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Abstract. We derive new upper bounds for the classical two-color Ramsey
numbers R (4,5) 27, R (5,5) 52 and R (4,6) 43; the previous best upper
bounds known for these numbers were 28, 53 and 44, respectively. The new
bounds are obtained by solving large integer linear programs and with the help
of other computer algorithms.

1. Introduction

The two-color Ramsey number R (k ,l ) is the smallest integer n such that for any graph F on n
vertices, either F contains a copy of Kk or F contains a copy of Kl , where F denotes the complement
of the graph F . A graph F is called (k ,l ) good if F does not contain a Kk and F does not contain a
Kl . Any (k ,l )-good graph on n vertices will be called a (k ,l ,n )-good graph.

The best known lower bound of 25 for R (4,5) was established in 1965 by Kalbfleisch [Ka1], who
constructed a cyclic (4,5,24)-good graph. Until January 1991, the best upper bound of 28 was due since
1971 to Walker [Wa2], but this paper shows R (4,5) 27. In [MR2] we proved that R (5,5) 53. The
best lower bound for this number, R (5,5) 43, was obtained by Exoo [Ex1] in 1989, who constructed a
(5,5)-good graph on 42 vertices using a simulated annealing technique. Recently Exoo found a new
(4,6)-good graph on 34 vertices [Ex2], thus showing R (4,6) 35; the previous best upper bound of 44
for this number was due to Walker [Wa2].

In order to find new extremal Ramsey graphs or to show that some family of them is empty by a
full enumeration, one may have to search through a prohibitively large space of possibilities. We prune
this search space in two stages. Firstly, various combinatorial lemmas relating the properties of the
graphs we are searching for to other parameters can reduce the size of the search space. Secondly,
large instances of integer linear programming problems are constructed, which when solved provide
substantial information about such graphs (including proofs of nonexistence). Finally, a computer search
is performed within the remaining part of the search space.

2. Attack on R(4,5)

In this paper we focus our attention on standard two-color Ramsey numbers R (k ,l ), and espe-
cially on R (4,5). The neighborhood N (x ) of a vertex x in an (k ,l ,n )-good graph F =(V ,E ) induces an
(k 1,l ,degF (x ))-good graph, and V N (x ) {x } induces an (k ,l 1,n degF (x ) 1)-good graph; for a
fixed F these two induced subgraphs will be denoted by Gx and Hx , respectively. The knowledge of
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(k 1,l )-good and (k ,l 1)-good graphs is critical in the study of R (k ,l ). For the case of R (4,5) we need
(3,5)-good and (4,4)-good graphs, and all of them are known [MR2,MZ,RK]. An exhaustive enumera-
tion of all (4,5)-good graphs is out of a question, since there are too many such graphs.

Let e (k ,l ,n ) and E (k ,l ,n ) denote the minimum and maximum number of edges in any (k ,l ,n )-
good graph, and let t (k ,l ,n ) be the minimum number of triangles in any such graph. As stated earlier,
we know the values of e (), E () and t () for all n in the cases of (k ,l ) = (4,4) and (k ,l ) = (3,5). Also let
e (F ) and t (F ) denote the number of edges and triangles, respectively, in any graph F . Walker [Wa1,
see also MR2] proved the following Theorem 1; Theorems 2 and 3 below appear in [MR2] as lemmas 3
and 2, respectively.

Theorem 1: If ni is the number of vertices of degree i in any (k ,l ,n )-good graph F , then

0

i =0

n 1

2E (k 1,l ,i ) + 2E (l 1,k ,n i 1) + 3i (n i 1) (n 1)(n 2) ni . (1)

Theorem 2: If ni is the number of vertices of degree i in any (4,5,n)-good graph F on at least 24 ver-
tices, then

0

i =6

13

(n +9 3i )E (3,5,i ) + 6i 3t (4,4,n i 1) ni .

Theorem 3: If ai is the number of edges contained in exactly i triangles of some (4,5,n)-good graph F,
then

x V (F )

t (Hx ) = 4a 4 2a 2 2a 1 +

x V (F )

n /3 + 3 degF (x ) e (Gx ).

Assume that F is a (4,5,n )-good graph with e edges and ni vertices of degree i . In the following
we describe an increasing sequence of systems of linear constraints LPi , for 0 i 4, all of them
satisfied for graph F . The variables range over nonnegative integers, and the number of edges e is
optimized.

LP0. Variables ni for max (n R (4,4),0) i < min (n , R (3,5)), constant n , constraints:

n =

i

ni and 2e =

i

ini .

LP1. Extend LP0 by a constraint obtained from Theorem 1 by instantiating k = 4 and l =5.

LP2. Extend LP1 by the inequality of Theorem 2 (LP2 is valid for (4,5)-good graphs on at least 24 ver-
tices).

LP3. We extend LP1 as follows (the proofs of lemmas 2 and 3 in [MR2] easily imply that LP3 is also
an extension of LP2). First introduce new variables gim denoting the number of vertices x V (F ) such
that degF (x ) = i and e (Gx ) = m , and him denoting the number of vertices x V (F ) such that
degF (x ) = n i 1 and e (Hx ) = m . The ranges of indices i and m can be determined from n and the
enumerations of (3,5)- and (4,4)-good graphs. The total number of variables is not very far from 100.
We attach the obvious constraints for each i

ni =

m

gim =

m

hn i 1,m ,

and a non-obvious one given by an expression below equal to the right hand side of (1) for k = 4 and
l =5, which can be easily derived by analyzing the proof of Theorem 1.

2

i m

(E (3,5,i ) m )gim + 2

i m

(m e (4,4,i ))him = RHS (1). (2)

Theorem 3 implies further constraints. Let tim and Tim be the known minimum and maximum, respec-
tively, of the number of triangles in any (4,4,i )-good graph with m edges. Similarly, let sim and Sim be
the known bounds on the expression 2n 4(G ) n 2(G ) n 1(G ) in any (3,5,i )-good graph G with m edges,
where n j (G ) is the number of vertices of degree j in G . Introduce two auxiliary variables T and S
with the postulated meanings (S is the only variable which can be negative):

T =

x V (F )

t (Hx ) and S = 4a 4 2a 2 2a 1,

which are reflected in the following two new constraints of LP3
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i m

him tim T

i m

him Tim ,

i m

gim sim S

i m

gim Sim .

Finally, Theorem 3 itself becomes the last constraint of LP3 as follows:

3T = 3S +

i m

(n + 9 3i )mgim .

lower bounds upper bounds
n

LP0 LP1 LP2 LP3 LP3 LP2 LP1 LP0

24 72 101 101 109 138 139 154 156
25 88 116 116 123 145 148 160 162
26 104 130 130 138 152 154 169 169
27 122 153 153 154 158 160 171 175

Table I. Bounds for e (F ) in (4,5,n )-good graphs F from LPi , 0 i 3.

Table I shows the results of optimizing the number of edges e for LPi , 0 i 3. All of them,
except LP0, have no feasible integer solutions for n = 28, thus showing R (4,5) 28. The minimization
of = g 12,24 + h 14,41 n 12 in LP3 for n = 27 yields 4, thus in any (4,5,27)-good graph F there are at
least 4 vertices x V (F ) such that

(a) Gx is an (3,5,12)-good graph with 24 edges, and
(b) Hx is an (4,4,14)-good graph with 41 edges.

There are only two possible graphs for Gx [Ka2], and 40 possibilities for Hx [MR2], totaling 80 possi-
ble pairs of graphs (Gx ,Hx ). The reconstruction of the possible graphs F from such pairs is time con-
suming, but already feasible.

Glue Algorithms. Given a (3,5,n )-good graph G and a (4,4,m )-good graph H , a glue algorithm is one
that can find all (4,5,n +m +1)-good graphs F , such that for some vertex x V (F ) the graphs Gx and Hx
are isomorphic to G and H , respectively.

Similar approaches for reconstructing (3,l )-good graphs have been described in [MZ,RK], for
example. It is rather clear what has to be done but quite difficult to make it sufficiently efficient, and
the glue algorithm needed here poses probably the highest complexity requirements amongst them. We
have implemented two independent glue algorithms. One version roughly followed previous
approaches; the other is sketched below.

Sketches of a glue algorithm. Let v be a vertex of the graph F whose neighborhood induces the graph
G . The task of glue consists of deciding for each pair of vertices x , y , such that x V (G ) and
y V (H ), whether {x ,y } is an edge of F . There are nm such pairs, which is much too many for an
approach where each of them could be treated naturally as a 0-1 variable. The algorithms mentioned in
the previous paragraph, as well as one of our implementations, manipulate certain sets of such variables
as units, namely sets of edges with common vertex x V (G ) and the other endpoint in V (H ), let’s call
them cones with apex x , which can possibly appear in F . The second implementation considered as
elementary units regular sets of cones ; the following formalizes this concept.

Let LH be the lattice of all the subsets of V (H ), where the partial order is defined by inclusion.
If s S (i.e. s S V (H )) then LH (s ,S ) denotes the sublattice of LH formed by all u such that
s u S . The dimension of L = LH (s ,S ) is denoted by dim (L ) and is equal to | S | | s | . Note that L
has 2

dim (L )
elements, and each of them will be treated as a potential candidate for the base of a cone.

For any x V (G ), Reg (x ,s ,S ) is called a regular set of cones , and it contains all cones with apex x
and base in LH (s ,S ). For every u V (H ) let (u ) and (u ) denote the clique and independence
number of the subgraph of H induced by u . Assume that Ci and Ri , for 1 i 2, are a cone and a
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regular set of cones, such that Ci = (xi ,ui ), si ui Si and Ri = Reg (xi ,si ,Si ). Note that if the cones C 1
and C 2 appear in F , then if {x 1, x 2} is an edge of G then (s 1 s 2) 1, and if it is not an edge then

( S 1 S 2 ) 2. These conditions permit us to eliminate many possible pairs of cones by doing just one
test on the regular sets R 1 and R 2, since (u ) and (u ) are computed and stored just once for all
u LH . A recursive backtracking algorithm was implemented which assigns regular sets of cones to
vertices in G . If we consider only regular sets R = Reg (x ,s ,S ) with s =S , i.e. of dimension 0, this
approach is equivalent to simple cone manipulation. If the dimension of R is large (in which case
pruning is unlikely) we can easily split it into two regular sets of dimension one less. If the dimension
of the regular sets is kept at a moderate level, this algorithm outperforms previous approaches.

Table II contains the known exact values and best bounds for e (4,5,n ) and E (4,5,n ) we were
able to derive. The exact values were found by explicit enumeration. For the inexact values, the upper
bounds for E () and lower bounds for e () were obtained by optimizing the corresponding instances of
the system LP3, except that the bound E (4,5,26) 151 was obtained by the glue algorithm. The upper
bounds for e () and lower bounds for E () were established by constructing graphs; most of them can
probably be improved, except 116 and 132 for n = 24, which we believe to be the true values. We
currently know of over 300000 nonisomorphic (4,5,24)-good graphs, which were obtained by starting
with a smaller set made by the glue algorithm and by Exoo [Ex2] using simulated annealing, then
expanding that set by repeatedly taking induced subgraphs on 23 vertices and extending them back to
24 vertices in every possible way. None of these graphs extends to a (4,5,25)-good graph.

n e (4,5,n ) E (4,5,n ) n e (4,5,n ) E (4,5,n ) n e (4,5,n ) E (4,5,n )

6 2 12 13 17 53 20 66-71 98-105
7 3 16 14 22 60 21 75-83 103-114
8 4 21 15 27 66 22 86-93 113-122
9 6 27 16 32 72 23 98-104 121-130
10 8 33 17 41 79-81 24 109-116 132-138
11 10 40 18 48-50 84-90 25 123- -145
12 12 48 19 56-59 91-97 26 138- -151

Table II. Values and bounds for e (4,5,n ) and E (4,5,n ).

The two glue algorithms agreed on many positive constructions, and both claimed that there is no
(4,5,27)-good graph F for any of the 80 cases as in (a) and (b) above. Hence we have a new upper
bound R (4,5) 27. Our current glue implementations are not adequate for deciding in a reasonable time
whether R (4,5) 26, since there are many more than 80 cases and many are much harder. The number
of cases could be decreased (perhaps to 0) by the discovery of a strong system LP4 or by finer analysis
of the system LP3. A direct application of Theorem 1, as in [MR2], to the results from LP3 proves that
R (5,5) 52, i.e. 3 less than the 1971 bound of Walker [Wa2], who essentially used calculations
equivalent to LP1. We reported the bound R (5,5) 53 implied by LP2 in [MR2] shortly before con-
structing the system LP3. Similarly, the known values of E (3,6,n ) [MZ,RK], the lower bounds for
e (4,5,n ) in Table II and Theorem 1 improve the Walker’s upper bound R (4,6) 44 [Wa2] by one. Thus
we have:

Theorem 4:

R (4,5) 27, R (5,5) 52, and R (4,6) 43.
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3. General Algorithms and Other Combinatorial Configurations

In this section we briefly describe the most important algorithms used in this work. We would
like to stress their general applicability in the searches for other Ramsey graphs, and also for other
difficult combinatorial configurations like t -designs or covering set systems. A detailed knowledge of
(3,6)-good and (4,5)-good (thus also (5,4)-good) graphs forms a firm base for deeper study of (5,5)-good
and (4,6)-good graphs. All (3,6)-good graphs are known [MZ,RK], so we believe it is feasible to apply
our techniques to obtain further improvements of the upper bounds for the numbers R (5,5) and R (4,6).
Similarly, it also seems quite possible to improve all of the old, but not yet challenged, upper bounds
derived by Giraud [Gi] in 1969. The major components of the software used in this work consisted of:

Nauty. Nauty is a very efficient set of procedures written by the first author [Mc] for determining the
automorphism group of a graph, and optionally for canonically labeling it. Two graphs are isomorphic
iff they have identical canonically labeled isomorphs; thus nauty can be used as a tool to detect iso-
morphs amongst large families of graphs and, indirectly via graphs, in families of any reasonable finite
objects.

Constructing large instances of LP. Combinatorial theorems can often lead to systems of linear con-
straints of a size that depends on how fine a classification of subconfigurations we are willing to do. We
can handle hundreds of variables, which makes a dramatic difference when compared to the few vari-
ables involved in classical proofs. Natural programs build such systems as input to the LP software.

Solving ILP. There are many good real and integer linear programming software packages which are
publicly available, like LINDO [Sch] or MAPLE [CGGM], which were used in this work. We are also
experimenting with our own algorithms for optimizing systems of rational equations and/or inequalities.
They use existing real LP software for finding approximate optima, then "round" them to rationals, and
finally try to verify them rigorously as rational optima with a separate algorithm. Such a tool is very
useful in the search for integer optima.

Direct searches. If results of other techniques still admit an existence of a configuration searched for,
then we develop a specialized search algorithm for the remaining possibilities. Typically, the results of
LP provide a number of strong restrictions, which make such a search feasible. Some examples of algo-
rithms of this kind are presented in [MZ,MR1], as well as the glue algorithm described in Section 2.
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