Use of Max-Cut Algorithms in a Ramsey Arrowing Problem

Alexander Lange¹, Stanisław Radziszowski¹, Xiaodong Xu²

¹Department of Computer Science Rochester Institute of Technology, NY, USA

> ²Guangxi Academy of Sciences Nanning, Guangxi, China

25th Cumberland Conference Johnson City, TN May 12, 2012

History of $F_e(3, 3; 4)$

What is the smallest order n of a K_4 -free graph that is not a union of two triangle-free graphs?

- 1967 Erdős and Hajnal introduce the problem
- 1970 Folkman proves existence theorem
- 1975 Erdős offers \$100 for proving whether or not $F_e(3,3;4) < 10^{10}$
- 1988 Spencer gives a probabilistic proof for the bound 3×10^8 . One year later, Hovey finds mistake and shows the bound to be 3×10^9
- 2007 Lu: $F_e(3,3;4) \le 9697$
- 2008 Dudek and Rödl: $F_e(3, 3; 4) \le 941$
- 2012 This work: $F_e(3,3;4) \le 786$

Folkman Graphs and Numbers

For graphs F, G, H and positive integers s, t

- ► $F \rightarrow (s, t)^e$ iff for every 2-coloring of the edges F, there is a monochromatic K_s in the first color or K_t in the second
- ► $F \rightarrow (G, H)^e$ iff for every 2-coloring of the edges of *F*, there is a copy of *G* in the first color or a copy of *H* in the second

edge Folkman graphs

 $\mathcal{F}_e(s,t;k) = \{G \to (s,t)^e, K_k \not\subseteq G\}$

edge Folkman numbers

 $F_e(s, t; k)$ = the smallest *n* such that an *n*-vertex graph *G* is in $\mathcal{F}_e(s, t; k)$

Theorem: (Folkman 1970)

For all $k > \max(s, t)$, $F_e(s, t; k)$ and $F_v(s, t; k)$ exist.

Relation to Ramsey Numbers

 $R(s,t) = \min\{n \mid K_n \to (s,t)^e\}$

Counting Triangles

For any blue-red coloring of graph *G*,

- T_{BB}(v), T_{RR}(v), and T_{BR}(v) counts triangles vuw where (v, u) and (v, w) are colored blue-blue, red-red, and blue-red
- T_{blue}, T_{red}, and T_{bluered} count the number of blue, red and blue-red triangles

Then,

•
$$\sum_{v \in V(G)} T_{\mathsf{BR}}(v) = 2T_{\mathsf{bluered}}$$

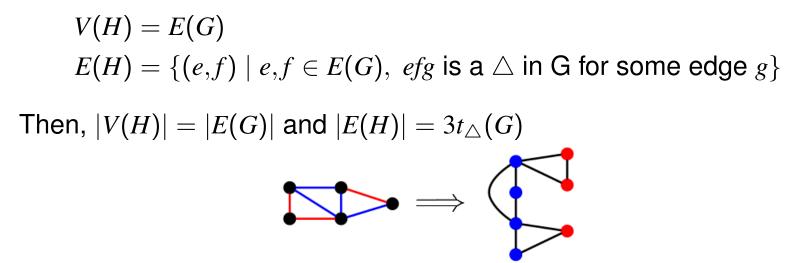
 $\blacktriangleright \sum_{v \in V(G)} \left(T_{\mathsf{BB}}(v) + T_{\mathsf{RR}}(v) \right) = 3(T_{\mathsf{blue}} + T_{\mathsf{red}}) + T_{\mathsf{bluered}}$

 $G
ightarrow (3,3)^e$ iff, for every coloring,

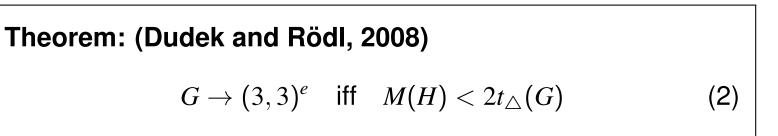
$$\sum_{v \in V(G)} T_{\mathsf{BR}}(v) < 2 \sum_{v \in V(G)} \left(T_{\mathsf{BB}}(v) + T_{\mathsf{RR}}(v) \right)$$
(1)

From Arrowing to Max-Cut

Define graph *H*



Let M(H) be the **Maximum Cut** of H.



Max-Cut Problem and Approximations

MAX CUT(H, k)

Given graph *H* and integer *k*, is there a cut $M_S(H)$ so that $M_s(H) \ge k$?

One of Karp's original NP-complete problems (Karp 1972)

Based on this decision problem,

$$G \rightarrow (3,3)^e$$
 iff MAXCUT $(H, 2t_{\triangle}(G)) = NO$

Can we approximate an upper bound to show arrowing?

Approach 1: Minimum Eigenvalue

Proposition: (Alon, 1996)

$$M(H) \leq rac{|E(H)|}{2} - rac{\lambda_{\min}|V(H)|}{4}$$

Dudek-Rödl Technique

For graph *G*, construct graph *H* where *E*(*G*) = *V*(*H*) and *E*(*H*) = {(*e*,*f*) | *e*,*f* ∈ *E*(*G*), *efg* is a △ in G for some edge *g*}
 Let

$$\alpha = \frac{|E(H)|}{2} - \frac{\lambda_{\min}(H)|V(H)}{4}$$
$$\beta = 2t_{\triangle}(G)$$

3. If $\alpha < \beta$ then $G \rightarrow (3,3)^e$

$F_e(3,3;4) \le 941$

Define circulant graph G(n, r) as

- ► $V(G) = \mathbb{Z}_n$
- $\blacktriangleright E(G) = \{(x, y) | x y = \alpha^r \mod n\}$

Closeness
$$\rho = \frac{\alpha - \beta}{\alpha}$$

n	r	ρ	
127	3	0.0309	
281	4	0.0423	
457	4	0.0304	
571	5	0.0441	
701	5	0.0295	
937	6	0.0485	
941	5	-0.0127	

Graph with 860 vertices yields $\rho = -0.000056$

Approach 2: Goemans-Williamson Approximation

- Published in 1995
- Randomized approximation algorithm
- Expected value is at least $\alpha_{GW} \approx .87856$ times the optimal value
 - First improvement on the 1/2 constant from Sahni-Gonzales
- Relaxes the problem to a semidefinite program
 - First use of semidefinite programming in approximation algorithms
- Khot, Kindler and Mossel (2005): Assuming the Unique Games Conjecture and P \ne NP, Goemans-Williamson approximation algorithm is optimal

Main Idea

Given graph with $V = \{1, ..., n\}$ and nonnegative weights $w_{i,j}$ for each pair of vertices (no edge = 0), we can write M(G) as the integer quadratic program

Maximize
$$\frac{1}{2} \sum_{i < j} w_{i,j} (1 - y_i y_j)$$
 (3)

subject to: $y_i \in \{-1, 1\} \quad \forall i \in V$

Cut $S = \{i \mid y_i = 1\}$

We can relax some of the constraints of (3) and, specifically, extend the function to a larger space

- Extend y_i to $\mathbf{v}_i \in \mathbb{R}^n$ such that $\|\mathbf{v}_i\| = 1$
- Replace $y_i y_j$ with $\mathbf{v}_i \cdot \mathbf{v}_j$
- For matrix $Y = X^T X$, let $y_{ii} = 1$ and the *i*th column of $X = \mathbf{v}_i$.

New semidefinite program for symmetric matrix *Y*:

Maximize
$$\frac{1}{2} \sum_{i < j} w_{i,j} (1 - y_{ij})$$
 (4)
subject to: $y_{ii} = 1 \quad \forall i \in V$
 $Y \succeq 0$

The Algorithm

- 1. Solve (4) using an SDP solver (This is all we need!)
- 2. Decompose solution *Y* into $X^T X$ where $X = (\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n})$ using Cholesky decomposition
- 3. Choose random, uniformally distributed vector ${\bf r}$
- $\mathbf{4.} \ S = \{i \mid \mathbf{v}_i \cdot \mathbf{r} \ge 0\}$

$F_e(3,3;4) \leq 786$

Define graph L(n, s) as follows:

- $\blacktriangleright V(L(n,s)) = \mathbb{Z}_n$
- $E(L(n,s)) = \{(u,v) \mid u \neq v \text{ and } u v \equiv s^i \mod n \text{ for some} i \in \{0, 1, 2, \dots, m-1\}\}$, where *m* is the smallest positive integer such that $s^m \equiv 1 \mod n$.

Let L_{786} be L(785, 53) with one additional vertex connected to 60 of the original vertices.

SDPLR-MC, SDPLR, SBmethod, and SpeeDP all give an upper bound of at most 857753.

$$M(H(L_{786})) \le 857753 < 2t_{\triangle}(L_{786}) = 857762.$$

Therefore, $L_{786} \rightarrow (3,3)^e$ and $F_e(3,3;4) \le 786$.

Moving Forward *G*(127, 3)

Conjecture: $G(127,3) \rightarrow (3,3)^e$

- Resilient to SAT, Dudek-Rödl and Goemans-Williamson
- Other techniques: MaxSAT approximation, simulated annealing?

Ideas:

- Adding edges to G(127,3)
- Removing edges from G(127,3)
- Embedding G(127, 3) multiple times

Moving Forward

Minimum Eigenvalue vs. Goemans-Williamson

- Testing shows that Goemans-Williamson often provides better bounds
- However, MATLAB's eigs can handle larger instances
- Both can fail easy instances (all $F_e(3,3;5)$ graphs)

	MinEigs	SDP
K_6	Pass	Pass
$K_{3} + C_{5}$	Fail	Fail
$K_4 + C_5$	Fail	Pass

Other Max-Cut methods?

- Directly solve integer program
- Rendl, Rinaldi, Wiegele: Solving Max-Cut to Optimality by Intersecting Semidefinite and Polyhedral Relaxations

Thank you!

16/16 Moving Forward