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Definition 1.

For graphs G and H, R(G, H) = n if and only if n is the least positive integer such that
in any 2-coloring of the edges of Kn there is a monochromatic G in the first color or a
monochromatic H in the second color. ♦

We will write simply R(k, l) = R(Kk, Kl) if the avoided graphs are complete. 2-colorings
of the edges of Kn are often seen as graphs consisting of the edges in the first color, while
their complements correspond to the edges in the second color. The (k, l; n)-graphs are n-
vertex graphs lower-bounding R(k, l), i.e. 2-colorings of the edges of Kn proving n < R(k, l).
The (k, l)-graphs will stand for (k, l; n)-graphs for some n. If n = R(k, l) − 1 then (k, l; n)-
graphs are called critical. These concepts naturally generalize to r colors, r graphs, and the
multicolor Ramsey numbers R(G1, · · · , Gr).

Computational problems for Ramsey numbers, two colors

For detailed references to the subproblems listed in this and the next section please see
the dynamic survey Small Ramsey Numbers in the Electronic Journal of Combinatorics [2].
Many historical comments and background information can be found in The Mathematical
Coloring Book by Alexander Soifer [4].

The first open case of a Ramsey number of the form R(3, k) is 40 ≤ R(3, 10) ≤ 43. It
seems that in order to determine the largest (3, 10)-graph we need to know more about
(3, 9; n ≤ 35)-graphs, which in turn requires the knowledge of (3, 8; n ≤ 27), which in turn
requires the knowledge of (3, 7; n ≤ 22). All (3, 6)-graphs and all critical (3, 7; 22)-graphs are
known, and there are 761692 and 191 of them, respectively. Thus the sequence of smaller,
but still difficult, tasks towards solving R(3, 10) could be as follows.
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(a) Enumerate more (3, 7)-graphs.

Enumerating all graphs in (3, 7; 21) should be easy, more difficult for (3, 7; 20) and
perhaps feasible for (3, 7; 19). More complete enumeration of (3, 7) can make it easier
to progress on the further steps below.

(b) Enumerate all critical (3, 8; 27)-graphs.

More than 430K such graphs are already known, but there may be more of them. Full
enumeration of (3, 8; 26) seems to be very difficult, but it could likely be done for some
well defined part, like graphs with at most 78 edges.

(c) Enumerate all critical (3, 9; 35)-graphs.

There is only one (3, 9; 35)-graph known, but there might be more of them. Finding
all (3, 9; 34)-graphs also could be feasible.

(d) Finish off 37 ≤ R(3, K10 − e) ≤ 38.

This number is between R(3, 9) = 36 and R(3, 10), and the type of computations
needed to decide the existence of (3, K10− e; 37)-graphs is similar to what is needed in
(c) and (e). (d) may possibly be easier, hence attacking it first is a good choice.

(e) Attack R(3, 10).

We know that 40 ≤ R(3, 10) ≤ 43. The author feels that 40 is likely the correct value.
First, try to prove computationally that R(3, 10) ≤ 42. The results from (a) through
(d) should help.

Computational problems for Ramsey numbers, multiple colors

The computational tasks related to the smallest and most studied open cases for multi-
color Ramsey numbers are as follows.

(f) Improve on 45 ≤ R(3, 3, 5) ≤ 57.

The task of just improving the inequality should not be too hard. We are not aware
of any published dedicated attack on this number. The exact evaluation of R(3, 3, 5)
is a different matter, apparently well beyond what we can currently do.

(g) Finish off 30 ≤ R(3, 3, 4) ≤ 31.

This is perhaps the only open case of a classical multicolor Ramsey number, for which
we can anticipate exact evaluation in the not too distance future. Complete solution
is likely feasible with a large scale computational effort similar to that in [PR1, PR2]
as referenced in [2].
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(h) Improve on 51 ≤ R4(3) ≤ 62.

This is the most studied and intriguing open multicolor case. We believe the lower
bound to be close, if not equal, to the actual value. Improving the upper bound,
while difficult, should be feasible with large scale computational effort, for example
by extending on work [FKR] referenced in [2]. We are not aware of any heuristic
approaches which would come even close to the lower bound 51. This could be used as
an interesting novel test of strength of general heuristic search techniques. As of now,
we do not seem to understand well why known heuristics are inadequate for this task.

Computational Folkman problems

The Folkman problems we are concerned with in this part can be expressed using the
usual Ramsey arrowing operator restricted to graphs not containing Km (or not containing
some other graph). For detailed references to the background, history and problems similar
to those listed below see The Mathematical Coloring Book by Alexander Soifer [4]. Many
technical comments and further references can be found in [1] and [3].

Definition 2.

• F → (s1, ..., sr)
e if and only if for every r-coloring of the edges, the graph F contains

a monochromatic copy of Ksi
in some color i, 1 ≤ i ≤ r.

• F → (G, H)e if and only if for every red/blue edge-coloring of F , the graph F contains
a blue copy of G or a red copy of H.

• Fe(s, t; k) = {G → (s, t)e : Kk 6⊆ G} is called the set of edge Folkman graphs.

• Fe(s, t; k) is defined as the smallest integer n such that there exists an n-vertex graph
G in Fe(s, t; k). These are called the edge Folkman numbers. ♦

Theorem (Folkman 1970).

For all k > max(s, t) edge Folkman numbers Fe(s, t; k) exist.

The most wanted edge Folkman number Fe(3, 3; 4) involves the smallest parameters for
which the problem is nontrivial, and quite surprisingly it is already extremely difficult to
compute. Equivalently, Fe(3, 3; 4) is equal to the order of the smallest K4-free graph which
is not a union of two triangle-free graphs. We know that 19 ≤ Fe(3, 3; 4) ≤ 941, where the
lower bound was established in [3] and the upper bound in [1]. Much of the history of work
on such cases is reported in [3] and [4]. In particular, it seems that even the question if
50 ≤ Fe(3, 3; 4) ≤ 100 could be very hard to answer.

3



Computational Folkman problems to work on

(i) Improve on Fe(3, 3; 4) ≤ 941.

This bound was established by Dudek and Rödl in 2008 [1], after a few decades of
colorful history reported in [4] and [3].

One of the possible options to proceed forwards is as follows. In 1982, Hill and Irving
defined the graph G127 = (Z127, E), E = {(x, y)|x−y = α3 (mod 127)} in the context
of Ramsey numbers. It is a (4, 12; 127)-graph, and also the monochromatic subgraph
in each of three colors of a (4, 4, 4; 127) witness to the lower bound 128 ≤ R(4, 4, 4).
Exoo suggested to study if G127 → (3, 3)e. If true it would prove that Fe(3, 3; 4) ≤ 127.

(j) Improve on 19 ≤ Fe(3, 3; 4).

No reasonable, even large scale, computation seems to be sufficient to improve on the
lower bound of 19, which was established with significant computational effort in [3].

(k) Study Fe(K4 − e,K4 − e; K4).

We know that 19 ≤ Fe(3, 3; 4) ≤ Fe(K4 − e,K4 − e; K4) ≤ 30193. The lower bound
follows from monotonicity of Fe(), the upper bound, probably not a very strong one,
was observed by Lu in his work on Fe(3, 3; 4).

(l) Study Fe(3, 3; G) for G ∈ {K5 − e,W5 = C4 + x}.

Similar to (k), but this time vary the forbidden graph while still considering arrowing
triangles. We are not aware of any work related to these cases.

(m) Don’t study Fe(3, 3; K4 − e),

because after a moment of thought the reader can certainly discover that this number
doesn’t exist.
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