
COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLV~

26. Mathematical Logic in Computer Science,·

Salq6tarjan (HUNGARY), 1978.

LOGIC AND COMPLEXITY OF

SYNCHRONOUS PARALLEL COMPUTATIONS

S. Radziszowski

ABSTRACT

We investigate a certain model of synchronous paral­

lelism. Syntax, semantics and complexity of programs

within it are defined. We consider algorithmic proper­

ties of synchronous parallel programs in connection with

sequential programs with arrays. The complexity theorem

states that the class PP-time (pOlrnomial-time bounded

parallel languages) is equal to P-space (languages re­

quiring polynomial amount of memory).

INTRODUCTION

In the recent years many papers appeared investi­

gating different kinds of models for synchronous paral­

lel computations. In general, they are divided into two

groups, which are dealing with:

- 675-

1. Creation of new formal algerbraic models for parallel

computations, such as vector machines (Pratt, Stock­

meyer [9]), alternating Turing machines (Chandra,

Stockmeyer [2]), M-Ram, C-Ram (Simon [6]), conglomer­

ates (Goldschlager [5]) and others.

2. Practical parallel programming in languages not for­

mally defined, with intuitive semantics. Even exam­

ples of algorithms from the first group of papers are

often written in such languages.

Our goal is to present a certain very natural lan­

guage with the complete definition of syntax and seman­

tics. On the basis of this language we investigate some

algorithmic properties of parallelism, the complexity of

programs written in it and we give some examples of

algorithms. Such an approach might turn out to be di­

rectly applicable to future parallel computers.

The general idea of our model is as follows:

CP - the control processor stores the text of a

program and synchronizes the actions of other

processors PP l , PP 2 , ... ,PPn , ...

- 676-

PP i - i>O, there is an unbounded number of pro­

cessors indexed by natural numbers, acting

in parallel, all of them using one global

memory M. In the language syntax there does

not exist any notion of processor. We have

only to specify which instructions should be

executed in parallel.

The whole structure acts in sequential and parallel

steps. A sequential step is the execution of one stan­

dard statement at a given moment. One parallel step has

two stages. First the number of active processors and

their allocation are computed by the control processor

CPo After that every active processor PP. performs one
~

sequential instruction (which can be a sequential prog-

ram in general). This model is stronger than SIMDG ­

single instruction stream, mUltiple data stream, global

memory (Flynn [4J) because in our model different pro­

cessors PP i can perform in one step different programs,

contrary to SIMDG, where two parallel processors must be

executing the same instruction if they are both active

in a given time. However, in our model the number of

different instructions executed in parallel is syntacti­

cally bounded by the text of the program stored in the

control processor CPo

By synchronous parallel program we shall intuit­

ively mean the program whose computation is determin­

istic and all parallel instructions are mutually separ­

ated. All processors act in tacts, that means there are

syntactically defined points in the program, where all

processors are forced to synchronize their actions.

We use only synchronous parallel computations, be­

cause we are interested in fast algorithms solvlng par­

ticular problems. Up to now asynchronous model of parc~-

- 677-

lelism is mostly used for on-line computations, operat­

ing system and so on. There exist also some numerical

asynchronous parallel algorithms (Kung [8J).

Asynchronous parallel programming does not apply to

particular problem solving, such as language recognition.

It seems that by removing synchronization we canot es­

sentially improve the complexity of algorithm, for the

worst case complexity of asynchronous algorithm will

always remain not smaller than the complexity of the

corresponding synchronized version. At most, an average

running time of the program can be decreased.

I. PARALLEL PROGRAMS

Let R be a relational system:

R =<A,{fl},{rj }>,

where the set of natural numbers forms a subset of A and

f i , r j are the functors and predicates of R. Let us de­

note by FS R the set of sequential programs in R, i.e.

containing substitutions and closed under composition

(block statement), condition (if statement) and itera­

tion (while statement), (see Banachowski et al [lJ).

The set of variables V consists of infinite sets

Vb' Vs ' Vn , Vi:

V = VbuVsuVnuVi

where all of them are pairwise disjoint and

Vb - boolean variables,

V - standard individual variables valuated intos
the set A,

- 678-

Vi - index variables valuated into the set of

natural numbers.

is given, then

for complex in­

T is a term.dexed variables of the form X(T), where

In this case we define:

Let Vn be an infinite set of names, then:

V {x(k):xeV and keN} is the set of simple in-n n
dexed variables.

The terms and the formulas are built by induction on the

basis of variables from the set V and functors and

predicates from R.

If the valuation v: VbuV uv.uv +As 1 n
we shall use an extended valuation v

{

X(T(V»

X(T) (v) =
undefined

if T(V) is a natural

number

otherwise

Let us denote by FS R an extended set of sequential

programs, where the set of variables is equal to

V = vbuVsuViu{simple and complex indexed variables}.

De fini ti on:

Parallel instruction is the program of the form:

cobegin (I1DP 1), .•. , (IrDP r) coend

where:

1. p. is the relation programmable in R and it is
J

writen in the form Ka for some program KeFS R and

an open formula a, for j=l, ... ,r. (cf. [1]).

2. I. for j=l, ... ,r is a sequential program from
J

FSR •

- 679-

3. For all j=l, ..• ,r the set of free index vari­

ables in I. and p. is the same.
J J

4. For all j=l, ... ,r any index variable in I. can
J

not occur as a left side of substitution. (This

restriction is implied by semantics, because p.
J

will assign those variables on which program I.
1) J

will be executed in parallel) 0

In some cases, which are not involving any confusion, we

will use the simplified notation for parallel instruc­

tions, for instance:

a) aobeg~n lOp aoend

b) aobegin I, J aoend

Definition:

if r = 1 ,

if I, J does not contain any

index variable.

The set of paraLLeL programs PP is the smallest set

satisfying the following conditions:

1. FS R is included in PP;

2. Parallel instruction is a parallel program;

3. PP is closed under composition, condition and

iteration on the basis of programs from FS R• 0

Before the definition of semantics let us give an
example of program sorting n different elements given

in array B[l:nJ. Our example is a somewhat improved

1)
This condition is to avoid the variable conflict as
in

begin k:=2;
aobegin

end

i:=2;
X(k) :=4;

- 680-

X(i):=O aoend

version of the algorithm from Goldschlager [5J. In the

formalism of PP-programs we can restrict the range of

an index j in while statement 12 to the interval

l~j ~n/2k •

Example 1

B[lJ, .•. ,B[nJ - elements from the ordered set A to be

sorted

R = <AuN, ~A' arithmetic in N>.

For the sake of convenience we shall use multiin­

dexing of variables, i. e. a (i, j) instead of a Cnumber

of the pair (i,j».

Program K:

begin aomment perform all comparisons;

II: aobegin if B[jJ~B[iJ then less(i,j):=l else

less(i,j):=OD

l~i,j~n aoend;

aomment compute the number of inpute less than

or equal to input B[iJ;

12: K:=l; while k~log2n do

begin

aobegin lessCi,j):=less(i,2j-l) +
less Ci,2j) Dl$i~nAl$j$n/2k aoend;

k:=k+l

end;

aomment re-arrange the input numbers;

13: aobegin B[less(i,l)J:= B[lJD l$i~n aoend

end;

Our program K sorts elements B[lJ, ... ,B[nJ in time

O(logn), assuming n is a power of 2.

- 681 -

j=l, ..•

of index

II. SEMANTICS OF PARALLEL PROGRAMS

Let K be a parallel program from PP and v an

initial valuation into the set A. We shall define output

valuation v' = KR(V).

1. KEFSR, K is a sequential program, ·by standard

inductive way we put v' = KR(V). (cf.[l]).

2. K = cobegin (I1DP 1), •.. , (IrDP r) coend

Let S. be the set of all free variables from p .•
J J

Denote:

T. = {(nl, ... ,nk.):PJ.(nl, ... ,nk.)(v) = l} for
J J J

The set T. is the set of all sequence
J

variables satisfying p .• For each such
J

sequence n l , •.. ,nk a separate processor will

execute program I., assuming it will not lead to
J

the conflict. In order to omit conflicts we have

~o force the actions of all processors to be

independent inside the parallel instruction.

Formally, if we define t~ foT. ~ET.:
<, J

t j = {the set of all variables occuring in I.
~ J

as a left side of substitution, while

the initial valuation for program I. is
J

given by v changed by ~ on variables

from Sj (denote it by v~)}

then the resulting valuation v' will be defined

if:

a) all sets T., j=l, ... ,r, are finite
J
jb) all sets t~, for j=l, ... ,r and ~ ranging

over T., are pairwise disjoint
J

and v' is given by:

- 682 -

the valuation v restric-
j

utI;' The formula (*)
j , I;
actions of

j
describes independent E IT.I proces­

j J
sors, which are allowed to change the valuation

in the separate parts of memory t~, but they

have the possibility to read all variables.

Following conditions a), b~ v' is correctly

defined. Note, that v' can be undefined on the

part of set uS ... ,
J oJ

v' = K(v) = wu u
j , I;

where w is equal to

ted to the set v,uS

3. if K = KliK2 then KR(v) = K2R (K 1R (v))

if K = if a then Kl etse K2 then:

if K = white a do Kl then:

Note that the output valuation v' can become undefined

in three cases:

i) by the infinite loop in the white statement as in

sequential programs

ii) by variable conflict as in 2b) of semantics de­

finition, i.e. instruction of the form:

aobegin x:=a; x:=b aoend

- 683-

iii) by the requirement of an infinite number of pro­

cessors (point 2a) of semantics definition).

Let us notice also that the conflict of the form:

aobegin x:=b; y:=x aoend

is solved in the definition. Following the remark 4b)

from the syntax definition appropriate sets will be like

this:

T l = T
2 = {</)}, 8 1 = 8 2 = {</)}

1 2 t l {x} , t 2 {y} , t l nt2
</)v = v = v , = = =

v' = (v restricted to V - {x,y})u[x/b](vl)u[y/x](v2)

The result is equivalent to the following sequential

program:

begin yl:=y; xl:=x;

xl:=b; yl:=x;

y:=yl; x:=xl end

In a real computer acting in parallel the computa­

tion can be performed in the following way:

All sequential statements outside the parallel

instructions are executed in a standard way. The general

assumption about hardware is that all processors have

access to the whole global memory. Each variable can be

read many processors at the same moment, but only one

processor can change the value of the variable at a

given time. Before each parallel instructioli the control

processor computes the set of all sequences of index

values satisfying p., whose cardinality gives the number
J

of required processors. This can be done in parallel by

the operating system. Control processor does not have to

check whether the number of processors is finite. CP can

simply print out the computated number or inform that

its capacity is too small to activate all desired pro­

cessors.

For every sequence satisfying P
j

a new processor is

activated which executes the program I
j

in its local

memory. The results are copied into the global memory.

This is described in the semantics definition. The vari­

able conflicts as in 2b) can be checked in running time

by special marking of changed variables inside parallel

instruction. The execution of parallel instruction is

terminated when all processors have executed their pro­

grams.

III. ALGORITHMIC PROPERTIES OF PARALLEL PROGRAMS

Let K€PP be a parallel program, v - a valuation of

its variables and ~ a formula. By K~ we shall mean the

formula with the following definition of valuation:

df
(K~)RlV) = ~R(KR(v»

!n the same manner as in sequential case we would like

to prove partial and total correctness of a program K

in the structure R with respect to the formulas ~ and

S, i.e. to prove the following formulas:

(KIA ~)-+KS

~ -+ KS

- partial correctness

- total correctness

In the last two chapters of the paper we have to

make some restrictions on the form of the programmable

relation p .• If we allow p. to be an arbitrary formula
J J

K~, then even the problem of finiteness p. could become
J

undecidable. In order to obtain effectiveness and comp-

lexity theorem we assume that p. is given by a system
J

of linear inequalities (with respect to index variables),

- 685-

where coefficients are arithmetic terms over standard

variables.

In 'this case there exist fast algorithmq checking

.at1sfiability of p. and computing the set of solutions
J

for p. (the special case of linear programming). On the
J .

other hand this restriction seems to be reason.able, be-

cause the structure of parallelism still remains poWer­

ful enough in practice.

THEOREM 1

The~e exists an effective 8emantica~~y equiva~ent

t~an8~ation between the pa~a~~e~ and 8equentia~ p~og~am8

with a~~aY8.

P~oof:

~ every sequential program is a parallel one. The

cell of array can be treated as a single indexed vari­

able. In such a transformed program, that is eqUivalent

to the initial one, there are no simultaneous statements.

~It is enough to give an efficient semantically

equivalent transformation of an arbitrary parallel pro­

gram to the sequential one with arrays. It is obviously

sufficient to do this for a parallel instruction. One

parallel instruction can be transformed as follows:

1. For every p., j=l, ••• ,r compute the set T. of sequen-
J ' J

ces satisfying p .• If T. is not finite (in the case
J J

of system of linear inequalities the problem is de-

cidable) then stop without result.

2. Following the semantics definition check if there

exists unavoidable variable conflict (point ii)). If

yes then stop with undefined result.

- 686-

3. T~eat indexed variables with the same name as an

array. Working on local memory for every sequence

from uT. execute program I. (sequentially).
. J J
J

4. Copy results into the global memory.

As an immediate consequence we have the following:

COROLLARY

The probZem of partiaZ (totaZJ correctness of paraZ­

ZeZ program is equivaZent to the probZem of partiaZ

(totaZJ correctness of sequentiaZ programs with arrays.

The transformation in the proof of the theorem

gives the equivalent program since we have followed the

definition of semantics. Our program is a sequential one

with arrays. For the original study of algorithmic pro­

perties of programs with arrays see Dafiko [3].

The correctness proofs of parallel programs can be

made in particular case much si~pler than in general by

combining the transformation to the sequential program

with arrays and proving its correctness. If one parallel

instruction is not very complicated we can treat it as a

single instruction and we apply standard methods to the

whole program.

For instance, let us prove the total correctness

of program K (Example 1) in natural numbers with

respect to the formulas:

input formula a: n~l~ B[i]€N~(i + j ~ B[i] + B[j])

output formula e: i, j€N~(i<j~B[i]<B[j])

We would like to prove that:

a ~ Ke

-~-

is a valid formula in the natural numbers. The

program K has the form:

yes
Il------'~~ k ~ log2 n .. 1 2

nol ~
1 3

~
Stop

After executing I l , k is equal to 1 and less(i,j)

codes the relation B[i]~B[j]. The program halts, because

every step of loop execution increases k and hence the

loop will operate exactly log2n times. Then it is suf-

• ficient to show that the following formula y is an in­

variant of the loop statement 1 2 :

y = L k less(i,j) =
l~j ~n/2

the number of ele­

ments smaller than

or equal to B[i] in

the array)

It can be proved by simple induction. For k = log2n

less [i,j] gives the number of elements smaller than

B[i] and hence instruction 1 3 leads to the correct

result.

Such parallel programs can be used as a device for

recognizing languages, by setting xl:=input word at the

start of the computation and leading out the result at

the distinguished boolean variable.

IV. COMPLEXITY OF PARALLEL COMPUTATIONS

The main theorem of this section is a generaliza­

tion of results from [2, 9].

- 688-

The complexity of program from FS R is measured by

the number of instructions performed during the computa­

tion (Radziszowski [10]). The length of parallel instruc­

tion is the maximum of length of sequential computations

together with the cost of relation p. (The cost of p de­

pends on the way of compilation, but there exist fast

algorithms for computing p. We do not specify these

algorithms, because we are interested in parallel comp­

lexity up to a polynomial.)

The length of parallel computation is the sum over

all lengths of sequential and parallel instructions

executed during computation. The parallel complexity of

the language will be the minimum over all complexities

of parallel programs recognizing this language. We shall

say, that a language L has parallel complexity T(n) if

there exists a parallel program accepting L, where all

its accepting computations for a data of the length n

have length not greater than T(n).

Let PP-time denote the class of languages accept­

able by a polynomial parallel program.

Finally assume, that relational system R includes

effective arithmetic, that means arithmetic operations

are polynomially programmable in R and all functions

and predicates of Rare polynomially programable on

Turing machines. Then we can prove the following:

THEOREM 2

PP-time = P-space

where P-space is the cLass of Languages acceptabLe

by poLynomiaL space bounded Turing machines.

-~-

Proof:

The proof consists of two simulations:

1. Every Turing machine, which uses polynomial space can

be simulated by parallel program running in poly­

nomial time.

2. Every polynomial time bounded parallel program can be

simulated by a sequential one requiring polynomial

amount of memory.

Part one

Let M be a q state one-tape deterministic

Turing machine using T(n) cells of memory for some poly­

nomial T. Without loss of generality we can assume, that

M has a two letter alphabet. Hence for a data of length

n there exist at most

different configurations of M, where p(n) - is a poly­

nomial. The polynomial time bounded algorithm simulating

M can be written as follows:

begin

cobegin c(i):= the i-th configuration of M01~i~2P(n)

coend;

cobegin comment use the next-move function of M;

k(i):= the index of the next configuration

after C(i)Ol~i~2P(i)coend;
S := 1;

while s~p(n) do

begin s := s+l;
cobegin k(i) := k(k(i))Ol~i~2P(n) coend;

end;

if k(l) is an index of accepting configuration

then accept else reject;
nYLd.

- 690 ~

To consider only the computations of the length

2P (n) we define the successor of the terminal configura­

tion as the same configuration. Indices k(i) computed

after s steps of while loop code the configuration which

follows after c(i) by application 2s 'cimes next move

function of M to c(i). The length of the computation

M is bounded by 2P (n), hence after p(n) steps of the

loop we can simulate all possible computations of M

in the memory bounded by T(n). Obviously the running

time of our parallel program is of the range O(p(n»,

that means it is bounded by some polynomial.

Part two

To complete the proof of the theorem it is suf­

ficient to construct a polynomial space bounded nonde­

terministic Turing machine simulating an arbitrary given

parallel program K running in polynomial time. Instead

of writing a next-move function of the Turing machine,

we will construct an algorithm easy by transformable to

the formal one.

From the assumption about the relational system R

we can rewrite our original program K into the paral­

lel program K' with only boolean operations and 0-1

boolean variables by:

a) replacing every variable by 0-1 array coding the

current value of this variable;

b) substituting for occurences of functors, predicates

and arithmetic operations suitable polynomial

programs i

c) substituting for every formula a occuring in the

program K a new part of program K which carries
a a

out the value of a at a special boolean variable b .
a:

- 691 .-

Resulting parallel program K' has exactly the

same structure of parallelism as K and it remains

polynomial (counting binary operations).

We will construct a recursive procedure find

(i,t) which returns the value of i-th 0-1 variable

after t steps of computation K', assuming all vari­

ables and cells of arrays are numbered by integers. The

steps are counted at external level, that.means every

parallel instruction is treated as one step and all

binary instructions outside parallel instructions are

counted separately. The idea of the procedure find is

taken from [9J. By treating parallel instruction as a

single statement our program is sequential. Build up the

graph G whose vertices are conditions, substitutions

and parallel instructions of K'. The edges are implied

by the structure of K'. For the sake of simplicity

assume that the terminal instruction is a successor of

itself. A nondeterministic algorithm simulating K' acts

as follows:

1. Choose a path P=Pl •.• PT(n) of the length T(n) in G

such that p begins at the start vertex, where T(n)

is a polynomial bounding time of K'. (It is done in

T(n) nondeterministic steps.)

2. Compute find (0, T (n)) for the chosen path p. If the

path p does not code the valid computation of K'

then procedure find will loop infinitely.

3. if find (o,T(n)) = 1 then accept e"lse reject.

The proof will be completed if we construct poly­

nomial space bounded algorithm for function find, since

the acceptance of the input word by the program K is

equivalent to find(O,T(n)) = 1, where 0 is the index of

boolean variable denoting the acceptance of K'.

- 692 -

procedure find(i, t)

L if t=O then

if i is an index of input variable then return x.
1

eZse return 0

2. if Pt is not a parallel instruction at the choosen

path p then

a) if Pt is a substitution which does not change xi

then return findCi,t-l)i

b) if Pt is of the form xi:=xj ~ ~ for some boolean

operation ~ then return findCj,t-l) ~ findCk,t-l)i

c) if Pt is a formula of the form xi = Q for Q€{O,l}

then compute findCi,t-l) and check if the edge in

G we have passed was in agreement with the struc­

ture of K'. If not then loop infinitely, other~

wise return findCi,t-l);

3. if Pt is a parallel instruction:

cobegin IlDP l , ... , IrDP r coend

then

Find k such that in I k xi can be .changed.CThere

exists at most one such integer between 1 and r ­

it can be found having at the disposal procedure

findCj,t-l) for pertinent j.)If such k does not

exist then return findCi,t-l).

Let x. be the variable occuring as a left side of
1

substitution in I k at the instruction Pt. Then

return findlCi,t,TCn)) where procedure findl is

almost exactly the same as find, but constructed

for "internal level" of program K', that means

for I k written in details, where each binary

instruction is counted as a single instruction.

Function findl uses the second parameter t and

- 693-

the function find when the third parameter de­

creases to O. It plays the same role as input

word for procedure find.

This completes the description of the algorithm.

To observe that it operates in polynomial space note

that in stack implementation of find the depth of re­

cursion is bounded by T2 (n) and the memory required for

recording path Pt and all parameters at every level of

recursion is also bounded by some polynomial.

This proves our theorem.

v. EXAMPLES OF PROGRAMS

Examp te 2

Boolean matrix multiplication in time O(logn). A is a

nxn boolean matrix and n is a power of 2. Then after

execution of program M matrix A contains its

previous square.

M:

cobegin M(i,j,k):=A(i,k)AA(k,j) 0 l~i,j,k~n coend;

s :=1;

white s~log2n do

begin s:=s+l;

cobegin M(i,j,k):=M(i,j,2k-l)AM(i,j,2k) 0

1~i,j~nAl~k~n/2s-1 coend

end;

cobegin A(i,j):= M(i,j,l) 0 Lsi,j~n

- 694 .-

coend;

coend; s:=s+l end;

reject;

Examp l,e :3

G is the n vertex undirected graph with edges given

by the nxn boolean matrix A. The following program L

checks the connectivi ty of G in time 0 (lOg~n) :

L:

cobegin A(i,i):=l 0 l~i~n coend

for' i:=l step 1 until, lo92n do 1'.:= Ax A;

comment A is the transitive closure of the incidence

matrix for G

s :-1;

~hil,e s~log2n do

begin cobegin A(i,j):=A(i,2j-l)AA(i,2j) 0

1~i~nAl~j~n/2S coend;

end;

8:-1; whil,e s~log2n do

begin cobegin A(i,1):=A(2i-l,1)AA(2i,1) 0
s

1~i~n/2

if A(l,l) = 1 then accept el,se

VI. FINAL REMARKS

In the section III we stated only rather evident

logical properties of synchronous parallel programs. It

seems that this kind of problems should be studied more

carefully, particularly as a construction of the axio­

matization and the system of inference rules for for­

mulas of the form Ka , where K is a parallel program.

The proof of the complexity theorem based among

others on the fact, that the value of an arbitrary vari­

able after i steps of computation depends only at most

on c i other variables. There could be more acti~e pro­

cessors, but the history of computation for every vari-

- 695-

able is restricted to the exponential amount of memory.

An interesting question arises, what would happen if

functions had an unlimited number of arguments and were

computable in one step.

The parallel language PP can be a useful tool for

programming so far intractable problems, for instance

members of P-space not known to be in P-time. The paral­

lel algorithms for these problems will run in polynomial

time.

REFERENCES

[lJ Banachowski, L. et al: An introduction to algor­

ithmic logic, in Mazurkiewich, A., Pawlak, z.
/Eds/, Mathematical Foundations of Computer

Science~ PWN, Warszawa, 1977.

[2J Chandra, A., Stockmeyer, L.: Alternation, Proce­

edings of the l?-th AnnuaZ Symposium on Foundations

of Computer Science~ Oct. 1976, pp. 98-108.

[3J Danko, W.: Programs with arrays, Fundamenta Infor­

maticae~ N.3, 1978, pp. 379-398.

[4J Flynn, M.: Very High-Speed Computing Systems,

Proc. IEEE~ Vol. 54, Dec. 1976, pp. 1901-1909.

[5J Goldschlager, L.: Synchronous Parallel Computations,

Technical Report No. 114, University of Toronto,

1977.

[6J Hartmanis, J., Simon, J.: On the Power of Multi­

plication in Random Access Machines, Proceedings

of the 15 th AnnuaZ Symposium on Switching and

Automata Theory~ 1974, pp. 113-123.

- 696-

[7J Hartmanis, J., Simon, J.: Structure of Feasible

Computations, Advances in Computer Science~ Vol.

14, Academic Press, N.Y., 1975, pp. 1-43.

[8J Kung, R.: The new method for finding solution of

equations, in Traub, Wozniakowski (Eds), Complex­

ity and Effectivenes8~ Prentice Hall, 1976.

[9J Pratt, V., Stockmeyer, t.: A Characterization of

the Power of Vector Machines, Journal of Computer

and SY8tem Science~ Vol. 12, (1976), No 2,

[10J Radziszowski, S.: Programmability and P=NP conjec­

ture, Karpinski, M. (ed), Foundamental8 of Computa­

tion Theory~Lecture Notes in Computer Science,

Vol. 56, Springer-Verlag, Berlin, 1977, pp. 494­

498.

[11J Stapp, L.: The Proof of Correctness of Jacobi

Parallel Program, CC PAS Report, No. 323, 1978.

S. Radziszowski

Uniwersytet Warszawski,

Instytut Informatyki

00-950 Warszawa PKiN,

POLAND

~ 697 ~

	SRadziszowskiArticle197801
	SRadziszowskiArticle197802
	SRadziszowskiArticle197803
	SRadziszowskiArticle197804
	SRadziszowskiArticle197805
	SRadziszowskiArticle197806
	SRadziszowskiArticle197807
	SRadziszowskiArticle197808
	SRadziszowskiArticle197809
	SRadziszowskiArticle197810
	SRadziszowskiArticle197811
	SRadziszowskiArticle197812
	SRadziszowskiArticle197813
	SRadziszowskiArticle197814
	SRadziszowskiArticle197815
	SRadziszowskiArticle197816
	SRadziszowskiArticle197817
	SRadziszowskiArticle197818
	SRadziszowskiArticle197819
	SRadziszowskiArticle197820
	SRadziszowskiArticle197821
	SRadziszowskiArticle197822
	SRadziszowskiArticle197823

