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Abstract—With the continuous growth of cyberinfras-
tructure throughout modern society, the need for secure
computing and communication is more important than
ever before. As a result, there is also an increasing need
for entry-level developers who are capable of designing and
building practical solutions for systems with stringent secu-
rity requirements. This calls for careful attention to algo-
rithm choice and implementation method, as well as trade-
offs between hardware and software implementations. This
paper describes motivation and efforts taken by three de-
partments at Rochester Institute of Technology (Computer
Engineering, Computer Science and Software Engineering)
that were focused on creating a multi-disciplinary course
that integrates the algorithmic, engineering, and practical
aspects of security as exemplified by applied cryptography.
In particular, the paper presents the structure of this new
course, covered topics, lab tools and results from the first
two spring quarter offerings in 2011 and 2012.

Index Terms—Security-Oriented Curriculum, Cyberse-
curity Education, Multi-Disciplinary Applied Cryptogra-
phy, Hardware and Software Design

I. INTRODUCTION

With the growth and pervasiveness of cyberin-
frastructure in modern society, secure computing
and communication have become critically impor-
tant. Sample applications with important security
requirements include e-commerce, voice/video com-
munications, secure databases, and financial market
transactions. In addition, there is a growing trend to-
ward integrating security into many different points
of the information technology infrastructure, such
as embedding in disk drives, processors (e.g., built-
in encryption/decryption), trusted system boards,
network switching elements, mobile devices, and
sensors. All of these points require careful attention
to algorithm choice and implementation method,
and trade-offs between software and hardware. The

development of such systems requires a population
of entry-level developers who have the knowledge
and skills needed to design them. One of the key el-
ements of this is an understanding of cryptographic
algorithms and their implementation.

In a typical approach, the study of cryptography
and security in undergraduate computing programs
focuses primarily on the mathematical aspects of
cryptography, which unfortunately gives students
fundamental theory but not practical implementa-
tion experience. To gain the necessary knowledge
and skills, a student must learn concepts from
the multiple disciplines of computer engineering,
computer science, and software engineering, as each
of them play a significant role in different aspects
of secure computing and communications, which
is schematically presented in Figure 1. This is not
done in standard undergraduate computing curric-
ula. Computer engineering students usually learn
how to design general purpose digital systems, but
they lack the knowledge related to the design of spe-
cialized cryptographic circuits and optimizations of
hardware-software co-designs. Those students who
may do some cryptographic design might construct
a hardware implementation of a particular algorithm
without knowing the fundamental theory on which it
is based. Computer science and software engineer-
ing students study cryptographic algorithms mostly
as a mathematical exercise with some software
implementation. They rarely investigate the perfor-
mance of their implementations and are usually not
familiar with software optimizations or hardware
implementations. In many applications, implemen-
tation aspects are crucial because of the complexity
of cryptographic algorithms. This is especially true
since they may operate upon data from a streaming
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Fig. 1. The multi-disciplinary relationship that served as the basis
for the new course draws from the fields of computer engineering,
computer science, and software engineering.

communications channel, with a constrained power
budget, or in an environment where side-channel
attacks can be exploited to compromise the system.

Our review of the coursework available at other
institutions found only a few examples of courses
that have content which crosses disciplines, and
none have the comprehensive, integrated approach.
Two examples would be graduate-level courses in
the Electrical and Computer Engineering Depart-
ments at Worcester Polytechnic Institute [1] and
at Virginia Tech [2]. Realizing this, the authors of
this paper developed and introduced a new multi-
disciplinary course entitled “Hardware and Software
Design for Cryptographic Applications”.

The design of this course, focused on under-
graduate students, emphasizes active learning ped-
agogy [3] [4] [5]. This pedagogy strives to im-
mediately engage students with the material being
covered through hands-on exercises during class
time rather than being primarily lecture-based with
other learning activities occurring only outside of
the class. Within this course, team assignments and
projects require implementations of selected crypto-
graphic primitives. Such implementations are then
followed by an in-depth comparison and contrast
of various implementation alternatives, including
software, custom Field Programmable Gate Array
(FPGA) hardware, and hybrid hardware-software.
This crosses three disciplines to span the range of
skills from fundamental theory to practical software

and hardware implementations.
This course uses the multi-disciplinary approach

which Vallino and Czernikowski [6] [7] showed
was effective for teaching courses in real-time and
embedded systems. To the extent possible, student
teams are composed of one computer engineering
student and one software engineering or computer
science student. Computer engineering students lead
the hardware design portions of each project, while
software engineering and computer science students
lead the software development portions. The breadth
of material dispersed throughout the course covers
many different aspects of software and hardware
development and revisits the mathematical theory
behind their designs. Such structure provides stu-
dents with ample opportunity to reinforce the fun-
damental concepts taught in lectures with hands-on
exercises conducted in a studio setting. The course
is organized to fit a quarter system with 10 weeks
of classes.

This course emphasizes learning through hands-
on exercises, with team assignments and projects
requiring implementations of selected cryptographic
primitives. Such implementations are then followed
by an in-depth comparison and contrast of vari-
ous implementation alternatives, including software,
custom Field Programmable Gate Array (FPGA)
hardware, and hybrid hardware-software. This al-
lows to cross three disciplines to span the range of
skills from fundamental theory to practical software
and hardware implementations. Student teams in
our course are ideally composed of one computer
engineering student and one software engineering
or computer science student. Computer engineering
students lead the hardware design portions of each
project, while software engineering and computer
science students lead the software development por-
tions.

Although many different cryptographic primitives
were incorporated into the lectures, the primary
focus was on the Advanced Encryption Standard
(AES) and the SHA-3 hash function candidates.
The AES was a clear candidate for study due to its
status as the leading block cipher after its selection
by NIST in 2001 [8]. Similarly, the SHA-3 hash
function finalist candidates were investigated for
the course project because of their importance for
the cybersecurity community, and the large amount
of readily available material associated with the
NIST competition [9] [10]. The different trade-
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offs that exist between the candidate functions pro-
vided students with a realistic perspective on the
challenges faced when designing and implementing
these algorithms.

The development platform was the Xilinx ML-
507 evaluation board. It comes equipped with the
Virtex-5 FXT FPGA device, which combines an
embedded PowerPC 440 processor and reconfig-
urable fabric on a single chip. Like most modern
FPGAs, this device is also capable of running soft-
core processors within the FPGA resources. The
whole platform was well-suited for all practical
assignments due to the large number of available
logic cells and external memory, both of which gave
the students more freedom when experimenting with
various software and hardware designs.

This paper first describes the structure of the new
course. It then enumerates the sequence of in-class
lectures and laboratory exercises, including selec-
tion criteria for course topics, tools, techniques, and
development methodologies used to illustrate these
concepts. Lastly, potential modifications are iden-
tified from the experiences developing the course,
presenting the material in class, and the feedback
received from the students who participated. This
feedback is also presented and analyzed as a means
of quantifying the course learning objectives and
outcomes.

II. COURSE STRUCTURE

At a high level, there are four different areas of
material covered in this course: 1) cryptographic
foundations, 2) FPGA-based embedded systems, 3)
embedded software development and optimization,
and 4) hardware and hardware-software co-design
and development.

The complete progression of the course for 10
weeks of classes with 4 contact hours per week
is shown in Figure 2, where each week typically
consists of one lecture and one lab assignment. This
can be varied based on student prerequisites for the
course and the outcome learning objectives.

A. Layered Progression
The ultimate goal of the course is to teach stu-

dents about various aspects of applied cryptography
using a layered approach, in which each layer
contains more implementation abstractions and less
algorithmic details than its successor. The base

for this layered structure was defined by taking
the different backgrounds of the target students
into consideration. In our case, this meant that the
course started with software-oriented exercises and
gradually moved elements of these solutions into
hardware. At each step, more algorithmic details are
unveiled to the students as they experimented with
different implementation techniques. This created a
natural progression for the material taught in the
course where each specific implementation drew
from the design of its predecessor.

The following list presents the consecutive im-
plementations of the core AES algorithm as the
course progressed through the various layers (see
also Figure 5):

• Software-only implementation based on a di-
rect translation of the mathematical operations
in the cipher algorithm [8]. The focus was on
code readability and maintainability.

• Optimized version of the AES based on the T-
box design [11] with further performance im-
provements based on loop manipulation, data
size adjustment, and function inlining.

• Hardware-software implementation using the
Impulse C development tool. This version was
a direct translation of the unoptimized version
of the AES with no focus on performance
degradation due to pointer manipulation, mem-
ory usage, loop sizes, and data types.

• Optimized version of hardware-software imple-
mentation of the AES developed with Impulse
C, where the details of the underlying commu-
nication buses and available memory resources
were taken into account to reduce the overall
cycle count.

• All hardware implementation of the AES with
a folded register architecture (amounting in a
32-bit data path) [12].

All software was written using the C pro-
gramming language and hardware was modeled
using Very-high-speed integrated circuits Hard-
ware Description Language (VHDL). In addition,
a hardware-software co-design methodology was
practiced using Impulse C, which is a specialized
subset of the C programming language intended for
rapid hardware and hardware-software development
using a C-to-FPGA compilation engine [13].

In both offerings of this course, improving student
understanding of the cryptographic algorithms and
different implementation techniques by removing
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high-level abstractions paved the way for each new
implementation of the AES. As part of each im-
plementation exercise, students were required to
analyze their work from performance gain and asso-
ciated cost perspectives. This was a necessary step
to understand the balancing act that exists between
development time and effort, design complexity and
code readability, implementation cost (source code
size and circuit area), and performance improve-
ments.

B. Breadth of Material

1) Cryptographic Foundations: From a crypto-
graphic standpoint, the focus of the course was on
block ciphers and hash function implementations
in both software and on FPGA-based embedded
systems. The AES has been, and continues to be,
the subject of intense research in large part focusing
on software and hardware optimization efforts, and
resistance to side-channel attacks, all of which tie
in with the underlying theme of this course.

In addition to the AES algorithm itself, students
were also introduced to various NIST-recommended
modes of operation for block ciphers. The following
list enumerates these modes and how they contribute
to the security properties of block ciphers [14], [15],
[16], [17], [18], [19].

• Confidentiality - Electronic Code Book (ECB),
Cipher Block Chaining (CBC), Cipher Feed-
back (CFB), Output Feedback (OFB), Counter
(CTR), Ciphertext Stealing for CBC mode.

• Authentication - Cipher Block Chaining Mes-
sage Authentication Code (CBC-MAC).

• Confidentiality and Authentication - CBC-
MAC with Counter, or Galois/Counter Mode
(GCM).

• Confidentiality on Storage Devices - Tweakable
encryption XOR-Encrypt-XOR (XEX), XEX-
based tweaked Code Book with Ciphertext
Stealing (XTS).

For a practical assignment, the focus was mainly
on the Galois/Counter Mode mode of operation in
order to study both data confidentiality and au-
thentication. Given that the students were already
familiar with the mathematical and algorithm design
background concepts from previous lectures and as-
signments, the integration of this mode of operation
was relatively seamless. The culmination of this

material resulted in a software implementation of
the core AES-GCM.

Following a similar mindset, the course project
was based upon the SHA-3 hash function compe-
tition. This exposed students to hash functions as
another class of cryptographic primitives. It also
prepared them for the undoubtedly large integration
effort in which existing hash functions will be
replaced by the soon-to-be-selected SHA-3 winner.

Various topics on public-key cryptography, in-
cluding RSA, ElGamal, and elliptic curve cryp-
tosystems [20], were also integrated into the course
schedule. These served to emphasize the need for
security through cryptography and the applicability
of cryptographic primitives in the real world. It
was also necessary to cover the basic mathemat-
ical properties and operations that are utilized in
such designs in order for the students to grasp
the specific details of these algorithms. This part
of material was largely focused on binary field
arithmetic (specifically, Galois fields GF(28) and
GF(2128)). The properties of finite fields and related
operations were discussed in class. The students
were left to explore these ideas in more detail as
part of an exercise where they had to implement a
library of finite field functions. In addition to basic
addition, subtraction, and multiplication operations,
the students were asked to implement functions to
find the multiplicative inverses using the extended
Euclidean Algorithm [20], and generators of the
field.

2) FPGA-Based Embedded Systems: A portion
of the course was devoted to the discussion of
FPGA-based embedded systems. Due to the in-
herent co-existence of hardware and software in
these systems, as well as the numerous performance,
power, and size constraints they face. They are
particularly useful for cryptographic applications
because they provide the following:

• Algorithm acceleration with spatial (parallel)
computing in FPGA fabric.

• Flexibility of processor-based computing using
high-level software tools.

• Tightly coupled hardware and software do-
mains for performance and flexibility benefits.
A more in depth treatment of this benefit was
described by [21] [22].

In order to familiarize the students with this
platform the first two lab exercises served to intro-
duce the basic design flow and techniques for using
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Fig. 2. Weekly progression of the course lecture material and lab exercises. Special topics include an overview of public-key cryptosystems,
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Fig. 3. General structure of the embedded system developed by the
students. Components surrounded by dashed lines indicate that they
are optional and are not required for normal system operation.

FPGA-based embedded systems. These exercises
included working with the Xilinx Platform Studio
(XPS) and Embedded Development Kit (EDK) to
create multiple configurations with both the hard-
core PowerPC and soft-core MicroBlaze processors
and run sample test applications. Additionally, the
students were shown how to add custom IP (In-
tellectual Property) components to their configura-
tions, including timers, counters, and an interrupt
controller, which were later used to profile software
applications using a simple cycle-based measure.

3) Embedded Software Development and Opti-
mization: From an implementation standpoint, the
focus was on translating cryptographic algorithms
and designs into running software and hardware,
profiling and analyzing these implementations, and

taking further actions to improve their performance.
The optimization efforts were centered around the

standard closed loop optimization cycle, as depicted
in Figure 4. To identify the performance bottlenecks
in the original AES implementation, the students
used a counter for simple cycle-based measurements
and the GNU profiling tool gprof to analyze the
source code at runtime, with and without the in-
struction and data caches enabled.

This analysis exposed students to the performance
critical sections of the core AES algorithm. As part
of unveiling the next implementation layer in the
course the students exercised this knowledge by
conducting both code-level refactoring and design-
level modifications to optimize the software. These
optimizations were primarily focused on basic code
restructuring techniques with emphasis on the target
platform. These implementation-specific techniques
included:

• loop manipulation,
• replacing finite field arithmetic operations with

lookup tables (LUTs),
• function inlining,
• data type resizing and data structure refactor-

ing.
In addition to these optimizations, the students

also explored the T-table design for AES, which
exploits the independence between the SubBytes,
ShiftRows, and MixColumns operations in the ci-
pher. This allowed them to be combined into four
different 1024 byte lookup tables, each one repre-
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Fig. 4. The standard closed loop optimization cycle that is followed
to incrementally improve performance of software and hardware
applications.

senting the result of the operations on a 32-bit word
in the internal state array. Using these tables the
students reduced an entire round of encryption (and
decryption) to a series of table lookups and XOR
operations, which greatly improved the performance
of their software implementations at the cost of
application size.

4) Hardware and Hardware-Software Design
and Development: The next phase was to port the
existing software implementations to a hardware-
software project. This served as the students’ first
exposure to custom hardware accelerator versions
of the core AES algorithm. To facilitate the ini-
tial hardware and hardware-software development,
Impulse C, a C-to-FPGA programming model and
compilation engine that promotes rapid prototyp-
ing of digital hardware using a subset of the C
programming language was introduced. Using Im-
pulse C as an efficient tool in the development
of hardware systems by software oriented students
was studied by [22]. In this course students used
it to transform their existing software designs for
AES to hybrid hardware-software solutions that
performed at significantly higher levels. This was
a two-fold process that first consisted of abstracting
the AES encryption routine as a single hardware
process that was driven by two software processes,
as shown in Figure 5. The producer software process
was responsible for feeding the encryption process
with plaintext and key data. Once encrypted, the
ciphertext was streamed to the consumer process.

TABLE I
AES IMPLEMENTATION PERFORMANCE GAINS.

Implementation type Relative performance
Unoptimized software 1.0
Optimized software 5.6
Unoptimized Impulse C 128.6
Optimized Impulse C 137.2

After the students became familiar with the Im-
pulse C programming model and the C-to-VHDL
compilation process, the next step was to analyze
and optimize the existing implementation for im-
proved throughput. This included using a variety
of techniques, shown below, that exploit the code
generation stages of the Impulse C compiler.

• Change the size of the streaming interfaces to
match the width of the data transfer bus to
improve consumption rates.

• Modify the size of the data types in arrays to
make full use of the PLB for memory fetches.

• Replace arrays with local variables where pos-
sible to reduce external memory reads.

• Split up arrays into smaller constituent arrays
to parallelize memory accesses to make use of
multiple memory channels.

• Modify loops to experiment with both im-
proved parallelism and reduced code size.

• Pipeline blocks of code where possible to im-
prove throughput.

Using the optimized Impulse C tool students
were able to achieve a speedup of 137.2 from the
original software implementation using the PLB for
communication, as shown in Table I. The overhead
of software and hardware process communication
was the ultimate bottleneck in the solution, as the
bandwidth of the PLB only allowed for so much
data to be transferred every clock cycle. Future
course offerings will transition from a dependency
on the PLB to the Fast Simplex Link (FSL) for
communication with custom hardare accelerators.
As part of this shift, students were asked to ex-
periment with both the PLB and FSL in their
lab exercises. Preliminary performance results from
these are detailed in Table I.

It is important to recognize that the C-to-FPGA
translation process was also a limiting factor in the
performance of the solution. Since Impulse C is
simply another abstraction layer on top of a cus-
tom HDL implementation, the compilation process
generates code according to a generic template.
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Fig. 5. The incremental development versions of AES that were studied throughout the course. The left box depicts the original software
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hardware accelerated version of AES, where the software was only responsible for driving the internal logic of the hardware component.
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platform.

Typically, the resulting code will not be as concise
or efficient as if it were manually modeled and then
synthesized.

The next and final stage in the development cycle
focused on customized hardware accelerators for
the AES encryption engine. This required an under-
standing of basic hardware modelling and digital
design concepts. The difficulty of this part of the
course is that it had to be tailored towards software-
oriented students, who might lack the computer
and electrical engineering background that other
students possessed. To account for such students,
a single class was dedicated to VHDL syntax,
development practices, and modelling techniques.
This was done in order to provide them with enough
information to at least interpret and understand
VHDL code.

Once the students became acquainted with hard-
ware modelling techniques and design flows, they
were provided with a working implementation of the
AES engine. A high-level design of this module is

shown in Figure 6. After verifying the functionality
of this model using a provided testbench, the stu-
dents were asked to modify redesign the architecture
using a folded register scheme in order to shorten
the width of the data path.

Putting all of these stages together, the overall
flow of the AES implementations throughout the
course is depicted in Figure 5.

C. Course Project

The SHA-3 hash function candidates were chosen
as the basis for the course project because of their
importance in the study and practice of cybersecu-
rity [9].

With the results of the SHA-3 competition still
pending, hash function research efforts continued
with the five finalist functions (BLAKE, Grøstl,
JH, Keccak, and Skein [10]). Given the importance
of selecting the candidate that provides the best
combination of security, performance, simplicity,
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and modularity, many teams across the world have
focused on the mathematical and statistical proper-
ties, and the implementation efficiency of these five
hash functions.

For the purpose of the project, the students were
divided into five teams; each one focusing on a
single SHA-3 finalist. The term-long project had
four major parts culminating with a research paper
and presentation by each team. The highlights of
each part were:

1) Researching the history of hash functions, the
current standard hash functions, and recent
advancements in cryptanalysis efforts that tar-
get hash functions.

2) Discussing the internal algorithmic details of
the teams hash function, which served as a
basis for the remaining parts of the project.

3) Analyzing published research efforts on the
design, implementation and performance of
the hash function.

4) Implementing the hash function in software
using the publicly available resources pro-
vided by each SHA-3 candidate team.

In order for students to have a common baseline
for comparison of their results, all teams imple-
mented the 512-bit digest versions of their hash
functions. All teams quantified the performance
of their implementations by collecting cycles/byte

measurements on fixed sized messages.
Now, with Keccak announced as the winner [23],

we anticipate more attention in our courses will be
devoted to this particular algorithm.

III. STUDENT IMPACT

In order to assess achievement of the course
learning objectives and outcomes, an anonymous
survey was administrated to the students at the end
of the course, to which 21 answers were received.
The main results are summarized in Tables II
and III, which indicate an overwhelming agreement
that this new course successfully completed all
specified goals. The following are some exemplary
quotes from students that illustrate their support
and approval of this new course.

The course material was diverse enough for the
various disciplines and covered a great deal of
material.

It has opened my eyes to more topics that are
commonly discussed in industry. I am interested
in obtaining a Ph.D. in the field of computer
security, and this course plays right into the
research and materials I am interested in.
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I think demonstrating hardware/software co-
design is very valuable to students since this
is such a common team configuration in the
industry. This will help to develop practical
skills.

I think the most difficult thing will be taking
all the prerequisites - the value of this course
could be immense if everyone came into the
class with a strong background in crypto, and
both hardware and software design.

A few auxiliary questions were asked in the sur-
vey in order to measure student’s general interests
in applied cryptography, their self-assessment on
background preparation, and achievements in this
course. Selected results referring to this part of the
survey are presented in Table IV.

In the second offering of the course in the spring
quarter of 2012, we also included a longitudinal
test that quantitatively assessed general knowledge
acquired throughout the term. Questions were drawn
from the areas of cryptographic foundations, FPGA-
based embedded systems, and high-level synthesis.
This test was administered at both the begining and
end of the course. Tables V and VI present the
results that were collected.

We performed a 1-tailed paired difference t-test
analysis on the sample of 13 students. Our analysis
indicated that there was a statistically significant
increase in knowledge acquisition for all question
groups, with a p-value less than 0.005, based on
the pre- test and post-test mean scores derived from
the data in Table V. In calculating the mean, unan-
swered questions were treated as incorrect answers.
Our result can easily be seen in the raw data shown
in Table VI by observing the three-fold decrease in
unanswered and incorrect questions from 141 to 45,
and approximately a doubling of correct answers
from 68 to 122. Also, there was a clear lack of
knowledge in high-level synthesis and cryptography,
as shown by the large cluster of unanswered ques-
tions from these two categories in the perliminary
test. However, as the results show, knowledge in
these areas showed a three-fold decrease from 96
unanswered and incorrect answers to 34 unanswered
and incorrect answers.

IV. DISCUSSION

Our students have particularly varied back-
grounds because they are coming from different
departments. The balance of different components
of our course can be adjusted to take into account
specific needs of enrolled students. For example,
computer engineering students may need more ma-
terial on cryptography whereas software engineering
and computer science students almost certainly will
require more extensive lectures and practice on
hardware implementations. Additional material on
cryptography could include more thorough treat-
ment of number theoretic foundations or complexity
theory considerations in relation to the security
cryptographic primitives. Extended hardware per-
spectives for software-oriented students might en-
compass more time dedicated to high-level synthesis
tools and methodologies, custom digital logic design
with hardware description languages, and target
implementation platforms.

The project activity of the initiative described
in this paper is based on the finalist SHA-3 hash
function candidates. With the announcement of Kec-
cak [24] as the winner of the SHA-3 competition
on October 2, 2012 [23], it will be natural to
shift more of the focus of the material of this
course towards this algorithm. The current Digital
Signature Standard (DSS) uses as its component the
SHA-1 hashing, whose security has been questioned
[9] [10] and has different message digest length
from SHA-3. Thus, we expect that in the near
future there will be intense discussion and perhaps
even similar competition organized to propose and
introduce new standards for cryptographic digital
signatures. In such a case we would like to follow
such developments in our course by refocusing the
project activity towards signatures.

V. CONCLUSION

This course was developed as part of a new
security-oriented curriculum that draws from the
fields of computer science, computer engineering,
and software engineering. The main goal was to
accommodate a mixture of computer engineering,
software engineering, and computer science students
by teaching them about the theoretical and practical
aspects of developing implementations of crypto-
graphic primitives, such as block ciphers and hash
functions. The focus was on the standardized AES
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TABLE II
COURSE LEARNING OBJECTIVES QUANTIFIED FROM STUDENT SURVEY.

Learning objective Strongly agree Agree Undecided Disagree Strongly disagree
Provide knowledge and understanding for design and
implementation of cryptographic primitives on FPGA-based
embedded systems. 52% 48% 0% 0% 0%
Provide knowledge and understanding of
hardware/software co-design methodologies and techniques. 48% 52% 0% 0% 0%

TABLE III
MEASURABLE LEARNING OUTCOMES QUANTIFIED FROM STUDENT SURVEY.

Learning outcome Strongly agree Agree Undecided Disagree Strongly disagree
Students have successfully customized and implemented an
FPGA based embedded processor system; students understand
how to configure linker scripts and build software projects
for cryptographic primitives. 67.0% 33.0% 0.0% 0.0% 0.0%
Students know how to profile software applications to identify
performance bottlenecks. Students have successfully optimized a
software application to improve performance; students have
analyzed cost in terms of the application size. 47.6% 47.6% 4.8% 0.0% 0.0%
Students have successfully performed high level synthesis
from C programs to FPGA hardware; students have analyzed
performance improvement in a hardware/software system. 57.1% 38.1% 0.0% 0.0% 4.8%
Students have successfully implemented a custom hardware
accelerator for selected architecture to achieve desired
performance in cost and area. 52.4% 47.6% 0.0% 0.0% 0.0%

TABLE IV
SELECTED AUXILIARY QUESTIONS. THE ENTRY MARKED ⇤ INDICATES NO REPLIES WERE GIVEN FOR THE CORRESPONDING QUESTION,

NOT EXPLICIT DISAGREEMENT.

Question Strongly agree Agree Undecided Disagree Strongly disagree
The amount I learned was worth the time invested in this
course. 52.4% 28.6% 19.0% 0.0% 0.0%
My preparation was adequate for taking this course. 52.4% 38.1% 4.8% 4.8% 0.0%
I would recommend to a friend to take this course as an
elective. 52.4% 38.1% 9.5% 0.0% 0.0%
This course increased my interest in computer security. 23.8% 47.6% 23.8% 0.0% 4.8%⇤

I plan to seek employment in the computer security area. 9.5% 4.8% 52.4% 23.8% 9.5%

TABLE V
INDIVIDUAL STUDENT SCORES GATHERED FROM THE PRE-TEST AND POST-TEST. OUT OF 15 TOTAL STUDENTS IN THE CLASS, 12

PROVIDED BOTH SETS OF DATA.

Pre-Test Post-Test Score Data
Correct Incorrect Unanswered Correct Incorrect Unanswered Pre-Test Scores Post-Test Scores Score Differences

4 2 8 12 0 2 28.57 85.71 57.14
7 2 5 11 2 1 50.00 78.57 28.57
5 2 7 12 1 1 35.71 85.71 50.00
3 1 10 12 0 2 21.43 85.71 64.28
7 2 5 11 1 2 50.00 78.57 28.57
6 0 8 12 0 2 42.86 85.71 42.85
3 2 9 6 5 3 21.43 42.86 21.43
1 4 9 3 2 8 7.14 21.43 14.29
6 6 2 12 2 0 42.86 85.71 42.85
4 0 10 9 0 5 28.57 64.29 35.72
6 2 6 11 2 1 42.86 78.57 35.71
6 3 5 11 3 0 42.86 78.57 35.71

Christopher Wood
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TABLE VI
QUANTITATIVE RESULTS FROM PRE- AND POST-TESTS ADMINISTERED IN THE SECOND OFFERING OF THE COURSE. THE TABLE ENTRIES

ARE AGGREGATE SUMS OVER ALL COLLECTED TESTS.

Pre-Test Post-Test Question SubjectCorrect Incorrect Unanswered Correct Incorrect Unanswered
44 14 31 61 3 8 FPGA-based embedded systems
6 11 28 20 8 7 High-level synthesis

18 7 50 41 7 12 Cryptography

algorithm for the majority of the lecture and lab
material, and the SHA-3 hash function competition
for the course project.

The material provided to students, both in class
and in the lab exercises, covers a number of differ-
ent topics, including theoretical background for the
chosen cryptographic primitives, FPGA-based em-
bedded system platforms and components, software
implementation and optimization, and hardware ac-
celerators design and modelling. Several engineer-
ing tools have been introduced for use throughout
the course, including the Xilinx Platform Studio and
Embedded Development Kit, gprof, and Impulse C.

Organizing the course material to represent an in-
cremental structure proved to be an effective method
for reinforcing the content provided in class lec-
tures. This was reflected in the quantitative results
taken from the student impact survey. The course
learning outcomes and objectives were achieved
while covering a wide breadth of material within
the time constraints of a 10-week term.

Future offerings of this course will more em-
phasize on aspects of custom and secure hardware
design, including side-channel attacks and counter-
measure methods.
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