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Abstract

Graph G is a (k, p)-graph if G does not contain a complete graph

on k vertices Kk, nor an independent set of order p. Given a (k, p)-

graph G and a (k, q)-graph H, such that G and H contain an induced

subgraph isomorphic to some Kk−1-free graph M , we construct a

(k, p + q − 1)-graph on n(G) + n(H) + n(M) vertices. This implies

that R(k, p+ q − 1) ≥ R(k, p) + R(k, q) + n(M) − 1, where R(s, t) is

the classical two-color Ramsey number. By applying this construc-

tion, and some its generalizations, we improve on 22 lower bounds for

R(s, t), for various specific values of s and t. In particular, we ob-

tain the following new lower bounds: R(4, 15) ≥ 153, R(6, 7) ≥ 111,

R(6, 11) ≥ 253, R(7, 12) ≥ 416, and R(8, 13) ≥ 635. Most of the

results did not require any use of computer algorithms.

1. Introduction

We shall only consider graphs without multiple edges or loops, on a nonempty set

of vertices. If G = (V,E) is a graph, then by VG we will denote the set of vertices,

and by EG the set of edges of G. Let n(G) = |VG |. G[S] denotes the subgraph

induced in G by a subset of vertices S ⊂ VG . We will use notation NG(v) for the
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neighborhood of vertex v in G. Also, define the induced subgraphs G+
v = G[NG(v)]

and G−

v = G[VG −NG(v) − {v}].

For positive integers s and t, an (s, t)-graph is a graph F without a subgraph

isomorphic to the complete graph on s vertices Ks, and such that F has no independent

sets of order t. An (s, t;n)-graph is an (s, t)-graph of order n. Let R(s, t) and R(s, t;n)

denote the set of all (s, t)-graphs and (s, t;n)-graphs, respectively. The Ramsey number

R(s, t) is defined to be the least n > 0 such that there is no (s, t;n)-graph. Note that

if G ∈ R(s, t), then G+
v ∈ R(s− 1, t) and G−

v ∈ R(s, t− 1).

Instead of a graph F of order n, one often considers an equivalent concept of the

two-coloring of edges of the complete graph Kn, where we identify F with the edges

in the first color, and the complement F with the edges in the second color. Thus,

for example, the Ramsey number R(s, t) can be defined equivalently as the minimal n

such that in any two-coloring of the edges of Kn there is a monochromatic Ks in the

first color or a monochromatic Kt in the second color.

A regularly updated survey by the third author [5] lists the most recent results on

different types of Ramsey numbers. It includes graph constructions implying the best

known up to date lower bounds, and, in particular, it covers all cases considered in

this paper. By the time this paper appears, [5] will have pointed to this paper as well.

Many improvements we are reporting here are with respect to the lower bounds listed

in the 2001 revision # 8 of [5].

In Section 2 we present our main construction, which is a generalization of a theo-

rem by Burr et al. [1], and prove some theorems on lower bounds for Ramsey numbers.

Based on the latter, Section 3 shows how to construct specific graphs improving several

lower bounds for small s and t, including those listed in the abstract.

2. The Main Construction

In 1989, Burr, Erdős, Faudree and Schelp [1] presented a construction, that, for

s, t ≥ 2, given an (s, t− 1;n)-graph containing Ks−2 yields an (s, t;n+ 2s− 3)-graph.

This implies constructively the following lower bound theorem.

Theorem 1. [1] R(s, t) ≥ R(s, t− 1) + 2s− 3 for s ≥ 2, t ≥ 3.

We note that theorem 1 does not hold for t = 2 and s > 2, contrary to the bounds

given in [1]. The authors of [1] overlooked the fact that there is no (s, t− 1;n)-graph,

which is needed for this case.
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Suppose that we are given a (k, p)-graph G and a (k, q)-graph H, such that G

and H contain an induced subgraph isomorphic to a Kk−1-free graph M . Our main

construction produces a (k, p+ q − 1)-graph on n(G) + n(H) + n(M) vertices, which

implies that R(k, p+ q− 1) ≥ R(k, p) +R(k, q) +n(M)− 1. This is stronger than, and

a generalization of, the method by Burr et al.

Construction 1. We are given a (k, p;n1)-graph G with V G = {v1, v2, ..., vn1
} and a

(k, q;n2)-graph H with V H = {u1, u2, ..., un2
}, for some k ≥ 3 and p, q ≥ 2. Suppose

that the induced subgraphs G[{v1, ..., vm}] and H[{u1, ..., um}] are isomorphic to the

same Kk−1-free graph M with vertices VM = {w1, ..., wm}, m ≤ n1, n2. Assume

further that the mappings φ(wi) = vi and ψ(wi) = ui, for 1 ≤ i ≤ m, establish

isomorphisms between them. We construct a graph F on n1 + n2 + m vertices, with

the vertex set VF = VG ∪VH ∪VM = {v1, ..., vn1
, u1, u2, ..., un2

, w1, ..., wm}. The set

of edges of the graph F is defined by

EF = EG ∪ EH ∪ EM ∪ E(G,H) ∪ E(G,M) ∪E(H,M),

where

E(G,H) = {{vi, ui} | 1 ≤ i ≤ m},

E(G,M) = {{vi, wj} | 1 ≤ i ≤ n1, 1 ≤ j ≤ m, {vi, vj} ∈ EG}, and

E(H,M) = {{ui, wj} | 1 ≤ i ≤ n2, 1 ≤ j ≤ m, {ui, uj} ∈ EH }.

Theorem 2. If the graph F is obtained by construction 1, then

F ∈ R(k, p+ q − 1;n1 + n2 +m).

Proof. Clearly, F has the number of vertices as claimed. We first prove that the

graph F does not contain Kk. Suppose otherwise, and let S be the set of k vertices

in F forming Kk. Denote sg = |S ∩ VG |, sh = |S ∩ VH | and sm = |S ∩ VM |, so

that sg + sh + sm = k. The structure of E(G,H) implies that if sg > 1 then sh = 0,

and symmetrically, if sh > 1 then sg = 0. Since the graph M has no Kk−1, we have

sm ≤ k−2. Thus, there are two cases: (i) one of sg, sh is equal to 0, or (ii) sg = sh = 1

and sm = k − 2.

In the case (i) we may assume that sh = 0, because the case sg = 0 is sym-

metrical. Since {vi, wi} is not an edge for any i and S ⊂ VG ∪ VM , we can write

S = {ti1 , ti2 , ..., tik
}, where tij

= vij
or tij

= wij
, for 1 ≤ j ≤ k. Now, observe that the

definition of E(G,M) implies that the set {vi1
, vi2

, ..., vik
} induces a Kk in G, which
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is a contradiction. In the case (ii), let vj1
and uj2

be the unique vertices in S belong-

ing to the sets VG and VH , respectively. Since {vj1
, uj2

} ∈ E(G,H), we must have

j1 = j2 ≤ m. From the construction, we easily see that wj1
6∈ S ∩ VM , and observe

that S ∪ {wj1
} \ {vj1

, uj1
} must induce a complete graph in M . This contradicts the

fact that M has no Kk−1, and so we can conclude that F does not contain Kk.

In order to complete the proof, we need to show that F cannot have any indepen-

dent sets of order p + q − 1. Suppose that I is an independent set in F . Denote by

A,B and C the intersection of I with VG ,VH and VM , respectively. Consider the

cardinalities of parts of I as follows.

c = |C|, C = {wi1
, wi2

, ..., wic
},

a = |A \ {vi1
, vi2

, ..., vic
}|,

b = |B \ {ui1
, ui2

, ..., uic
}|.

From the construction of F we have

a+ c ≤ p− 1, b+ c ≤ q − 1.

Consider the set

D = I ∩ {vi1
, vi2

, ..., vic
, ui1

, ui2
, ..., uic

}.

Because of the edges in E(G,H), we have |D| ≤ c. On the other hand

I = (A \ {vi1
, vi2

, ..., vic
}) ∪ (B \ {ui1

, ui2
, ..., uic

}) ∪ C ∪D,

and thus

|I| ≤ a+ b+ 2c = (a+ c) + (b+ c) ≤ (p− 1) + (q − 1) < p+ q − 1.

This completes the proof of theorem 2.

Theorem 3. If 2 ≤ p ≤ q and 3 ≤ k, then

R(k, p+ q − 1) ≥ R(k, p) +R(k, q) +











k − 3, if 2 = p;
k − 2, if 3 ≤ p;
p− 2, if 2 = p or 3 = k;
p− 1, if 3 ≤ p and 4 ≤ k.
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Note that the conditions in theorem 3 for the lower bounds on the right hand side

are satisfied for some overlapping values, in which case the maximum can be taken.

Proof. Let G ∈ R(k, p;R(k, p) − 1) and H ∈ R(k, q;R(k, q) − 1). Both graphs G

and H must contain Kk−1, since otherwise they wouldn’t be critical, i.e. K1 + G ∈

R(k, p;R(k, p)) and K1 + H ∈ R(k, q;R(k, q)), which is impossible. Let M1 = Kk−2.

If p ≥ 3, then observe that G and H can be chosen so that both contain an even larger

common induced subgraph M2 = Kk−1 − e. Similarly, we can argue that graphs G

and H must contain independent sets of order p− 1, and set M3 = Kp−1. Note finally

that, for p ≥ 3 and k ≥ 4, they can be chosen so that both contain as an induced

subgraph a one edge graph M4 = Kp − e. In all cases Kk−1 is not contained in Mi.

Apply construction 1 to graphs G and H with a common subgraph Mi, for 1 ≤ i ≤

4. Using theorem 2 in each case yields the corresponding lower bound. This completes

the proof.

Theorem 3 with k = 3 and p = q = 2 gives nicely R(3, 3) ≥ 6, while construction

1 builds the cycle C5 as the lower bound graph F . Next, for k = q = 3 and p = 2,

if we use G = K2, H = C5 and M = K1, then the construction produces a (3, 4; 8)-

graph, which again is Ramsey-critical (on the largest possible number of vertices) for

the number R(3, 4) = 9. We don’t expect any further Ramsey number values to be

matched this way, but several best known constructions are, as listed in section 3.

We observe that a special case of theorem 3 with k = s, q = t− 1 and p = 2 gives

theorem 1, except for the trivial case s = 2. Further lower bounds for higher Ramsey

numbers can be obtained from the next theorem.

Theorem 4. R(p, 2p− 1) ≥ 5

2
R(p, p) − 2 for p ≥ 3.

Proof. Let s = R(p, p) − 1, and consider any (p, p; s)-graph G. Note that necessarily

G ∈ R(p, p; s). Choose a vertex v ∈ VG of degree at least (s− 1)/2. If no such vertex

exists, consider G instead of G. Let H be an isomorphic copy of G, and define graph

M to be an isomorphic copy of the graph G+
v . Observe that graph M cannot contain

Kp−1, since otherwise G would contain Kp. Applying construction 1 to graphs G,

H and M we obtain graph F , which by theorem 2 is a (p, 2p − 1)-graph on at least

2s+ (s− 1)/2 vertices. The theorem follows by substituting s = R(p, p) − 1.

For p = 3 and G = C5, the proof of theorem 4 gives R(3, 5) ≥ 13 and it yields a

nontrivial (3, 5; 12)-graph, with only one vertex less than the best possible. For p = 4

we obtain R(4, 7) ≥ 43, while the best known lower bound for this case is R(4, 7) ≥ 49.
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3. Computation of Some Lower Bounds on R(s, t)

The theorems of the previous section don’t seem to lead to any strong asymptotic

lower bounds. Nevertheless, they appear to be quite effective in constructing Ramsey

(s, t)-graphs for specific small values of s and t. In this section we present several such

constructions improving on the currently best known lower bounds. During the last two

decades, most of lower bound improvements for R(s, t) were obtained by constructions

specific to parameters, very often using circular graphs, or were results of heuristic

algorithms like simulated annealing or tabu search. This is in contrast to our method

where all improvements are direct or indirect consequences of construction 1.

Theorem 5. The lower bounds on R(s, t) hold as listed in Table I.

The cases listed in Table I are either improving a previously published lower bound

reported in the survey [5] (revision #8, 2001, or revision #9, 2002), or are included

since they are needed as intermediate constructions in this paper. If an old bound is

given without any reference, it is because [5] considered it as an easy result undeserving

of credit. We feel that the strongest and most interesting among the new lower bounds

are those listed in the abstract. They seem to be more difficult to improve any further,

or the previous lower bound was published long ago.

Proof of Theorem 5. We refer to the cases by their position in Table I. If some lower

bound on R(s, t) for smaller s, t, or a graph in R(s, t;n) is needed to complete a given

case, either it is a case with a smaller index in Table I, or is referenced to in [5]. The last

column specifies the theorem by which new lower bound can be obtained. Theorem 3

subsumes theorem 1, and we point to it only if theorem 1 is not sufficient for the given

case. All reasonings using custom constructions via theorem 2 are commented below.

In some cases we mention that a graph is circular, and thus it is vertex transitive.

Consequently, when we consider G+
v or G−

v in such cases, we don’t need to specify the

vertex v.

(2) Let G = G127 be the circular (4, 12; 127)-graph found in [8]. Let H be any

(4, 3; 8)-graph, and set M = C5. Both G and H contain induced C5. Apply

theorem 2.

(3) Take G = G127 as in (2). Denote by H the unique circular (4, 4; 17)-graph, and

let M = H+
v . Note that M ∈ R(3, 4; 8), and it can be easily verified that G

contains induced M . Apply theorem 2.
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case old new theorem/

no. s t bound reference bound parameters

1. 4 13 131 133 1

2. 4 14 136 141 2

3. 4 15 145 153 2

4. 4 18 182 [7] 187 1

5. 5 17 284 [3] 285 1

6. 6 7 109 [2] 111 1

7. 6 8 122 [2] 127 2

8. 6 10 167 [2] 177 2

9. 6 11 203 253 4, p = 6

10. 6 12 230 [9] 262 1

11. 6 13 242 [11] 278 2

12. 6 14 284 [9] 294 2

13. 7 8 216 1

14. 7 11 322 2

15. 7 12 312 [10] 416 2

16. 7 13 511 4, p = 7

17. 7 17 578 [4] 628 2

18. 7 18 618 [4] 722 2

19. 8 9 295 1

20. 8 10 317 3, p = 3, q = 8

21. 8 13 635 2

22. 8 15 618 [4] 703 4, p = 8

23. 8 17 678 [4] 762 2

24. 8 18 740 [9] 871 2

25. 8 19 860 [9] 1054 2

26. 9 10 580 1

27. 9 17 1411 4, p = 9

28. 9 21 1278 [10] 1539 3, p = 5, q = 17

29. 10 16 1052 [4] 1190 2

30. 12 12 1597 1637 2

Table I. New lower bounds on R(s, t).
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(7) Let G = G101 be the only known (6, 6; 101)-graph. This graph is circular and self-

complementary. All graphs in R(6, 3; 17) and R(5, 3; 8) are well known (cf. [5]).

Using simple computations, we found graphs H ∈ R(6, 3; 17) and M ∈ R(5, 3; 8),

such that both G and H contain M as an induced graph. Apply theorem 2.

(8) Take G = G101 as in (7), and let H ∈ R(6, 5; 50) be isomorphic to G−

v . H has

a vertex w of degree 25, and we take M ∈ R(5, 5; 25) to be isomorphic to H+
w .

Apply theorem 2 to obtain a (6, 10; 176)-graph.

(11) Let G ∈ R(6, 8; 126) be the graph obtained in (7), and set H = G101. Note that

H is isomorphic to a subgraph of G, and thus both G and H contain induced

M = H−

v ∈ R(5, 6; 50). Apply theorem 2 to obtain a (6, 13; 277)-graph.

(12) Take G ∈ R(6, 11; 252) as obtained in (9). Let H ∈ R(6, 4; 34) be the comple-

ment of a (4, 6)-graph found by Exoo (cf. [5]). We have found a 7-vertex graph

M without K5, which is an induced subgraph of both G and H. Apply theorem

2 to obtain a (6, 14; 293)-graph.

(14) Given (k, p;n)-graph, first construct a (k+1, p;n+2p−3)-graphG using theorem

2 (or 1). Next, for H = G, and setting M to be the original (k, p;n)-graph,

construction 1 yields a (k+ 1, 2p− 1; 3n+ 4p− 6)-graph F . Starting with G101,

for k = p = 6, this gives construction of a (7, 11; 321)-graph.

(15) Let G = G204 ∈ R(7, 7; 204). This, and other diagonal Ramsey constructions

were described by Shearer [6]. Graph G204 contains M = G101 as an induced

subgraph. Take H ∈ R(7, 6; 110) to be the complement of (7, 6; 110)-graph

obtained in (6). Since G101 is self-complementary, it is also an induced subgraph

of H. Apply theorem 2 to obtain a (7, 12; 415)-graph.

(17) Take G ∈ R(7, 11; 321) as obtained in (14), H = G204, and set M = K1∪G101 ∈

R(6, 7; 102). Following construction in (14) we see that graph G contains an

induced subgraph isomorphic to M . Graph H defined in [6] contains M . Apply

theorem 2 to obtain a (7, 17; 627)-graph.

(18) Take G ∈ R(7, 12; 415) as obtained in (15), H = G204, and set M = K1∪G101 ∈

R(6, 7; 102). Graph G containsG204, which in turn contains an induced subgraph

isomorphic to M . Apply theorem 2 to obtain a (7, 18; 721)-graph.

(21) Use the same construction as in (14), but starting with G204, for k = p = 7.

This gives construction of an (8, 13; 634)-graph.

(23) Take G ∈ R(8, 13; 634) as obtained in (21). We define graph H ∈ R(8, 5; 70) as

the complement of the result of construction 1 applied to the unique (5, 3; 13)-

graph, G+

101 ∈ R(5, 6; 50), and a common 7-vertex induced graph M (the same
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as in (12)). With some work it can be traced that G and H were build from

some shared subgraphs, resulting in a common induced (7, 5; 57)-graph. Apply

theorem 2 to obtain a (8, 17; 761)-graph.

(24) Take G ∈ R(8, 13; 634) as obtained in (21). Let H ∈ R(8, 6; 126) be the comple-

ment of the graph constructed in (7). By following the details of constructions

of G and H one can easily see that both contain an induced M ∈ R(7, 6; 110).

Apply theorem 2 to obtain an (8, 18; 870)-graph.

(25) Take G ∈ R(8, 13; 634) as obtained in (21). Let H ∈ R(8, 7; 215) be the com-

plement of the graph constructed in (13). Both G and H contain as an induced

graph M = G204. Apply theorem 2 to obtain an (8, 19; 1053)-graph.

(29) Take G ∈ R(10, 9; 579) and H ∈ R(10, 8; 316) to be the complements of graphs

obtained in (26) and (20), respectively. By following the details of constructions

of G and H one can easily see that both contain an induced M ∈ R(9, 8; 294).

Apply theorem 2 to obtain a (10, 16; 1189)-graph.

(30) First, apply theorem 3 with k = 11, p = 2, q = 11, so R(11, 12) ≥ 1616. Next,

use theorem 3 with k = 12, p = 2, q = 11.

This work did not require any intensive computations. We have used computer

algorithms mainly for verification of induced subgraphs. It is quite likely that in many

cases better lower bounds can be obtained by finding larger common induced subgraph

M . This could be approached by using heuristic algorithms, or even by performing

exhaustive searches within special graphs G and H.

9



References
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