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Technical University of Gdańsk Rochester Institute of Technology
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Abstract. With the help of computer algorithms, we improve the

lower bound on the edge Folkman number Fe(3, 3; 5) and vertex Folk-

man number Fv(3, 3; 4), and thus show that the exact values of these

numbers are 15 and 14, respectively. We also present computer enu-

meration of all critical graphs.

1 Introduction

Let G be a simple undirected graph with vertex set V (G) and edge set E(G).
Let r and l be positive integers. We write G → (r, l)v (G → (r, l)e) if every
red-blue coloring of the vertices (edges) of G forces a red complete subgraph
Kr or a blue complete subgraph Kl in G. For p > max{r, l}, let

Fv(r, l; p) = {G : G→ (r, l)v ∧Kp * G}

and

Fe(r, l; p) = {G : G→ (r, l)e ∧Kp * G}.

The graphs in Fv(r, l; p) are called vertex Folkman graphs, and the graphs in
Fe(r, l; p) are called edge Folkman graphs.
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It is well known that K6 → (3, 3)e, and so K6 ∈ Fe(3, 3; p) for all p > 6.
In 1967 Erdős and Hajnal [2] asked if Fe(3, 3; 6) 6= ∅, and the next year
Graham [6] answered this question showing that K8−C5 ∈ Fe(3, 3; 6), where
Ks − Ct is the graph obtained by deleting the edges of a cycle Ct from Ks.
In 1970 Folkman [4] showed that for all r, l and p > max(r, l) the families
Fv(r, l; p) and Fe(r, l; p) are nonempty. One can ask what is the minimum
number of vertices in a vertex or edge Folkman graph, which leads to the
notion of Folkman numbers. Let us denote

Fv(r, l; p) = min{|V (G)| : G ∈ Fv(r, l; p)}
and

Fe(r, l; p) = min{|V (G)| : G ∈ Fe(r, l; p)}.
These numbers are called vertex Folkman numbers and edge Folkman num-
bers, respectively. Observe that, for p > r + l − 1, we have Fv(r, l; p) =
r + l − 1 as a trivial consequence of the pigeon-hole principle. More about
vertex Folkman numbers can be found in [13] and [14]. Since the clique on
R(r, l) vertices has the smallest number of vertices among graphs G with
the property G → (r, l)e, obviously we have Fe(r, l; p) = R(r, l) for ev-
ery p > R(r, l) (R(r, l) is the Ramsey number, i.e. the smallest integer n
such that Kn → (r, l)e). Lin [12] proved that in some cases we have the
equality Fe(r, l;R(r, l)) = R(r, l) + 2; in particular Lin’s theorem implies
Fe(3, 3; 6) = 8, Fe(3, 5; 14) = 16, and Fe(4, 4; 18) = 20. The only other previ-
ously known nontrivial exact result was obtained by Nenov [19] who proved
Fe(3, 4; 9) = 14. Very little is known about the edge Folkman numbers in the
case p < R(r, l).

In this paper we compute the smallest unknown Folkman number Fe(3,
3; 5). Table 1 summarizes the history of it’s bounds. The first proof of
the existence of this number is due to Pósa (unpublished). Schäuble [20] in
1969 showed that Fe(3, 3; 5) ≤ 42. This upper bound was improved in 1971
by Graham and Spencer [7] to Fe(3, 3; 5) ≤ 23, and they conjectured that
Fe(3, 3; 5) = 23, but as they admitted, without much evidence. Their bound
was pushed down to 18 by Irving [11] in 1973. In 1979 Hadziivanov and
Nenov [8] constructed a 16-vertex graph in Fe(3, 3; 5), and in 1981 Nenov
[18] presented the first 15-vertex graph with that property, proving that
Fe(3, 3; 5) ≤ 15. The second one was found in 1984 by Hadziivanov and
Nenov [9]. The last three papers (written in Russian) had not been gener-
ally noticed at that time. In 1993 Erickson [3] found a 17-vertex graph in
Fe(3, 3; 5) and conjectured that Fe(3, 3; 5) = 17. This was recently disproved
by Bukor [1], who came up with the same 16-vertex graph as in [8]. In 1996
Urbański [22] showed another construction of the 15-vertex graph from [9].
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Table 1. The History of Bounds on Fe(3, 3; 5).

year reference lower upper

1967 P. Erdős, A. Hajnal [2] ?
1969 M. Schäuble [20] 42
1971 R. L. Graham, J. H. Spencer [7] 23
1972 S. Lin [12] 10
1973 R. W. Irving [11] 18
1979 N. Hadziivanov, N. Nenov [8] 16
1980 N. Nenov [17] 11
1981 N. Nenov [18] 15
1985 N. Hadziivanov, N. Nenov [10] 12
1993 M. Erickson [3] 17
1994 J. Bukor [1] 16
1998 this work 15 15

As far as the lower bound is concerned, in 1972 Lin [12] showed that
Fe(3, 3; 5) ≥ 10 and his result was later improved by Nenov [17] to Fe(3, 3; 5) ≥
11, and by Hadziivanov and Nenov [10] to Fe(3, 3; 5) ≥ 12.

Much less is known about the number Fe(3, 3; 4). Frankl and Rödl [5]
proved that Fe(3, 3; 4) ≤ 1012 and later Spencer [21] squeezed out from their
proof the inequality Fe(3, 3; 4) ≤ 1010. No reasonable lower bound for this
Folkman number is known.

In the sequel we use the following notation. For an arbitrary graph G:
G + e denotes the graph with V (G + e) = V (G) and E(G + e) = E(G) ∪ e,
for any edge e. G[S] is the subgraph induced by the vertex set S ⊆ V (G).
NG(v) and degG(v) denote the neighborhood of vertex v and the degree of
vertex v, respectively.

Let Fe(r, l; p;n) = {G ∈ Fe(r, l; p) : |V (G)| = n}. We say that G is
an (r, l; p;n)e graph if and only if G ∈ Fe(r, l; p;n). Similary, we define the
family Fv(r, l; p;n) of (r, l; p;n)v graphs. The graphs in these families with
the smallest number of vertices, namely Fv(r, l; p) and Fe(r, l; p), respectively,
are called critical.

2 The Algorithm

Our computational approach is based on the properties gathered in the fol-
lowing lemmas.

Lemma 1. G ∈ Fe(3, 3; 5)⇒ χ(G) ≥ 6
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Proof. Assume that V (G) can be partitioned into 5 independent sets
A0, ..., A4. Color all the edges in {{v, w} : v ∈ Ai, w ∈ A(i+1) mod 5} with color
1 and all remaining edges with color 2. Since there are no monochromatic
triangles we have G /∈ Fe(3, 3; 5).

R(5, 3) = 14 implies the following lemma.

Lemma 2. Every graph G ∈ Fe(3, 3; 5;n), for n ≥ 14, contains an
independent set of order 3.

We say that a graph G is (+e,H) maximal if and only if H * G and
H ⊆ G + e, for every edge e ∈ E(G). For graphs H and G and vertex set
S ⊆ V (G) we say that S is (G,+v,H) maximal if and only if H * G[S] and
H ⊆ G[S ∪ {v}], for all v ∈ V (G) \ S.

Lemma 3. For every graph B obtained from a graph A by removing three
vertices of some independent set of order 3 in A, where A ∈ Fe(3, 3; 5;n),
n ≥ 14 and A is (+e,K5) maximal, we have

(1) K5 * B
(2) χ(B) ≥ 5
(3) For every edge {v, w} ∈ E(B) there are vertices a, b ∈ V (B) such that

B[{v, w, a, b}] is isomorphic to K4 − e.
(4) For every vertex u ∈ V (A) \ V (B) the set NA(u) is (B,+v,K4) max-

imal.

Proof. Property (1) is a consequence of A ∈ Fe(3, 3; 5). Property (2) is a
consequence of Lemma 1. Properties (3) and (4) follow from the assumption
that A is (+e,K5) maximal.

Lemmas 1, 2 and 3 guarantee that the following Algorithm A1 generates
all graphs in the set Fe(3, 3; 5; 14) which are (+e,K5) maximal.

Algorithm A1

Step 1: Start with the set A = ∅, and the set B of all nonisomorphic
graphs of order 11.

Step 2: Remove from B all graphs which do not fulfil conditions (1), (2)
or (3) of lemma 3.

Step 3: For every graph B ∈ B find the family MB = {S ⊆ V (B) : S
is (B,+v,K4) maximal}. The set MB contains potential neighborhoods
of vertices of (+e,K5) maximal graphs in Fe(3, 3; 5; 14). For every triple
S1, S2, S3 ∈ MB construct a graph A(B, S1, S2, S3) by adding vertices v1, v2, v3

to B so that NA(vi) = Si for i = 1, 2, 3. If χ(A) ≥ 6 and A is (+e,K5) max-
imal then add graph A to the set A.

Step 4: For every graph A ∈ A if A→ (3, 3)e does not hold then remove
A from A.
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3 Results

The algorithm outlined above did not produce any graph A → (3, 3)e, i.e.
A = ∅. A large number of graphs were produced in steps 2 and 3. These were
generated by two independent implementations by the first two authors, and
they always agreed up to isomorphism. The results of computations lead to
the main theorem.

Theorem 1. Fe(3, 3; 5) = 15.

Proof. The above computations proved that Fe(3, 3; 5) ≥ 15. Examples of
(3, 3; 5; 15)e graphs were already presented in [9], [18], [22].

We say that graph G has Sperner′s property if and only if for every pair
of distinct vertices v, w, their neighborhoods are not contained in each other;
i.e., NG(v) * NG(w) and NG(w) * NG(v).

The Algorithm A2, which is a slight modification of Algorithm A1, enabled
us to generate all critical Folkman graphs Fe(3, 3; 5; 15) which are (+e,K5)
maximal.

Algorithm A2

Apply the following modifications to Algorithm A1

1. In Step 1 the starting set B is the set of all nonisomorphic graphs of
order 12.

2. At the end of Step 3, in addition to conditions χ(A) ≥ 6 and that A
is (+e,K5) maximal, it is required that the graph A has Sperner’s property
(since if A doesn’t have Sperner’s property and A→ (3, 3)e, then there would
be a graph (A− v)→ (3, 3)e contradicting Theorem 1)

There are 165 091 172 592 nonisomorphic graphs of order 12. After the
second step, 217 524 627 graphs remain. Step 3 produces 299 543 761 graphs
(including isomorphs), and 324 graphs remain after step 4. Among these 324
graphs only 19 are nonisomorphic. Thus we have:

Theorem 2. Up to isomorphism there are 19 (+e,K5) maximal (3, 3;
5; 15)e graphs.

Using a simple algorithm which removes edges and tests whether the
obtained graph has the property → (3, 3)e we were able to generate the
whole set Fe(3, 3; 5; 15) starting from the set of 19 graphs as in Theorem 2.
The most interesting properties of the graphs (3, 3; 5; 15)e are presented in
the next theorem, where α denotes the order of the largest independent set
and δ and ∆ denote minimum and maximum degree:

Theorem 3. |Fe(3, 3; 5; 15)| = 659. For every graph G ∈ Fe(3, 3; 5; 15):
(a) 56 ≤ |E(G)| ≤ 68 (see Table 2)
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Figure 1. The unique bicritical (3, 3; 4; 14)vgraph.

(b) χ(G) = 6
(c) 4 ≤ α(G) ≤ 7
(d) 5 ≤ δ(G) ≤ 7
(e) 11 ≤ ∆(G) ≤ 14 and ∆(G) 6= 13

The fact that there are no (3, 3; 5; 15)e graphs with ∆(G) = 13 is easy to
explain since such a graph would violate Sperner’s property.

It is interesting that the graph presented in [18] has the smallest possible
number of edges among (3, 3; 5; 15)e graphs. This is also the only (3, 3; 5; 15)e

graph with α(G) = 7. It is a subgraph of 18 graphs from Fe(3, 3; 5; 15),
including itself.

We found that there exists exactly one bicritical graph in Fe(3, 3; 5; 15),
for which deletion and addition of any edge destroys the Ramsey property
or creates a K5, respectively. It contains a vertex of degree 14. After re-
moving this vertex we obtain the unique bicritical (3, 3; 4; 14)v graph, which
is presented in Figure 1. This graph has only one nontrivial automorphism,
contrary to our intuition which tells us that if there is a small number of
some exceptional graphs they tend to have large groups of symmetry. Other
graphs from Fe(3, 3; 5; 15) also have surprisingly small automorphism groups.
501 of them have only the trivial automorphism, and 132 graphs have only
two automorphisms. The order of the automorphism group is less or equal
to 14 for every (3, 3; 5; 15)e graph.

Let us remark that the inequality α(G) ≥ 4 for G ∈ Fe(3, 3; 5; 15) is
not trivial. Knowing it we would be able to reduce the time of computation
aproximately100 times starting with graphs of order 11 instead of 12 in Step
1 of Algorithm A2, and then building graphs by adding quadruples of vertices
in step 3.
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Table 2 lists the numbers of critical (3, 3; 5)e graphs cem = |{G ∈ Fe(3, 3;
5; 15) : |E(G)| = m}|, for all possible m.

Table 2. Statistics for the critical (3, 3; 5)e graphs.

m 56 57 58 59 60 61 62 63 64 65 66 67 68
cem 1 2 7 20 39 58 80 119 144 111 58 17 3

Lemma 4. Fe(3, 3; 5) ≤ Fv(3, 3; 4) + 1

Proof. It is enough to observe that if G ∈ Fv(3, 3; 4;n) then H ∈ Fe(3, 3; 5;
n + 1), where H is obtained by adding a vertex of degree n to graph G.

Several authors used the latter implication for the construction of (3, 3;
5; 15)e graphs. Now it is helpful in establishing the exact value of Fv(3, 3; 4).

Theorem 4. Fv(3, 3; 4) = 14

Proof. From Lemma 4 and Theorem 1 we have Fv(3, 3; 4) ≥ 14. Examples
of (3, 3; 4; 14)v graphs were already presented in [18], [22].

The result in the next theorem was somewhat unexpected.

Theorem 5. Fv(3, 3; 4; 14) = {G−v : G ⊆ Fe(3, 3; 5; 15), degG(v) = 14}.
Proof. The argument used in the proof of Lemma 4 implies that

Fv(3, 3; 4; 14) ⊆ {G− v : G ⊆ Fe(3, 3; 5; 15), degG(v) = 14}.

There are 153 graphs (3, 3; 5; 15)e with one vertex of degree 14, and there is no
(3, 3; 5; 15) graph with more than one vertex of degree 14. Using computers
we checked that for each of these 153 cases, after deleting the vertex of degree
14, we obtain a (3, 3; 4; 14)v graph.

Table 3 lists the numbers of critical (3, 3; 4)v graphs cvm = |{G ∈ Fv(3, 3;
4; 14) : |E(G)| = m}|, for all possible m.

Table 3. Statistics for the critical (3, 3; 4)v graphs.

m 42 43 44 45 46 47 48 49 50
cvm 1 2 7 20 37 45 28 11 2

4 Computations

Three powerful programs nauty, makeg, and autoson, implemented by Bren-
dan McKay [15],[16] were used in our work. All of them were extensively
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tested and employed by many researchers in a variety of projects. We used
nauty for fast isomorph rejection and finding automorphism groups, makeg
to generate all nonisomorphic graphs on 11 and 12 vertices in algorithms
A1 and A2, and autoson for distributing jobs over the network of comput-
ers. The entire project, run on 100+ computers of distinct architectures,
used an equivalent of about 3 cpu years of a Sparc 2 SUN computer. All
the algorithms specific for this project were implemented independently by
two authors, and then a very large number of intermediate and final graphs
were tested for isomorphism between the two implementations. The compu-
tational effort to prove Fe(3, 3; 5) = 15 and Fv(3, 3; 4) = 14 was only about
1% of the total cpu used; most of the time was needed for the complete
enumeration of all critical (3, 3; 5)e graphs.

Acknowledgement: The third author expresses his thanks to Andrzej
Ruciński for discussions and helpful remarks.
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graphs, Proceedings of the Third Kraków Conference on Graph Theory,
Kazimierz 97, submitted.

[15] B. D. McKay, Nauty User’s Guide (version 1.5), Technical report TR-
CS-90-02, Computer Science Department, Australian National Univer-
sity, 1990.

[16] B. D. McKay, nauty, makeg and autoson documentation and source
code, http://cs.anu.edu.au/people/bdm/.

[17] N. Nenov, A new lower bound for the Graham–Spencer number (in
Russian), Serdica 6 (1980), 373–383.

[18] N. Nenov, An example of a 15-vertex (3,3)-Ramsey graph with clique
number 4 (in Russian), C.R. Acad. Bulg. Sci. 34 (1981), 1487–1489.

[19] N. Nenov, On (3, 4) Ramsey graphs without 9-cliques (in Russian), An-
nuaire Univ. Sofia Fac. Math. Inform. 85 (1991), no. 1-2, 71-81.
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