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Abstract

In 1989, George R. T. Hendry presented a table of two-color graph
Ramsey numbers R(G, H) for all pairs of graphs G and H having five
vertices, with the exception of seven cases. Until now, only two of these
open cases were solved. This work eliminates another one by computing
R(Bs, K;) = 20, where B; = K, + K, is the book graph of order 5. In
addition, we show that for these parameters there exists a unique up to
isomorphism critical graph. The results are based on computer algorithms.
Among the four remaining open cases in Hendry’s table, the most notable
is that of Ky versus Kj, for which it is known that 43 < R(Kj, K;) < 49.
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1. Overview

Let G and H be simple graphs. Graph F will be called a (G, H)-
graph if it does not contain a subgraph isomorphic to G, and such that the
complement F has no subgraph isomorphic to H. A (G, H;n)-graph is a
(G, H)-graph of order n. Let R(G,H) and R(G, H;n) denote the set of
all (G, H)-graphs and (G, H; n)-graphs, respectively. The Ramsey number
R(G, H) is defined to be the least n > 0 such that there is no (G, H;n)-
graph, or equivalently, it is the least positive integer n such that every

1



2-coloring of the edges of K,, contains a subgraph isomorphic to G in the
first color or a subgraph isomorphic to H in the second color.

In the sequel, P, and C|}, denote a simple path and cycle, respectively,
on k vertices. Further, B, = K, + K, is the k-page book of order k + 2,
which can be seen as a graph formed by k triangular pages sharing one
common edge. Note that we could define equivalently B, = K; + K 4,
where K ; is a star with k spikes. Finally, let W), = K; + C},_; denote a
wheel with k& — 1 spokes.

In 1989, George R. T. Hendry [1] presented a table of Ramsey numbers
R(G, H) for all pairs of graphs G and H having five vertices, with the
exception of seven cases. Until now, only two of these open cases have been
solved. A regularly updated survey by the second author [4] reports on old
and the most recent results on various types of Ramsey numbers, including
those of the form R(G, H). In particular, [4] lists the developments related
to all seven cases missing in the Hendry’s table, and gives references to
papers discussing them. For graphs G and H of order less than 5, or G of
order at most 4 and H of order 5, all Ramsey numbers R(G, H) have been
known since the computation of R(K,, K;) = 25 [3] in 1995.

In this work, we eliminate one of the open cases by computing
R(B;, K;) = 20. This result improves the bounds 20 < R(Bj;, K;) < 22
given in [1]. In addition, we show that for these parameters there exists a
unique up to isomorphism critical graph, i.e. |R(Bj, K;;19)| = 1. We have
also completed a full enumeration of all (B, K; 18)-graphs, and found that
there are exactly 3376 of them. Our results, described in more detail in the
next section, are based on computer algorithms.

The remaining open cases of Ramsey numbers for graphs on at most
five vertices are: 25 < R(K; — P3,K;) < 28, 27 < R(W;,K;) < 29,
30 < R(K; —e,K;) < 34, and 43 < R(K;, K5) < 49 (see [4] for references
to all bounds). Among them, definitely the most famous one and the most
difficult to compute, is that of Ky versus K;. While some very strong
evidence has been presented to support the conjecture that R(K;, K;) =
43, there is little hope for a computational proof of the latter, or even
for any improvement of the current lower or upper bound. In contrast,
further progress on improving bounds for the other three open cases can
be expected in the not so distant future. More specifically, we speculate
as follows. We feel that the case of R(W;, K;) could be attacked with a
method similar to the approach in this paper, though more computational
effort would be needed. The evaluation of R(K; — P;, Ky) might be at least
as hard to obtain as the result R(K,, K;) = 25, since K — P; contains K.
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The computation of the exact value of R(Ky —e, K;) seems to be still much
more difficult, but some improvement of the current bounds (especially
upper) should be possible.

2. Enumerations and Results

We will use the same notation as in [5]. If G is a graph, then VG
and EG are its vertex set and edge set, respectively. If v € VG, then
Ng(v) = {w € VG |vw € EG}, and deg;(v) = [Ng(v)|. The subgraph of
G induced by W will be denoted by G[W]. Also, for v € VG, define the
induced subgraphs Gt = G[N4(v)] and G, = G[VG — Ng4(v) — {v}].

Note that if G € R(Bs,K,,;n) and v € VG, then necessarily G} €
R(K, 3, K,,;d), where d = degg(v), and G, € R(B3,K,,_1;n —d—1).
Hence, G;f must be simply a disjoint union of paths and cycles, and G, is

of the same type as G, but for m — 1.

It is a straightforward exercise to find all 104 graphs in R(K] 3, K3),
and fairly simple algorithms are sufficient to generate all 65694 graphs in
R(Bs,K,). The statistics of both families by the number of graphs with
fixed number of vertices is given in Table I. Observe that R(K, 3, K5) = 13
and R(Bs, K,) = 14.

s |R(K1,3,Ks;s)| |R(Bs,Ka;s)l
1 1 1
2 2 2
3 4 4
4 7 10
5 10 25
6 16 86
7 19 326
8 21 1518
9 14 7000
10 7 23462
11 2 28838
12 1 4410
13 12
total 104 65694

Table I. Statistics for R(K; 3, K;5) and R(Bs, Ky).



Using the graphs reported in Table I as G} and G, the family of
graphs R(Bs, K5;n) can be constructed by applying a gluing algorithm
to G € R(K, 3,K;;s) and G, € R(Bjy, K,;t) for all possible s and ¢
satisfying s+t +1 = n. The gluing algorithm used in this work was simpler
than, but similar to, that described in [3, 5]. Also, it had to include some
modifications needed in order to avoid the graph B; instead of K, or C,.
The computations were completed in three stages as follows.

All (Bs, K5;18)-graphs were obtained by performing gluing of graphs
G} to G as above for s € {4,5,6,7,8} and t = 17 — 5. No gluing for s > 9
needs to be done, since it is easy to see that no (Bj, K;; 18)-graph can have
minimum degree 9 or higher. The statistics of results by the number of
edges and the minimum degree is presented in Table IL

All (B;, K5;19)-graphs were obtained in two ways: by performing glu-
ing as above for s € {5,6,7,8},t = 18 — s, and independently by construct-
ing and (Bj, K;)-filtering one-vertex extensions of all 3376 (Bj, K;;18)-
graphs. Both paths led to the same unique (Bj, K;;19)-graph, which is
cyclic and regular of degree 6, with the edges connecting pairs of vertices
belonging to 2,4 in distances 1, 7, and 8.

e total
51 2 2
52 6 6
53 42 42
54 1 195 19 215
55 14 448 65 527
56 32 572 208 812
57 19 439 321 779
58 2 246 252 500
59 121 142 263
60 60 82 142
61 19 40 59
62 3 16 19
63 4 6 10

total 68 2153 1149 6 3376

Table II. Statistics for (B;, K5; 18)-graphs,
e = |E|, d is the minimum degree.

Similarly, all (Bg, K;;20)-graphs were obtained in two ways: by per-
forming gluing as above for s € {6,7,8,9},t = 19—s, and independently by
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constructing and (Bs, K;)-filtering all one-vertex extensions of the unique
(Bs, K;5;19)-graph. Both paths led to no graphs, and thus R(Bj;, K;) = 20.

The graphs R(Bj, K;; 18) are really not needed, neither is the unique-
ness of the critical graph, to claim that R(Bs, K;) = 20. However, these
provided additional strong correctness tests of the enumeration results,
since several graphs and graph families were generated more than once
by different algorithms.

Theorem. R(Bs;, K;) = 20.

Proof. The computations and results described above prove that there
does not exist any (Bs, Ky;20)-graph, so R(B;, K;) < 20. It is easy to
verify that a cyclic graph with the edges joining vertices belonging to 24,
which are in distance 1, 7 or 8, has no B; and no K. This implies the
lower bound. 1

Three separate implementations of the algorithms were prepared and
their results compared. The computations were performed as a part of the
MS project by the first author, were verified by the second author, and,
independently, all reported graph families were enumerated by the third
author. The computational effort of this project was moderate — all com-
putations could now be repeated overnight on a local departmental network
(1504 machines). If we were only computing the value of R(Bs, K), with-
out completing the exhaustive enumeration of all (Bj, K;;> 18)-graphs,
then the whole computation would be still much faster.

A general utility program for graph isomorph rejection, nauty [2], to-
gether with other graph manipulation tools, written by Brendan McKay,
was used extensively. All graphs in R(Bj, Kj; 18) are available from the
second author.
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