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Abstract

In 1967, Erdős and Hajnal asked the question: Does there exist
a K4-free graph that is not the union of two triangle-free graphs?
Finding such a graph involves solving a special case of the classical
Ramsey arrowing operation. Folkman proved the existence of these
graphs in 1970, and they are now called Folkman graphs. Erdős
offered $100 for deciding if one exists with less than 1010 vertices.
This problem remained open until 1988 when Spencer, in a semi-
nal paper using probabilistic techniques, proved the existence of a
Folkman graph of order 3 × 109 (after an erratum), without explic-
itly constructing it. In 2008, Dudek and Rödl developed a strategy
to construct new Folkman graphs by approximating the maximum
cut of a related graph, and used it to improve the upper bound to
941. We improve this bound first to 860 using their approximation
technique and then further to 786 with the MAX-CUT semidefinite
programming relaxation as used in the Goemans-Williamson algo-
rithm.



1 Introduction

Given a simple graph G, we write G→ (a1, . . . , ak)e and say that G arrows
(a1, . . . , ak)e if for every edge k-coloring of G, a monochromatic Kai is
forced for some color i ∈ {1, . . . , k}. Likewise, for graphs F and H, G →
(F,H)e if for every edge 2-coloring of G, a monochromatic F is forced
in the first color or a monochromatic H is forced in the second. Define
Fe(a1, . . . , ak; p) to be the set of all graphs that arrow (a1, . . . , ak)e and do
not contain Kp; they are often called Folkman graphs. The edge Folkman
number Fe(a1, . . . , ak; p) is the smallest order of a graph that is a member
of Fe(a1, . . . , ak; p). In 1970, Folkman [6] showed that for k > max {s, t},
Fe(s, t; k) exists. The related problem of vertex Folkman numbers, where
vertices are colored instead of edges, is more studied [16, 18] than edge
Folkman numbers, but we will not be discussing them. Therefore, we will
skip the use of the superscript e when discussing arrowing, as it is usually
used to distinguish between edge and vertex colorings.

In 1967, Erdős and Hajnal [5] asked the question: Does there exist a K4-
free graph that is not the union of two triangle-free graphs? This question
is equivalent to asking for the existence of a K4-free graph such that in
any edge 2-coloring, a monochromatic triangle is forced. After Folkman
proved the existence of such a graph, the question then became to find how
small this graph could be, or using the above notation, what is the value of
Fe(3, 3; 4). Prior to this paper, the best known bounds for this case were
19 ≤ Fe(3, 3; 4) ≤ 941 [21, 4].

Folkman numbers are related to Ramsey numbers R(s, t), which are
defined as the least positive n such that any 2-coloring of the edges of Kn

yields a monochromatic Ks in the first color or a monochromatic Kt in
the second color. Using the arrowing operator, it is clear that R(s, t) is
the smallest n such that Kn → (s, t). The known values and bounds for
various types of Ramsey numbers are collected and regularly updated by
the second author [20].

We will be using standard graph theory notation: V (G) and E(G) for
the vertex and edge sets of graph G, respectively. A cut is a partition
of the vertices of a graph into two sets, S ⊂ V (G) and S = V (G) \ S.
The size of a cut is the number of edges that join the two sets, that is,
|{{u, v} ∈ E(G) | u ∈ S and v ∈ S}|. MAX-CUT is a well-known NP-hard
combinatorial optimization problem which asks for the maximum size of a
cut of a graph.



2 History of Fe(3, 3; 4)

Year
Lower/Upper

Bounds
Who/What Ref.

1967 any? Erdős-Hajnal [5]

1970 exist Folkman [6]

1972 10 – Lin [14]

1975 – 1010? Erdős offers $100 for proof

1986 – 8× 1011 Frankl-Rödl [7]

1988 – 3× 109 Spencer [23]

1999 16 – Piwakowski et al. (implicit) [19]

2007 19 – Radziszowski-Xu [21]

2008 – 9697 Lu [15]

2008 – 941 Dudek-Rödl [4]

2012 – 786 this work

2012 – 100? Graham offers $100 for proof

Table 1: Timeline of progress on Fe(3, 3; 4).

Table 1 summarizes the events surrounding Fe(3, 3; 4), starting with
Erdős and Hajnal’s [5] original question of existence. After Folkman [6]
proved the existence, Erdős, in 1975, offered $100 for deciding if Fe(3, 3; 4) <
1010. This question remained open for over 10 years. Frankl and Rödl
[7] nearly met Erdős’ request in 1986 when they showed that Fe(3, 3; 4)
< 7.02× 1011. In 1988, Spencer [23], in a seminal paper using probabilistic
techniques, proved the existence of a Folkman graph of order 3 × 109 (af-
ter an erratum by Hovey), without explicitly constructing it. In 2007, Lu
showed that Fe(3, 3; 4) ≤ 9697 by constructing a family of K4-free circu-
lant graphs (which we discuss in Section 3.3) and showing that some such
graphs arrow (3, 3) using spectral analysis. Later, Dudek and Rödl reduced
the upper bound to the best known to date, 941. Their method, which we
have pursued further with some success, is discussed in the next section.

The lower bound for Fe(3, 3; 4) was much less studied than the upper
bound. Lin [14] obtained a lower bound on 10 in 1972 without the help
of a computer. All 659 graphs on 15 vertices witnessing Fe(3, 3; 5) = 15
[19] contain K4, thus giving the bound 16 ≤ Fe(3, 3; 4). In 2007, two of
the authors of this paper gave a computer-free proof of 18 ≤ Fe(3, 3; 4) and
improved the lower bound further to 19 with the help of computations [21].

The long history of Fe(3, 3; 4) is not only interesting in itself but also
gives insight into how difficult the problem is. Finding good bounds on the



smallest order of any Folkman graph (with fixed parameters) seems to be
difficult, and some related Ramsey graph coloring problems are NP-hard or
lie even higher in the polynomial hierarchy. For example, Burr [2] showed
that arrowing (3, 3) is coNP-complete, and Schaefer [22] showed that for
general graphs F , G, and H, F → (G,H) is ΠP

2 -complete.

3 Arrowing via MAX-CUT

Building off Spencer’s and other methods, Dudek and Rödl [4] in 2008
showed how to construct a graph HG from a graph G, such that the max-
imum size of a cut of HG determines whether or not G → (3, 3). They
construct the graph HG as follows. The vertices of HG are the edges of
G, so |V (HG)| = |E(G)|. For e1, e2 ∈ V (HG), if edges {e1, e2, e3} form a
triangle in G, then {e1, e2} is an edge in HG.

Let t4(G) denote the number of triangles in graphG. Clearly, |E(HG)|=
3t4(G). Let MC(H) denote the MAX-CUT value of graph H.

Theorem 1 (Dudek and Rödl [4]). G→ (3, 3) if and only if
MC(HG) < 2t4(G).

There is a clear intuition behind Theorem 1 that we will now describe.
Any edge 2-coloring of G corresponds to a bipartition of the vertices in
HG. If a triangle colored in G is not monochromatic, then its three edges,
which are vertices of HG, will be separated in the bipartition. If we treat
this bipartition as a cut, then the size of the cut will count each triangle
twice for the two edges that cross it. Since there is only one triangle in
a graph that contains two given edges, this effectively counts the number
of non-monochromatic triangles. Therefore, if it is possible to find a cut
that has size equal to 2t4(G), then such a cut defines an edge coloring of
G that has no monochromatic triangles. However, if MC(HG) < 2t4(G),
then in each coloring, all three edges of some triangle are in one part and
thus, G→ (3, 3).

A benefit of converting the problem of arrowing (3, 3) to MAX-CUT is
that the latter is well-known and has been studied extensively in computer
science and mathematics (see for example [3]). The decision problem MAX-
CUT(H, k) asks whether or not MC(H) ≥ k. It is known that MAX-
CUT is NP-hard and this decision problem was one of Karp’s 21 NP-
complete problems [13]. In our case, G → (3, 3) if and only if MAX-
CUT(HG, 2t4(G)) doesn’t hold. Since MAX-CUT is NP-hard, an attempt
is often made to approximate it, such as in the approaches presented in the
next two sections.



3.1 Minimum Eigenvalue Method

A method exploiting the minimum eigenvalue was used by Dudek and Rödl
[4] to show that some large graphs are members of Fe(3, 3; 4). The following
upper bound (1) on MC(HG) can be found in [4], where λmin denotes the
minimum eigenvalue of the adjacency matrix of HG.

MC(HG) ≤ |E(HG)|
2

− λmin|V (HG)|
4

. (1)

For positive integers r and n, if −1 is an r-th residue modulo n, then let
G(n, r) be a circulant graph on n vertices with the vertex set Zn and the
edge set E(G(n, r)) = {{u, v} | u 6= v and u− v ≡ αr mod n, for some α ∈
Zn}.

The graph G941 = G(941, 5) has 707632 triangles. Using the MATLAB
[17] eigs function, Dudek and Rödl [4] computed

MC(HG941) ≤ 1397484 < 1415264 = 2t4(G941).

Thus, by Theorem 1, G941 → (3, 3).

In an attempt to improve Fe(3, 3; 4) ≤ 941, we tried removing vertices
of G941 to see if the minimum eigenvalue bound would still show arrowing.
We applied multiple strategies for removing vertices, including removing
neighborhoods of vertices, randomly selected vertices, and independent sets
of vertices. Most of these strategies were successful, and led to the following
theorem:

Theorem 2. Fe(3, 3; 4) ≤ 860.

Proof. For a graph G with vertices Zn, define C = C(d, k) = {v ∈
V (G) | v = id mod n, for 0 ≤ i < k}. Let G = G941, d = 2, k = 81, and
GC be the graph induced on V (G) \ C(d, k). Then GC has 860 vertices,
73981 edges and 542514 triangles. Using the MATLAB eigs function, we
obtain λmin ≈ −14.663012. Setting λmin > −14.664 in (1) gives

MC(HGC
) < 1084985 < 1085028 = 2t4(GC). (2)

Therefore, GC → (3, 3). 2

None of the methods used allowed for 82 or more vertices to be removed
without the upper bound on MC becoming larger than 2t4.



3.2 Goemans-Williamson Method

The Goemans-Williamson MAX-CUT approximation algorithm [9] is a
well-known, polynomial-time algorithm that relaxes the problem to a semi-
definite program (SDP). It involves the first use of SDP in combinatorial
approximation and has since inspired a variety of other successful algo-
rithms (see for example [12, 8]). This randomized algorithm returns a cut
with expected size at least 0.87856 of the optimal value. However, in our
case, all that is needed is a feasible solution to the SDP, as it gives an
upper bound on MC(H). A brief description of the Goemans-Williamson
relaxation follows.

The first step in relaxing MAX-CUT is to represent the problem as
a quadratic integer program. Given a graph H with V (H) = {1, . . . , n}
and nonnegative weights wi,j for each pair of vertices {i, j}, we can write
MC(H) as the following objective function:

Maximize
1

2

∑
i<j

wi,j(1− yiyj) (3)

subject to: yi ∈ {−1, 1} for all i ∈ V (H).

Define one part of the cut as S = {i | yi = 1}. Since in our case all
graphs are weightless, we will use

wi,j =

{
1 if {i, j} ∈ E(H),

0 otherwise.

Next, the integer program (3) is relaxed by extending the problem to
higher dimensions. Each yi ∈ {−1, 1} is now replaced with a vector on the
unit sphere vi ∈ Rn, as follows:

Maximize
1

2

∑
i<j

wi,j(1− vi · vj) (4)

subject to: ‖vi‖ = 1 for all i ∈ V (H).

If we define a matrix Y with the entries yi,j = vi · vj, that is, the
Gram matrix of v1, . . . ,vn, then yi,i = 1 and Y is positive semi-definite.
Therefore, (4) is a semidefinite program.

3.3 Some Cases of Arrowing

Using the Goemans-Williamson approach, we tested a wide variety of graphs
for arrowing by finding upper bounds on MAX-CUT. These graphs included



theG(n, r) graphs tested by Dudek and Rödl, similar circulant graphs based
on the Galois fields GF (pk), and random graphs. Various modifications of
these graphs were also considered, including the removal and/or addition
of vertices and/or edges, as well as copying or joining multiple candidate
graphs together in various ways. We tested the graph GC of Theorem 2 and
obtained the upper boundMC(HGC

) ≤ 1077834, a significant improvement
over the bound 1084985 obtained from the minimum eigenvalue method.
This provides further evidence that GC → (3, 3), and is an example of when
(4) yields a much better upper bound.

Multiple SDP solvers that were designed [1, 11] to handle large-scale
SDP and MAX-CUT problems were used for the tests. Specifically, we
made use of a version of SDPLR by Samuel Burer [1], a solver that uses
low-rank factorization. The version SDPLR-MC includes specialized code for
the MAX-CUT SDP relaxation. SBmethod by Christoph Helmberg [11]
implements a spectral bundle method and was also applied successfully in
our experiments. In all cases where more than one solver was used, the
same results were obtained.

The type of graph that led to the best results was described by Lu [15].
For positive integers n and s, s < n, s relatively prime to n, define set
S = {si mod n | i = 0, 1, . . . ,m − 1}, where m is the smallest positive
integer such that sm ≡ 1 mod n. If −1 mod n ∈ S, then let L(n, s) be a
circulant graph on n vertices with V (L(n, s)) = Zn. For vertices u and v,
{u, v} is an edge of L(n, s) if and only if u−v ∈ S. Note that the condition
that −1 mod n ∈ S implies that if u− v ∈ S then v − u ∈ S.

In Table 1 of [15], a set of potential members of Fe(3, 3; 4) of the form
L(n, s) were listed, and the graph L(9697, 4) was shown to arrow (3, 3). Lu
gave credit to Exoo for showing that L(17, 2), L(61, 8), L(79, 12), L(421, 7),
and L(631, 24) do not arrow (3, 3).

We tested all graphs from Table 1 of [15] of order less than 941 with the
MAX-CUT method, using both the minimum eigenvalue and SDP upper
bounds. Table 2 lists the results. Note that although none of the computed
upper bounds of the L(n, s) graphs imply arrowing (3, 3), all SDP bounds
match those of the minimum eigenvalue bound. This is distinct from other
families of graphs, including those in [4], as the SDP bound is usually
tighter. Thus, these graphs were given further consideration.

L(127, 5) was given particular attention, as it is the same graph as G127,
where V (G127) = Z127 and E(G127) = {{x, y} | x− y ≡ α3 mod 127} (that
is, the graph G(127, 3) as defined in the previous section). It has been
conjectured by Exoo that G127 → (3, 3). He also suggested that subgraphs
induced on less than 100 vertices of G127 may as well. For more information
on G127 see [21].

Numerous attempts were made at modifying these graphs in hopes that



G 2t4(G) λmin SDP

L(127, 5) 19558 20181 20181

L(457, 6) 347320 358204 358204

L(761, 3) 694032 731858 731858

L(785, 53) 857220 857220 857220

G786 857762 857843 857753

Table 2: Potential Fe(3, 3; 4) graphs G and upper bounds on MC(HG),
where “λmin” is the bound (1) and “SDP” is the solution of (4) from
SDPLR-MC and SBmethod. G786 is the graph of Theorem 3.

one of the MAX-CUT methods would be able to prove arrowing. Indeed,
we were able to do so with L(785, 53). Notice that all of the upper bounds
for MC(HL(785,53)) are 857220, the same as 2t4 (L(785, 53)). Our goal was
then to slightly modify L(785, 53) so that this value becomes smaller. Let
G786 denote the graph L(785, 53) with one additional vertex connected to
the following 60 vertices:

{ 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16,

18, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34,

36, 37, 39, 40, 42, 43, 45, 46, 48, 49, 51, 52,

54, 55, 57, 58, 60, 61, 63, 66, 69, 201, 204, 207,

210, 213, 216, 219, 222, 225, 416, 419, 422, 630, 642, 645 }

G786 is still K4-free, has 61290 edges, and has 428881 triangles. The
upper bound computed from the SDP solvers for MC(HG786

) is 857753.
We did not find a nice description for the vectors of this solution. Software
implementing SpeeDP by Grippo et al. [10], an algorithm designed to solve
large MAX-CUT SDP relaxations, was used by Rinaldi (one of the authors
of [10]) to analyze this graph. He was able to obtain the bounds 857742 ≤
MC(HG786

) ≤ 857750, which agrees with, and improves over our upper
bound computation. Since 2t4(G786) = 857762, we have both from our
tests and his SpeeDP test that G786 → (3, 3), and the following main result.

Theorem 3. Fe(3, 3; 4) ≤ 786.

We note that finding a lower bound on MAX-CUT, such as the 857742 ≤
MC(HG786) bound from SpeeDP, follows from finding an actual cut of a
certain size. This method may be useful, as finding a cut of size 2t4(G)
shows that G 6→ (3, 3).



4 Tasks to Complete

Improving the upper bound on Fe(3, 3; 4) ≤ 786 is the main challenge. The
question of whether G127 → (3, 3) is still open, and any method that could
solve it would be of much interest.

During the 2012 SIAM Conference on Discrete Mathematics in Halifax,
Nova Scotia, Ronald Graham announced a $100 award for determining if
Fe(3, 3; 4) < 100.

Another open question is the lower bound on Fe(3, 3; 4), as it is quite
puzzling that only 19 is the best known. Even an improvement to 20 ≤
Fe(3, 3; 4) would be good progress.
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