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bstract. We investigate paths, cycles and wheels in graphs with
e

t
independence number of at most 2, in particular we prov
heorems characterizing all such graphs which are hamiltonian.

Ramsey numbers of the form R (G , K ), for G being a path, a3
e

s
cycle or a wheel, are known to be 2n (G ) − 1, except for som
mall cases. In this paper we derive and count all critical graphs

1

for these Ramsey numbers.

. Notation and Previous Work

For any graph F , V (F ) and E (F ) will denote the vertex and edge sets of the
-

p
graph F , also let n (F ) = | V (F ) | and e (F ) = | E (F ) | . The graph F denotes the com

lement of F . A graph F will be called a (G , H )−good graph, if F does not contain
a

(
G and F does not contain H . Any (G , H )-good graph on n vertices will be called
G , H , n )−good graph. The Ramsey number R (G , H ) is defined as the smallest

l
g
integer n such that no (G , H , n )-good graph exists. Any graph is called a critica

raph for the Ramsey number R (G , H ) if it is (G , H , R (G , H ) − 1)-good. When the
sgraph F is fixed, then for any vertex x ∈V (F ), G and H will denote the graphx x
,

r
induced by the neighbors of the vertex x or by all the vertices disconnected from x
espectively. P is a path on i vertices, C is a cycle of length i , and W is a wheel

w
i i i

ith i −1 spokes, i.e. a graph formed by some vertex x , called a hub of the wheel,
connected to all vertices of some cycle C , called a rim . 2K is the graph formed byi −1 i

it i iwo vertex disjoint copies of K . For notational convenience we define C = K for
1 ≤ i ≤ 2.

In this paper most of the graphs considered are (T , K , n )-good for T being a3

3 d
x
path, a cycle, or a wheel. It is easy to see that if F is any (T , K , n )-good graph an

is a vertex in V (F ) of degree deg (x ) = d , then:

,(a) if T = C then G is a (P , K , d )-good graphi +1 x i 3

3( i +1 x ib) if T = W then G is a (C , K , d )-good graph,

sand H is a complete graph K . Observe that any graph without independent setx n − d − 1
of size three and with more than one component is a vertex disjoint union of two
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liques. We also note that the whole contents of this paper can be seen as a study of
paths, cycles and wheels in the complements of triangle free graphs.

The value of the Ramsey number R (P , K ) = 2i − 1 is a consequence of a welli 3
t

R
known theorem by Chvátal [3]. An interesting general related result in [2] says tha

(G , K ) = 2i −1 for any connected graph G of order i ≥ 4 with at most (17i + 1)/15
e

3
dges, which obviously applies to the cases of paths and cycles, but not wheels. Burr

]and Erdo
..
s [1] showed that R (W , K ) = 2i − 1 for all i ≥ 6, and the tables by Clancy [4i 3

5 3include the special value of R (W , K ) = 11. McKay and Faudree [5] generated and
rcounted by computer all of the critical graphs for the Ramsey numbers R (W , K ) foj 3
d

t
all j ≤ 11, and our proofs confirm their results. In two recent papers Sidorenko studie
he general case: in [7] he showed that for any graph G without isolated vertices we

ehave R (G , K ) ≤ 2e (G ) + 1, which improved on his previous result in [6], where h3
also formulated an interesting conjecture that for any graph G there is a general bound

-R (G , K ) ≤ n (G ) + e (G ). Sidorenko’s result in [7] proves Harary’s conjecture formu3
.lated in 1980

We derive a characterization of all hamiltonian graphs with independence number
-at most 2. For T being any of P , C or W we will describe and count all of the critii i i

3 t
a
cal graphs for the Ramsey numbers R (T , K ), in particular we will prove that almos
ll such critical graphs must contain 2K . The latter will also give alternate proofs of

p
i −1

reviously known results that for the same possible T ’s and for all i ≥ 1 we have
eR (T , K ) = 2i − 1, except some small cases listed in Theorems 3 and 5. We includ3

these alternate proofs, so the results of this paper are self contained.

L

2. Paths

emma 1: If the graph F has no triangles then all the components of F have a hamil-

P

tonian path.

roof: Assume that C is a component of F without any hamiltonian path. Let P on r
t

t
vertices be the longest path in C , and let x and y be the endpoints of P . Note tha
here must exist vertices z and t such that

z ∈ V (C ) − V (P ), t ∈ V (P ) and {z , t }∈E (C ).

e
m
Observe that {z , x } and {z , y } are not the edges in C , since otherwise P would not b

aximal, and that {x , y }∈ E (C ), since C has no triangles. Then C has a cycle Cr

r +1 g
t
with the vertex set V (P ), which with the edge {z , t } produces a P , contradictin
he maximality of P .

Lemma 1 easily implies Corollary 1 below, which in turn gives us Corollary 2
including a characterization of critical graphs in the case of paths versus K .3

C j 3orollary 1: For all j ≥ 1, any (P , K )-good graph on at least j vertices is a vertex
disjoint union of two cliques of order at most j − 1.
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-Corollary 2: For all j ≥ 1, R (P , K ) = 2j − 1 and the unique up to isomorphism critij 3

j − 1.

3

cal graph for this number is 2K

. Cycles

Theorem 1: Any nonhamiltonian and nonempty graph F , without independent sets of

g
size three, has a vertex x such that V (F ) − {x} induces two vertex disjoint complete
raphs. Furthermore, such x is connected to all the vertices of at least one of these

P

complete graphs.

roof: If the graph F is disconnected then the theorem is obvious, hence we assume
r

s
that F is connected. For the first part of the theorem it is sufficient to show that fo
ome vertex x , V (F ) − {x } induces a disconnected graph, since any not connected

egraph, without K in the complement, must be a vertex disjoint union of two complet3
graphs.

Let P = (a a . . . a ) be a hamiltonian path in F guaranteed by Lemma 1, and

1

1 2 n

nnote that {a , a } is not an edge, since otherwise F would be hamiltonian. Define

)p = max{s : {a , a }∈ E (F )} and q = min{s : {a , a }∈ E (F )}, (11 s n s

so we have 2 ≤ p , q ≤ n − 1. First we claim that the sets

A = {a : 1 ≤ s < q } and B = {a : p < s ≤ n }

i

s s

nduce complete graphs in F , since any disconnected pair of vertices in A or B forms
fan independent set with a or a , respectively. Hence by (1) we have q ≤ p + 1. In 1

1 2 q n p 1q = p − 1 then (a a . . . a a . . . a a ) forms a hamiltonian cycle, which is a con-
ttradiction. For q ≤ p − 2, in order to avoid an independent set {a , a , a } at leasq −1 p −1 n

o p −1 n q −1 p −1ne of the pairs {a , a } and {a , a } is an edge. If the first one is an edge then
n(a . . . a a . . . a a ) is a hamiltonian cycle, otherwise {a , a } must be a1 p −1 n p 1 p −1 q −1

e 1 q −1 p −1 q n p 1dge and (a . . . a a . . . a a . . . a a ) is a hamiltonian cycle.

rThus we have q = p + 1 or q = p , and we claim that V (F ) − {a }, for r = p or
d

c
r = q , induces a disconnected graph. Recall that A and B induce complete graphs, an
onsider the two cases with respect to p and q :

oCase of q = p . Note that V (F ) = A B {a }, and r = p . Assume the contrary t∪ ∪ p

ts n
a
the claim, i.e. that for some s and t , such that 1 < s < p < t < n , {a , a } ∈ E (F ). The

HP (a , a )HP (a , a )a is a hamiltonian cycle in F , where HP (x , y ) denotes
a

p A 1 s B t n p X
ny hamiltonian path from x to y in a complete graph with a vertex set X . This is a

C
contradiction.

ase of q = p + 1. In this case V (F ) = A B , so since F is not hamiltonian, the set∪
p q }

i
of edges connecting A to B cannot contain two nonadjacent edges. However {a , a
s an edge between A and B , thus all the other such edges are either connected to a ,

q

p
e

r
in this case define r = p , or all of them are connected to a , in which case defin

= q . Now clearly the graph induced by V (F ) − {a } is formed by two disjointr
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omplete graphs with vertex sets A and B . This completes the proof of the first part of
the theorem.

For the second part, if for some vertices a and b , in different components of the
t

{
graph induced by V (F ) − {x }, {a , x } and {b , x } are not the edges, then the se
x , a , b } forms a triangle in F , which is a contradiction.

oTheorem 2: Let F be any graph different from C and C , and such that F has n4 5

j .

P

triangles. Then, if F is hamiltonian then it contains a cycle C for all 1 ≤ j ≤ n (F )

roof: Let F be any hamiltonian graph on n vertices as in the theorem. The case
fn ≤ 3 is trivial. For 4 ≤ n ≤ 5 adding one edge to C creates cycles C for all j ≤ n . In j

jn 6= 6 then F contains C with at least two additional edges also creating C for all
j < 6, hence the theorem holds for n ≤ 6.

We will complete the proof by induction for n ≥ 7. Let (a a . . . a a ) be a

i i +2

0 1 n −1 0
d

m
hamiltonian cycle in F . If for some i , {a , a } ∈ E (F ), with arithmetic performe

odulo n , then V (F ) − {a } easily induces a hamiltonian graph on n −1 vertices,i +1

jhence by induction F contains a cycle C for all j ≤ n −1. Thus we may assume that
for all i , {a , a } is a nonedge, furthermore in order to avoid independent sets of thei i +2

i i +2 i +4 eform {a , a , a } we must hav

{ {a , a } : 0 ≤ i ≤ n −1} ⊆ E (F ).

Now observe that

i i +4

(a a a a a a . . . a a )0 4 5 1 2 6 n −1 0

3 y
i
is a hamiltonian cycle in the graph G on n −1 vertices induced by V (F ) − {a }. B
nduction G has a cycle C for all j ≤ n −1, therefore so does F and the theorem fol-

C

lows.
j

orollary 3: For all j ≥ 1, any (C , K )-good graph F on at least j vertices, except for

4

j 3

5F = C and F = C , has a vertex x such that V (F ) − {x} induces two vertex disjoint

p
complete graphs, and x is connected to all the vertices of at least one of these com-
lete graphs.

Proof: By Theorem 2 any such graph must be nonhamiltonian, hence by Theorem 1 it

T

has a required structure.

heorem 3: R (C , K ) = 2j − 1 for all j ≥ 1 (but j ≠ 3), and R (C , K ) = 6. Further-j 3 3 3

j −1 e
j
more there are exactly two critical graphs for all j ≥ 4, namely 2K with 0 or 1 edg
oining two cliques, and unique critical graphs 0/ , 2K , and C for j = 1, 2 and 3,

P

respectively.
1 5

roof: Since C = K for j ≤ 3, R (K , K ) = 1, R (K , K ) = 3, R (K , K ) = 6, and

1

j j 1 3 2 3 3 3

50/ , 2K , and C are the corresponding unique critical graphs, the theorem holds for
j ≤ 3. For j ≥ 4 and n ≥ max( j , 6) consider any (C , K , n )-good graph F . By Corollaryj 3
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V (F ) = A B {x }, and A ∩ B = 0/ ,

w

∪ ∪
here A and B induce complete graphs and x is connected to the whole A . Let

h
p = | A | , q = | B | and e be the number of edges connecting x to B . Then we clearly

ave

p ≤ j − 2, q ≤ j − 1 and n = p + q + 1, (2)

b
furthermore if e > 1 then q ≤ j − 2. Conditions (2) imply that n ≤ 2j − 2, which gives a
ound R (C , K ) ≤ 2j − 1. In addition we have an equality n = 2j − 2 if and only if

p
j 3

= j − 2, q = j − 1 and e = 0 or 1, which obviously corresponds to the two critical

4

graphs specified in the theorem.

. Wheels

4.1. A Characterization

In this section we will characterize all (W , K , 2j )-good graphs for all j ≥ 6, inj +1 3

j t
u
particular we will show that any such graph must contain 2K . This in turn will permi
s to conclude that R (W , K ) = 2j + 1 for all j ≥ 6. We note that the proof of the

l
j +1 3

atter could be simplified (as in [1]) if we do not derive a full characterization of criti-

L

cal graphs.

emma 2: For all j ≥ 5, if a (W , K , 2j )-good graph F contains a K , then F con-

j

j +1 3 j
.

P

tains 2K

roof: Let F be as in the lemma, so we may assume that V (F ) = A B ,
| j j

∪
A | = | B | = j , and A induces a K . We will show that B also induces a K . Assume

,the contrary, and let y and y be disconnected vertices in B . Denote by p , i = 1, 21 2 i

i i y
A
the number of vertices in A connected to y . If p ≥ 3 then the graph induced b

{y } contains a wheel W , hence p ≤ 2. Now j ≥ 5 implies that there is a vertex∪ i j +1 i

1 2 1 2 ,
w
z ∈ A disconnected from both y and y , and the set {z , y , y } forms a triangle in F

hich is a contradiction.

Lemma 3: For all j ≥ 1, every vertex in any (W , K , 2j )-good graph F has thej +1 3
n

i
degree at least j − 1. Furthermore for all j ≥ 5, if F has the minimum degree j − 1 the
t contains 2K .j

j +1 3 x -
p
Proof: For any vertex x of any (W , K , 2j )-good graph F , the graph H is com

lete, and so it can have at most j vertices. Hence | V (H ) | = 2j − deg (x ) − 1 ≤ j

x j

x
limplies deg (x ) ≥ j − 1. If deg (x ) = j − 1 then H is a K , and thus by Lemma 2 for al

j ≥ 5 the graph F contains also 2K .j
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hTheorem 4: For all j ≥ 6, R (W , K ) = 2j + 1 and any (W , K , 2j )-good grapj +1 3 j +1 3

j .

P

contains 2K

roof: First, in order to show that for all j ≥ 6 any (W , K , 2j )-good graph containsj +1 3

j2 jK , we assume the contrary and let F be any such graph without 2K . By Lemmas 2
h

d
and 3 it is sufficient to consider graphs F with the minimum degree at least j whic
o not contain K . For any vertex x ∈ V (F ), the structure of the (C , K , deg (x ))-good

g x

j j 3
raph G implied by Corollary 3 is as follows:

,V (G ) = A B {y }, and A ∩ B = 0/x ∪ ∪
where A and B induce complete graphs and y is connected to the whole set A . Denot-

:ing p = | A | , q = | B | , and using the assumption that F does not contain K we obtainj

)

s

1 ≤ p , q , j ≤ 1 + p + q = deg (x ), p ≤ j − 3 and q ≤ j − 2, (3

o the maximum degree in F is at most 2j − 4, and consequently every vertex in
V (H ) is disconnected from at least one vertex in A or B . Hence every vertex of Hx x

x A∪ ,
h
is fully connected to either A or B , and let V (H ) = HA HB , h = | HA |

= | HB | denote the corresponding subset of V (H ) fully connected to either A orB x

j tB . Using the latter, and the fact the we have no K , one can easily see tha

h + p ≤ j − 1, h + q ≤ j − 1, and h + h + deg (x ) + 1 = 2j ,

w

A B A B

hich in turn with (3) implies

h + p = j − 1, h + q = j − 1 and 1 ≤ h , h .A B A B

j +1 n
{
Observe that if p ≥ 3 then any vertex a ∈ A is a hub of a wheel W with rim o
x , y } (A − {a }) HA , so∪ ∪

Ap ≤ 2, and h ≥ j − 3 ≥ 3, (4)

and similarly, if h ≥ 2 then any vertex u ∈ HA is a hub of W with rim onB j +1

∪ 1 2 1 2∪A (HA − {u }) {z , z }, for and any two vertices z , z ∈ HB . Therefore

)h = 1, {z } = HB , q = j − 2. (5B

and by (3) the degree of x , and thus of any vertex of F , satisfies

w

deg (x ) ≤ j + 1,

hich when applied to vertex z ∈ HB , by considering q + h ≤ deg (z ), (4) and (5),

A

A
y

p
gives j = 6. In this situation we further obtain q = 4, h = 3, p = 2, and hence the onl
ossible counterexample is a 7-regular (W , K , 12)-good graph F . However, z is7 3

a
c
disconnected from both vertices in A , so for a ∈ A we have deg (a ) = 6, which is
ontradiction.

The graph 2K is (W , K , 2j )-good, so it remains to show that there does not

j

j j +1 3

+1 3exist any (W , K , 2j + 1)-good graph F for any j ≥ 6. Assume that F is such a
s

2
graph, and let x ∈ V (F ). We know that the graph induced by V (F ) − {x } contain

K , hence we may assume thatj

∪ ∪V (F ) = {x } C D , | C | = | D | = j ,
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nd both C , D induce a K . Let s and t be the number of vertices in C and D ,
r

j
espectively, connected to x . By Lemma 3 we have j − 1 ≤ deg (x ) = s + t . On the other

hand s ≤ 2 and t ≤ 2, since s ≥ 3 or t ≥ 3 implies that C {x } or D {x } induces a∪ ∪
g j +1raph containing W respectively. This implies that j ≤ 5, which is a contradiction.

4.2. Counting

We will count the number of nonisomorphic critical graphs for the Ramsey
snumbers R (W , K ) for all j ≥ 6. We note that our counts agree with all the valuej +1 3

obtained by McKay and Faudree [5] by computer enumeration.

-Lemma 4: For all j ≥ 4 the number of nonisomorphic (W , K , 2j )-good graphs conj +1 3
t jaining 2K is equal to

s ( j ) = h (i ) f ( j − i ), (6)
j

0i =
Σ
0where for all i ≥

h (i ) = (
3

i + d − d + 1), and (7)
i /2

0d =
Σ

f (2i ) = f (2i + 1) = (i + 1)(i + 2)/2. (8)

,Proof: Any graph F on 2j vertices containing 2K can be written as F = 2K Gj j ∪
w j , jhere G is a subgraph of K . Observe that F has no triangles, and furthermore

F does not contain W if fj +1

5 f
A
G has a maximum degree at most 2 and G has no P if

ny component of G is isomorphic to K , K , P , P or C .1 2 3 4 4

,
K
Let us split the components of any G as above into those on odd number of vertices

and P forming G , and those on even number of vertices, K , P and C forming1 3 1 2 4 4

2G , so

G = G G .1 2∪
We will show that h (i ) defined in (7) and f (i ) defined in (8) count the number

of nonisomorphic graphs on 2i vertices of the form of G and G , respectively. Then1 2
-

l
(6) will certainly count all possible nonisomorphic graphs G , and the lemma will fol
ow.

Calculating h(i). Let V (G ) = A B , so that A and B are independent sets of size i1 ∪
1 3 -

t
in G . Let also a and b be the number of P ’s with two vertices in A or B , respec
ively. Furthermore we may assume that a ≤ b , and denote d = b − a . We can easily

see that
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,

so

a + 2b ≤ i and 0 ≤ d ≤ i /2

d ≤ b ≤ (i + d )/3,

eand that different solutions to the above define all nonisomorphic G ’s. Observ1

C

finally, that the number of such solutions is given by (7).

alculating f(i). Let a , b and c denote the number of K , P and C components,2 4 4

2r 2espectively, in G . Similarly as before, the number of nonisomorphic G ’s on 2i ver-
tices is equal to the number of solutions to:

a + 2b + 2c = i and 0 ≤ d = b + c ≤ i /2,

which is equal to

(d +1). (9)
d
Σ
=0

i /2

The proof is completed by noting that (9) reduces to (8).

The following technical lemma is just a simplification of the formulas (7) and (6)

L

for functions h and s , which shows clearly their growth.

emma 5:

(a) For all i ≥ 0, h (6i ) = 1 + 3i (i + 1) and h (6i + j ) = (3i + j )(i + 1) for 1 ≤ j ≤ 5.

(b) For all j ≥ 0

s ( j ) = 1 +
17280

6j + 165j + 1700j + 6t ( j )
,

2

5 4 3

2 .

P

where t ( j ) = 1370j + 3144j for j even, and t ( j ) = 1325j + 2649j for j odd

roof: (a) First use (7) and induction on i to show that for all i ≥ 0,

p
h (i + 6) = h (i ) + i + 6. Then by (7) compute h (0) = 1 and h ( j ) = j for 1 ≤ j ≤ 5, and
rove the first part of the lemma by induction on i applied to h (6i + j ) , for all

0 ≤ j ≤ 5. (b) Using (a), (6) and (8), observe that p ( j ) = s (6 j + i ) is a polynomial in ji
r

0
of degree 5 for each fixed i , 0 ≤ i ≤ 5. Then after computing s (k ) from (6) fo

≤ k < 36 one can find all the coefficients of these polynomials, and some further

4

technical work leads to the formula for s ( j ) as in (b).

.3. All Critical Graphs

Now we can complete a description and count of all critical graphs for the Ram-
sey numbers R (W , K ), for all j ≥ 1. The graph in Figure 1 from Lemma 6 wasj +1 3
known to Clancy [4].
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nLemma 6: R (W , K ) = 11 and there exists a unique (W , K , 10)-good graph as i5 3 5 3

P

Figure 1.

roof: By Theorem 3 R (C , K ) = 7, so in any (W , K , 10)-good graph F we certainly
h

4 3 5 3
ave 5 ≤ deg (x ) ≤ 6, for every x in V (F ). Assume that F has a vertex x of degree 6,

and consider a (C , K , 6)-good graph G . Also by Theorem 3, note that G is critical4 3 x x
t

t
so it contains two vertex disjoint triangles, say with vertex sets A and B , and tha
here is at most one edge between A and B . Observe that if some vertex y ∈ V (H ), y

∪ ∪
x

,
i
is connected to the whole A or B , then {x , y } A or {x , y } B , respectively
nduces a graph containing W . Hence let a ∈ A and b ∈ B be some vertices not con-

n
5

ected to y . In order to avoid an independent set {a , b , y }, {a , b } must be an edge in
x

y
F , furthermore it has to be the only edge connecting A to B , and any verte

∈ V (H ) is disjoint from {a , b }. Consequently, vertex a is connected exactly to
{ ∪

x
x , b } (A − {a }), i.e. deg (a ) = 4, which is a contradiction. Thus the graph F is

regular of degree 5, and so it has 25 edges. For any x ∈ V (F ), H is a K and therex 4

xa x x xre 8 edges between G and H , hence G must have 6 edges. Since G is
(C , K , 5)-good, using Corollary 3 we can easily conclude that it is isomorphic to two4 3
triangles sharing one vertex. Considering the latter property for all vertices in F , one
can easily see that F is isomorphic to the graph from Figure 1.

Figure 1. Unique (W , K , 10)-good graph.5 3

5 3 t
a

It remains to be shown that there is no (W , K , 11)-good graph F . Observe tha
ny such graph F has to be regular of degree 6, but also V (F ) − {x } induces the

unique (W , K , 10)-good graph, which is regular of degree 5. This is impossible, so5 3

L

the lemma follows.

emma 7: R (W , K ) = 11 and there are exactly 37 nonisomorphic (W , K , 10)-good6 3 6 3

5graphs. 36 of them contain 2K , and the remaining one is as in Figure 1.



P

- 10 -

roof: By Lemma 4 there are s (5) = 36 nonisomorphic (W , K , 10)-good graphs con-6 3

5t 5 6 3aining 2K . Let F be a (W , K , 10)-good graph without 2K . It is sufficient to show
ythat F , up to isomorphism, is as in Figure 1. By Lemma 2 F has no K , and b5
e

g
Lemma 3 every vertex has the degree at least 5. If deg (x ) ≥ 7 then by Corollary 3 th

raph G has a K , and so F has a K , which is impossible. Hence for everyx 4 5

5 e
o
x ∈ V (F ) we have 5 ≤ deg (x ) ≤ 6. We may further assume that F contains a W , sinc

therwise by Lemma 6 F is as in Figure 1. Let x be a hub of a wheel W in F , and5

5c x 4onsider the graph G , which by the previous comments contains a C , but no C nei-
fther K . Using Corollary 3, we can easily see that G is isomorphic to G i4 x 1

d 2eg (x ) = 5 or to G if deg (x ) = 6, as in Figure 2.

c

c

c

c

a a

c

c

c

c

4

1

2

3
1 3

4

1 2

2

G G
1 2

a = a
1 2

Figure 2.

KIn both cases a contradiction is derived by the same reasoning. In order to avoid 5
a x 1 2t least one vertex y ∈ V (H ) is disconnected from a or a . Then y has to be con-
nected to c , for i = 1, 2 and 3, since otherwise a or a , respectively, with {y , c }i 1 2 i

6 1 m
y
forms an independent set. However now we have a wheel W with a hub c and a ri
c c x c y in F .3 4 2

6 3 F
i

It remains to be shown that there is no (W , K , 11)-good graph. Assume that
s such a graph. As in Lemma 6, not all of 11 graphs induced by V (F ) − {x } can be

t
t
isomorphic to the 5-regular graph in Figure 1, hence there exists x ∈ V (F ), such tha
he graph induced by V (F ) − {x } contains 2K . Now, we easily have deg (x ) ≥ 5,5

5 -
i
which implies that x is connected to at least three vertices in one of these K ’s, induc
ng with it a graph containing W . This is a contradiction, so no (W , K , 11)-good

T

graph exists.
6 6 3

heorem 5: Table II summarizes the values of Ramsey numbers R (W , K ) and the
number of corresponding critical graphs for all j ≥ 2.

j 3
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lProof: The theorem holds for j = 5 by Lemma 6, for j = 6 by Lemma 7, and for al
j ≥ 7 by Theorem 4 and (6) in Lemma 4. For 2 ≤ j ≤ 4, W = K , and it is well knownj j

e
m
that 3, 6, 9 are the values of the corresponding Ramsey numbers. For completeness w

ention that 2K and C are the unique critical graphs in the first two cases, and that

4

1 5

3 8 -
t
the three (K , K , 8)-good graphs are the complements of C with 2, 3 or 4 consecu
ive main diagonals.

Observe finally that, by Theorem 4 and Lemmas 4 and 5, the number of noniso-
morphic critical graphs for the Ramsey numbers R (W , K ) is of the formj +1 3

2s
5 4 3

( j ) =
2880

j +
1152
11j +

864
85j + O ( j ).

_______________________________________________
order of number of

s
j R (W , K )

critical graphs critical graphj 3
_______________________________________________

3
2 3 2 1

6 5 1
3

5
4 9 8

11 10 1
7

7
6 11 10 3

13 12 61
2

9
8 15 14 9

17 16 141
1

1
10 19 18 20
1 21 20 288

3
1
12 23 22 39
3 25 24 537

.. . . . . . . . . . .

j 2j − 1 2j − 2 s ( j − 1) _______________________________________________

A

Table II.
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