 < l − 1. Write S1 = {(u1, vp1), (u1, vp2), ..., (u1, vps1

)}
and S3 = {(u3, vq1), (u3, vq2), ..., (u3, vqs3

)}, and denote the corresponding sets of indices by
P = {p1, ..., ps1}, Q = {q1, ..., qs3}. Now, F ((u1, v), (u3, v)) = 1 implies that |P ∩ Q| = ∅,
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and we see that {vj ∈ VG | j ∈ P∪Q} is an independent set in the graph G. Consequently,
s1 + s3 = |P ∪ Q| < l − 1. In the same way one can argue that s1 + s4 < l − 1. Recall
that s2 = 0. Hence, if one of s3, s4 is equal to zero, then |S| < l− 1. Finally, the colors of
the edges between U3 and U4 imply that if both s3 and s4 are nonzero, then s3 = s4 = 1,
and thus |S| = s1 + s3 + s4 ≤ l − 1, a contradiction. ♦

We note that Theorem 7 is a significant improvement over (8). Using lower bounds on
R(3, k) from [22], we obtain new bounds R(3, 3, 10) ≥ 141, R(3, 3, 11) ≥ 157, R(3, 3, 12) ≥
181, and R(3, 3, 13) ≥ 205. Using a different reasoning, one can actually prove that
Theorem 7 holds also for l = 4 and l = 3. This extension, however, leads only to rather
weak specific bounds.

One can generalize Theorem 7 by allowing more colors in place of color 2 on the left
hand side R(3, k, l).

Corollary 3 For k1 ≥ 5 we have

R(3, k1, k2, ..., kr) ≥ 4R(k1 − 1, k2, ..., kr) − 3. (13)

Proof. Consider k1 playing the role of l in Theorem 7, and k2, ..., kr being constraints
on cliques in new colors instead of single k. Then, under a suitable permutation of colors,
the statement (13) follows as a straightforward generalization of the proof of Theorem 7.
♦

For example, using R(3, 3, 10) ≥ 141 in (13) with k1 = 11 and k2 = k3 = 3, gives an
improved bound R(3, 3, 3, 11) ≥ 561.

Another lower bound for the numbers of the form R(3, k, k) is given in the next
theorem. It is based on the well known Paley graphs Qp defined for primes p of the
form p = 4t + 1. Let QR(p) (QR(p)) denote the set of quadratic residues (nonresidues)
modulo p. In Qp the vertex set is equal to Zp, and the vertices x and y are joined by an
edge if and only if x − y ∈ QR(p). The condition p ≡ 1 (mod 4) implies that −1 is a
quadratic residue, and thus Qp is a well defined cyclic graph. We further note that QR(p)
and QR(p) each have (p − 1)/2 elements, they partition Zp \ {0}, and both are closed
under multiplication by any element in QR(p), in particular under f(x) = (−1)x ≡ p− x
(mod p). On the other hand multiplication by any nonresidue in QR(p) swaps elements
between QR(p) and QR(p). Using elementary number theory one can also easily prove
that Qp is edge-transitive and self-complementary.

If αp denotes the order of the largest clique in Qp, then we clearly have R(αp + 1, αp +
1) > p. Shearer [25], and later but independently Mathon [20], described a construction
“doubling” Qp, which yields a graph Hp on 2p + 2 vertices in R(αp + 2, αp + 2). This
construction gives the best known lower bounds for several diagonal Ramsey numbers, in
particular R(7, 7) ≥ 205 based on the Paley graph Q101. The Shearer-Mathon construction
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cannot be iterated, since the graph Hp has no longer structure of a Paley graph, in
particular it doesn’t have to be cyclic or self-complementary. Paley graphs yield also
good lower bounds when used as a starting point for the Giraud construction of Theorem
1 discussed in Section 3. Giraud construction requires the starting graph to be cyclic, and
thus it cannot be used after Shearer-Mathon doubling. The other order of extensions, as
is, is not feasible either. However, Theorem 8 below shows that a special way of merging
the Giraud and Shearer-Mathon constructions works. We first formulate and prove it
only for avoiding triangles in the new color, which apparently is the case producing some
of the strongest known lower bounds.

Theorem 8 For a prime p of the form 4t + 1, let αp be the order of the largest clique in
the Paley graph Qp. Then

R(3, αp + 2, αp + 2) ≥ 6p + 3.

Proof. Let k = αp + 1, and denote Qr = QR(p), Qr̄ = QR(p). Consider Qp to be
a cyclic (k, k; p)-coloring used as a starting coloring in the construction of the proof of
Theorem 1 with r = 2 and k3 = 3. Let H be the resulting (k, k, 3; 3p − 1)-coloring with
the vertex set Z3p−1. H is cyclic and the distance sets of the three colors are:

D1 = {j, j + 2p − 1 | j ∈ Qr},
D2 = {j, j + 2p − 1 | j ∈ Qr̄},
D3 = {j | p ≤ j < 2p}.

Let H ′ be a vertex disjoint isomorphic copy of H , so that the vertex x′ of H ′ corre-
sponds to the vertex x of H . In order to prove the theorem, we construct a 3-coloring
F ∈ R(k + 1, k + 1, 3; 6p + 2) with the vertex set VF = VH ∪ VH ′ ∪ W , where
W = {w1, w2, w3, w4}. The connections between H , H ′ and W are defined similarly
as in the Shearer-Mathon construction, but here, having one more color, we manage to
use 4 external vertices of W instead of 2 in the original method.

The edges of F [VH ] and F [VH ′] are colored the same as the corresponding edges of H
and H ′, and of F [W ] by setting F (w1, w2) = F (w3, w4) = 3 and F (w1, w3) = F (w1, w4) =
F (w2, w3) = F (w2, w4) = 2. For x, y ∈ VH , and thus for corresponding x′, y′ in V H ′, we
define

F (x, y′) = F (x′, y) =




1 if H(x, y) = 2,
2 if H(x, y) = 1 or x = y,
3 if H(x, y) = 3.

The special 3p − 1 matching edges of color 2 for x = y could be defined alternatively
in color 1, or in any mixture of colors 1 and 2. Finally we complete the definition of the
coloring F . For the edges between W and VH ∪ VH ′ assign F (wi, x) = 2, F (wi, x

′) = 1
for i ∈ {1, 2}, and F (wi, x) = 1, F (wi, x

′) = 2 for i ∈ {3, 4}.

We have to show that F is a (k + 1, k + 1, 3)-coloring.
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By Theorem 1 we know that H and H ′ are (k, k, 3; 3p − 1)-colorings. Considering
all possible triples of vertices, one can easily see from the construction that F does not
contain any triangle in color 3. Suppose S ⊂ VF , s = |S|, induces all edges in color c,
where c is color 1 or color 2. We will prove that s < k + 1.

Observe that each w in W , for fixed color 1 or 2, has edges only to one of VH or VH ′.
Note further that F [W ] has no edges in color 1, and for each edge such that F (wi, wj) = 2
the neighborhoods of wi and wj in color 2 are disjoint. Hence there is at most one vertex
w in S ∩ W , or otherwise S ⊂ W , in which case s ≤ 2 and we are done. If there is such
w, then S is disjoint from V H or from V H ′. Since no cliques in color 1 or 2 in H and H ′

have k vertices, then w ∈ S implies s < k + 1, Thus in the sequel we will assume that
S ∩ W = ∅.

If for some x ∈ VH , {x, x′} ⊂ S (this must be the case of c = 2), then we easily
see that S = {x, x′}. So we assume that no matching edge {x, x′} is in S, which makes
further reasoning identical for c = 2 and c = 1. If S intersects only one of VH or VH ′,
then clearly s < k. Since H is cyclic we can assume that 0 ∈ S ∩ VH , and we can write
S = {0, x1, . . . , xm, y′

1, . . . , y
′
n}, where X = {x1, . . . , xm} ⊂ VH and Y ′ = {y′

1, . . . , y
′
n} ⊂

VH ′. Consider the set Y = {y1, . . . , yn} ⊂ VH . Previous comments about {x, x′} imply
that X ∩ Y = ∅. From the construction of F we see that X ⊂ D1 and Y ⊂ D2, where
Di’s are distance sets of color i in H . Similarly as in the proof of Theorem 1 we can argue
that no two elements of X or Y can be the same modulo 2p− 1 ∈ D3. Consequently, the
sets X(p) and Y (p) of values of X and Y , respectively, reduced modulo p, have the same
cardinalities as the original sets.

Hence we have X(p) ⊂ Qr, |X(p)| = m and Y (p) ⊂ Qr̄, |Y (p)| = n, X(p)∩ Y (p) = ∅,
and furthermore all differences between two elements of X(p) or two elements of Y (p)
must be in Qr, while all differences between elements from X(p) and Y (p) must be in
Qr̄. The final argument is the same as in the Paley doubling construction by Shearer [25].
Consider the set

T = {x−1 (mod p) | x ∈ X(p) ∪ Y (p)}

of m + n elements in Z∗
p . We can show that T forms a clique in the Paley graph Qp. For

any distinct a−1, b−1 ∈ T , consider quadratic character of the factors in the representation
a−1 − b−1 = (b − a)(ab)−1, all arithmetic performed modulo p. In all cases we can easily
see that a−1 − b−1 ∈ QR. For example, if a, b ∈ Y (p) then ab ∈ Qr by the basic property
of nonresidues, and b − a ∈ Qr because of the structure of F as argued above. Therefore

s − 1 = m + n = |T | < αp + 1 = k,

which completes the proof. ♦

We illustrate Theorem 8 on the smallest case for which it produces a new bound,
namely for p = 101. The Paley graph Q101 gives first the bound R(6, 6) ≥ 102, after
applying Giraud extension we have R(3, 6, 6) ≥ 303, and finally enhanced Shearer-Mathon
“doubling” gives R(3, 7, 7) ≥ 609. Using the latter and a weaker version of Theorem 6
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where G has only 2n = 204 vertices and the construction has no d extra points, we can
easily conclude that R4(7) ≥ 608·102+1 = 62017. The bound R(3, 9, 9) ≥ 1689 = 6·281+3
can be obtained similarly by Theorem 8 from the Paley graph Q281 ∈ R(8, 8; 281).

Corollary 4 For a prime p of the form 4t + 1, let αp be the order of the largest clique in
the Paley graph Qp. Then for s ≥ 3

R(s, αp + 2, αp + 2) ≥ 4ps − 6p + 3.

Sketch of the proof. We will use the notation of the proof of Theorem 8. The
same method works not only for triangles but for all Ks, s ≥ 3. We first build H ∈
R(k, k, s; (2s − 3)p − s + 2) using Theorem 1. The coloring F is constructed similarly
as before on two copies of H , but now with additional 2(s − 1) vertices in W , totaling
2((2s−3)p− s + 2) + 2(s−1) = 4ps−6p + 2 vertices as required. The edges of a Ks−1,s−1

in F [W ] are in color 2, and the remaining edges of two copies of Ks−1 are assigned color
3. It is straightforward to prove that F has no Ks in color 3. The sets X and Y are
defined similarly as in Theorem 8. Following the proof of Theorem 1 we can show that
no two elements of X or Y can be the same modulo 2p − 1. The final steps of reasoning
are the same as in the proof of Theorem 8. ♦

While the main focus of this paper is on multicolor Ramsey numbers, we digress to
present a 2-color theorem which follows naturally from Theorem 7.

Theorem 9 For l ≥ 5, k ≥ 2, R(2k − 1, l) ≥ 4R(k, l − 1) − 3.

Proof. We will use exactly the same graph G and 3-coloring F as in the proof of
Theorem 7. Consider a 2-coloring (graph) H obtained from F by merging colors 1 and
2, i.e. the edges of H are those colored 1 or 2 in F . Clearly, by Theorem 7, H has no
independent sets of order l. We have to prove that H contains no K2k−1.

Suppose that D ⊂ VF = VH , of order d = |D|, is a set of vertices inducing Kd in H .
We partition D into six sets, and associate with them sets of indices, which are subsets
of {1, ..., m}. First, define D1 = D ∩ U1, d1 = |D1|, D2 = D ∩ U2, d2 = |D2|, and write
D1 = {(u1, vp1), (u1, vp2), ..., (u1, vpd1

)}, D2 = {(u2, vq1), (u2, vq2), ..., (u2, vqd2
)}. We denote

the corresponding sets of indices by I1 = {p1, ..., pd1} and I2 = {q1, ..., qd2}. Define further
the remaining sets of the partition by

D3 = {(u3, vi) ∈ D | i ∈ I1} ∪ {(u4, vi) ∈ D | i ∈ I1},
D4 = {(u3, vi) ∈ D | i ∈ I2} ∪ {(u4, vi) ∈ D | i ∈ I2},
D5 = (D ∩ U3) \ (D3 ∪ D4),
D6 = (D ∩ U4) \ (D3 ∪ D4),

with the corresponding sets of indices
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I3 = {i ∈ I1 | (u3, vi) ∈ D ∨ (u4, vi) ∈ D},
I4 = {i ∈ I2 | (u3, vi) ∈ D ∨ (u4, vi) ∈ D},
I5 = {i ∈ {1, ..., m} \ (I1 ∪ I2) | (u3, vi) ∈ D},
I6 = {i ∈ {1, ..., m} \ (I1 ∪ I2) | (u4, vi) ∈ D},

and their cardinalities dj = |Ij| = |Dj|. We first claim that D =
⋃6

i=1 Di is really a
partition. F ((u1, v), (u2, v)) = 3 implies that I1∩I2 = ∅, from which we can conclude that
all Dj ’s are mutually disjoint and cover D. Next, observe that I1, I4 and I5 are mutually
disjoint, and thus {(u1, vj) | j ∈ I1 ∪ I4 ∪ I5} induces in H [U1] a complete subgraph of
order t = d1 + d4 + d5. Since H [U1] is isomorphic to G, we know that t ≤ k − 1. In the
same way we argue that d2 + d3 + d6 ≤ k − 1, and hence d =

∑6
i=1 di ≤ 2(k − 1). This

shows that H doesn’t contain K2k−1, and thus it completes the proof of the theorem. ♦

Normally, one would not expect to obtain interesting 2-color Ramsey constructions by
merging colors in multicolorings. The method of the proof of Theorem 9 is an exception,
since it surprisingly produces some new lower bounds improving on those listed in the
2002 revision of [22]. For k = 3 we obtain a general inequality

R(5, l) ≥ 4R(3, l − 1) − 3, (14)

which when applied for small l to bounds on R(3, l− 1) from [22] gives the following new
lower bounds: R(5, 11) ≥ 157, R(5, 13) ≥ 205, R(5, 14) ≥ 233 and R(5, 15) ≥ 261. For
higher values of k, using Theorem 9 we obtain further new bounds, such as R(6, 9) ≥ 169,
R(6, 13) ≥ 317, R(7, 11) ≥ 405, R(8, 9) ≥ 317 and R(8, 13) ≥ 817 (the entries we list
improve over lower bounds previously recorded in the survey [22]).

Corollary 5 For k1 ≥ 5 and ki ≥ 2 we have

R(k1, 2k2 − 1, k3, ..., kr) ≥ 4R(k1 − 1, k2, ..., kr) − 3. (15)

Proof. Similarly as (13) was obtained from Theorem 7 by considering more colors, we
can think of (15) being a generalization derived from Theorem 9. Or, equivalently, in the
construction of coloring corresponding to the left hand side of (13) in Corollary 3 merge
colors 1 and 3, with forbidden cliques of orders 3 and k2, respectively. ♦

Recall that permuting arguments of Ramsey numbers does not change their values.
Consequently, we obtain a new lower bound on R4(5) by applying (15) twice and then
using R(3, 3, 4, 4) ≥ 171 ([8], see also Section 6), as follows:

R4(5) ≥ 4R(3, 4, 5, 5) − 3 ≥ 4(4R(3, 3, 4, 4)− 3) − 3 = 2721.
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The previously best known lower bound for R4(5) cited in [22] was 2501. It could be
derived by a method described by Abbott [1] or as discussed in Section 2 and Section 4.
Finally, we mention yet another new bound R3(9) ≥ 13761, which can be obtained by
applying (15) three times and using R(7, 8) ≥ 216 [29].

6 Computer Searches for Colorings

In 1994, a construction method that produced the best known lower bound for the 5th
Schur number and for the 5-color Ramsey number of K3 was described by Exoo [7]. With
the availability of faster computers, it has become feasible to apply the method to bigger
problems, particularly for K4 and K5.

The colorings described here are all linear colorings, i.e., the vertices are numbered
from 0 to n − 1 and the color of the edge joining vertices i and j depends only on the
difference |i− j|. This class of coloring includes cyclic colorings. Linear colorings possess
a useful hereditary property that cyclic colorings do not: given a linear coloring on n + 1
vertices, we can find a linear subcoloring on n vertices.

The growth method begins with a coloring of a small graph, one far smaller than
the one that we ultimately aim to construct. At each stage of the algorithm, we have a
target number of vertices on which we are trying to complete a good coloring. When we
succeed, we increment the target. The hereditary property gives us a chance to succeed
at the larger number of vertices without making an excessive number of changes in our
coloring.

Theorem 10 R(5, 5, 5) ≥ 415.

Proof. The coloring that proves the theorem is given below. In this coloring we identify
the vertices with the positive integers from 1 to 414. The color of the edge joining a pair
of vertices is determined by their difference. So, for example, edges are given color 1 if
the absolute value of their difference is any of the values listed in the first set of integers
below.

Color 1:

14, 22, 25, 30, 33, 35, 41, 43, 59, 67,

75, 81, 89, 90, 98, 102, 110, 114, 116, 117,

122, 124, 130, 132, 135, 136, 137, 138, 143, 144,

146, 154, 157, 159, 165, 167, 170, 171, 173, 178,

179, 181, 185, 186, 187, 189, 190, 192, 193, 194,

198, 200, 201, 205, 208, 209, 212, 213, 214, 216,

222, 225, 227, 228, 233, 235, 236, 243, 244, 247,

249, 255, 257, 260, 265, 268, 270, 271, 277, 278,
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279, 282, 284, 288, 290, 292, 298, 300, 304, 312,

315, 316, 317, 323, 324, 325, 333, 334, 339, 347,

355, 371, 372, 373, 379, 381, 384, 388, 389, 391,

392, 400, 410.

Color 2:

2, 3, 9, 10, 11, 13, 16, 19, 21, 24,

32, 36, 37, 44, 46, 48, 52, 54, 56, 57,

65, 68, 70, 71, 76, 78, 79, 80, 86, 87,

92, 100, 101, 103, 105, 107, 109, 111, 113, 120,

121, 125, 127, 133, 141, 147, 148, 155, 156, 160,

162, 166, 168, 176, 182, 197, 203, 211, 217, 223,

224, 231, 232, 238, 246, 252, 254, 258, 259, 266,

273, 281, 287, 289, 293, 299, 301, 303, 305, 309,

311, 314, 322, 327, 328, 335, 336, 338, 343, 344,

346, 348, 349, 357, 358, 360, 362, 363, 366, 368,

370, 377, 382, 390, 393, 395, 398, 401, 403, 404,

405, 411, 412.

Color 3:

1, 4, 5, 6, 7, 8, 12, 15, 17, 18,

20, 23, 26, 27, 28, 29, 31, 34, 38, 39,

40, 42, 45, 47, 49, 50, 51, 53, 55, 58,

60, 61, 62, 63, 64, 66, 69, 72, 73, 74,

77, 82, 83, 84, 85, 88, 91, 93, 94, 95,

96, 97, 99, 104, 106, 108, 112, 115, 118, 119,

123, 126, 128, 129, 131, 134, 139, 140, 142, 145,

149, 150, 151, 152, 153, 158, 161, 163, 164, 169,

172, 174, 175, 177, 180, 183, 184, 188, 191, 195,

196, 199, 202, 204, 206, 207, 210, 215, 218, 219,

220, 221, 226, 229, 230, 234, 237, 239, 240, 241,

242, 245, 248, 250, 251, 253, 256, 261, 262, 263,

264, 267, 269, 272, 274, 275, 276, 280, 283, 285,

286, 291, 294, 295, 296, 297, 302, 306, 307, 308,

310, 313, 318, 319, 320, 321, 326, 329, 330, 331,

332, 337, 340, 341, 342, 345, 350, 351, 352, 353,

354, 356, 359, 361, 364, 365, 367, 369, 374, 375,

376, 378, 380, 383, 385, 386, 387, 394, 396, 397,

399, 402, 406, 407, 408, 409, 413.

♦
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Other new lower bounds for off-diagonal multicolor numbers involving triangles were
obtained with the help of heuristic algorithms by Geoff Exoo, and most of them are pre-
sented at his website [8]. In the following we present previously unpublished constructions
establishing the bounds 79 ≤ R(3, 3, 7), 93 ≤ R(3, 3, 3, 4) and 171 ≤ R(3, 3, 4, 4).

The coloring which gives 79 ≤ R(3, 3, 7) follows.

Color 1:

4, 5, 6, 13, 15, 22, 29, 31, 38, 40,

40, 47, 49, 63, 65, 72, 73, 74, 75.

Color 2:

1, 3, 9, 14, 16, 24, 35, 37, 39, 41,

43, 54, 56, 62, 64, 69, 77.

Color 3:

2, 7, 8, 10, 11, 12, 17, 18, 19, 20,

21, 23, 25, 26, 27, 28, 30, 32, 33, 34,

36, 42, 44, 45, 46, 48, 50, 51, 52, 53,

55, 57, 58, 59, 60, 61, 66, 67, 68, 70,

71, 76.

Next is the coloring which shows 93 ≤ R(3, 3, 3, 4).

Color 1:

2, 3, 8, 9, 14, 15, 19, 25, 31, 35,

41, 57, 61, 67, 73, 77, 78, 83, 84, 89,

90.

Color 2:

1, 7, 10, 12, 16, 18, 43, 45, 47, 49,

51, 74, 76, 80, 82, 85, 91.

Color 3:

4, 5, 6, 13, 20, 21, 22, 29, 37, 38,

39, 46, 53, 54, 55, 63, 70, 71, 72, 79,

86, 87, 88.

Color 4:

11, 17, 23, 24, 26, 27, 28, 30, 32, 33,

34, 36, 40, 42, 44, 48, 50, 52, 56, 58,

59, 60, 62, 64, 65, 66, 68, 69, 75, 81.
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And finally the coloring for 171 ≤ R(3, 3, 4, 4). Note that in this coloring there are
more edges in color 1, a K3 avoiding color, than in color 3, a K4 avoiding color. The
explanation for this may be that the color 1 chords are larger numbers. We have seen this
phenomenon in other colorings.

Color 1:

50, 56, 59, 62, 65, 67, 71, 75, 76, 77,

79, 80, 81, 82, 83, 84, 85, 86, 87, 88,

90, 91, 92, 93, 95, 96, 97, 98, 99, 101,

102, 103, 104, 105, 108, 110, 111, 114, 116, 120,

122, 128.

Color 2:

1, 4, 7, 10, 13, 16, 22, 25, 28, 31,

34, 37, 40, 43, 46, 49, 51, 54, 57, 60,

63, 69, 107, 113, 119, 121, 124, 127, 130, 133,

136, 142, 145, 148, 154, 157, 163, 166, 169.

Color 3:

8, 9, 14, 15, 17, 18, 19, 20, 21, 29,

30, 32, 33, 35, 36, 41, 42, 58, 64, 66,

70, 72, 78, 100, 106, 112, 129, 134, 135, 137,

138, 140, 141, 149, 150, 152, 153, 155, 156, 161,

162.

Color 4:

2, 3, 5, 6, 11, 12, 23, 24, 26, 27,

38, 39, 44, 45, 47, 48, 52, 53, 55, 61,

68, 73, 74, 89, 94, 109, 115, 117, 118, 123,

125, 126, 131, 132, 139, 143, 144, 146, 147, 151,

158, 159, 160, 164, 165, 167, 168.
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7 Summary of Bounds

The summary of all lower bounds used, derived, or otherwise mentioned in
the paper (not necessarily new) is presented in the Table I, together with pointers to
references and relevant places in this paper. The bounds which are new and the best for
given parameters are marked with a ’*’ in the column “best new”. For example, the lower
bound of 162 in the case number 3 is not new and it was established in [7], while a new
lower bound of 634 for the case number 7 is obtained using Theorem 2 in Section 3, and
it is listed in the abstract.

For a complete listing of all known related bounds see the dynamic survey paper [22].

case Ramsey lower best section, (t)heorem/
no. number bound new reference (c)orollary, etc.

1. R3(3) 17 2, [14]
2. R4(3) 51 2, [5]
3. R5(3) 162 2, [7]
4. R6(3) 538 2, [11]
5. R7(3) 1682 2, [11]

6. R3(4) 128 3, [15]
7. R4(4) 634 * 3 c1, abstract
8. R5(4) 2160 4 t2, (7)
9. R5(4) 3416 * 4 c2, abstract

10. R3(5) 415 * 6 t10, abstract
11. R4(5) 1833 2, [20] after (6)
12. R4(5) 2501 2 after (6)
13. R4(5) 2550 4 t3
14. R4(5) 2721 * 5 c5, (15), abstract
15. R5(5) 25922 4 (5), after t2
16. R5(5) 26082 * 4 t3, abstract

17. R4(6) 10202 4, [4] t2, (7)
18. R4(6) 15202 * 4 c2
19. R4(7) 41617 4, [4] t2, (7)
20. R4(7) 62017 * 5 t6, t8
21. R3(9) 13761 * 5 c5++

Table I. Summary of lower bounds.
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case Ramsey lower best section, (t)heorem/
no. number bound new reference (c)orollary, etc.

22. R(5, 11) 157 * 5 (14)
23. R(5, 13) 205 * 5 (14)
24. R(5, 14) 233 * 5 (14)
25. R(5, 15) 261 * 5 (14)

26. R(6, 9) 169 * 5 t9
27. R(6, 13) 317 * 5 t9
28. R(7, 11) 405 * 5 t9
29. R(8, 9) 317 * 5 t9
30. R(8, 13) 817 * 5 t9

31. R(3, 3, 4) 30 2, [17] after (2)
32. R(3, 3, 7) 79 * 6 after t10
33. R(3, 3, 10) 141 * 5 t7
34. R(3, 3, 11) 157 * 5 t7
35. R(3, 3, 12) 181 * 5 t7
36. R(3, 3, 13) 205 * 5 t7

37. R(3, 4, 4) 54 4, [19] in proof of c2
38. R(3, 6, 6) 303 * 3 c1
39. R(3, 7, 7) 609 * 5 t8
40. R(3, 9, 9) 1689 * 5 t8

41. R(3, 3, 3, 4) 93 * 6 after t10
42. R(3, 3, 3, 5) 162 * 2 before (3)
43. R(3, 3, 3, 11) 561 * 5 c3
44. R(3, 3, 4, 4) 171 * 6 after t10
45. R(3, 4, 5, 5) 681 * 5 used after c5

Table I (continued). Summary of lower bounds.
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