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Abstract — General purpose computing on GPUs provides a 
way for certain applications to benefit from a commonly 
available massively parallel architecture.  As such deployment 
becomes more widespread, multiple GPU applications will 
have to execute on the same hardware in systems that have 
only one GPU.  The aggregate loads of the GPU and CPU 
impact the performance of each application.  This work 
investigates the effects of CPU and GPU loads on the 
performance of two CUDA GPU applications with 
significantly different CPU-GPU interaction profiles:  
implementations of the AES encryption and Keccak hashing 
algorithms.  The percentage degradation in performance of 
these applications from CPU and GPU loads indicates 
dependence on the total execution time of the application, with 
the greatest degradation for the shortest execution times.  
Performance degradations as high as 22% and 36% were 
observed for CPU and GPU loads, respectively. 
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1 Introduction 
 The advent of NVIDIA’s Compute Unified Device 
Architecture (CUDA) and ATI's FireStream Technology has 
shifted Graphics Processing Units (GPUs) from primarily 
graphics enabling devices to general purpose stream 
processing systems.  These GPU architectures are a cost 
effective alternative to traditional parallel processing 
machines, (e.g., clusters), with comparable performance for 
certain applications [1].  This change ushers in a new era in 
computing, which allows any modern personal computer to 
take advantage of parallel processing capabilities previously 
available only in specialized systems. 

 For such applications, processing may occur primarily 
on the GPU or may be partitioned between the GPU and CPU.  
The first configuration will efficiently support only a certain 
class of applications whose computations fit the single 
program, multiple data (SPMD) paradigm with a sufficient 
ratio of computations to memory accesses.  On the other hand, 
the second configuration with the workload partitioned 
between GPU and CPU provides the opportunity for a wider 
range of applications to benefit from GPU computing by 

offloading only the part of the computation that can best 
benefit from the GPU architecture. 

 If a CPU/GPU system is not dedicated to execution of an 
application, performance of that application will be affected 
by the other applications targeting the same GPU.  In other 
words, there is the potential for additional CPU and/or 
additional GPU loads.  As offloading tasks from the CPU to 
the GPU on standard desktop configurations becomes more 
common, the likelihood of having multiple loads from 
different applications increases.  Such is the case for a general 
desktop user who will not have a dedicated GPU for non-
graphics related tasks.  Thus, performance in a typical system 
will be affected by other applications run by the user. 

 This research investigates the effects of additional CPU 
and GPU loads on CUDA performance.  The Advanced 
Encryption Standard (AES) and Keccak hashing algorithms 
were selected as the test cases.  CPU and GPU loads were 
simulated using various applications, and the performance of 
the encryption and hashing algorithms was recorded.  These 
values were then used to determine the effects of CPU and 
GPU loads on performance. 

2 CUDA 
 CUDA is a highly parallel computing architecture of 
recent NVIDIA GPUs [2].  Unlike traditional GPUs, CUDA 
GPUs are designed with greater focus on data processing as 
opposed to flow control and caching.  They are capable of 
executing thousands of lightweight threads simultaneously 
with many more queued.  This high degree of parallelism 
leads to an immense increase in potential performance such 
that current generation GPUs can vastly outperform 
contemporary CPUs in certain applications [3].  However, not 
all applications can realize these benefits.  CUDA is based on 
the stream processing model, which is an extension of the 
SIMD (single instruction, multiple data) paradigm.  This 
design paradigm makes CUDA optimal for performing a 
single program instruction many times on different data 
elements.  The rest of this section briefly describes CUDA 
stream processing, and it follows the presentation in [2–4]. 

 The CUDA architecture consists of two main 
components:  the memory and the processing cores, which 



work in conjunction.  Their interaction must be considered 
carefully when designing a CUDA application.  Memory is 
divided into five categories:  global, constant, textured, 
shared, and local.  Each type of memory has distinct features 
with regard to location, caching, and access.  The overall 
architecture is shown in Fig. 1. 
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Figure 1.  CUDA hardware architecture [4] 

 The most basic unit of execution in the CUDA 
architecture is the thread, and threads are organized in a 
hierarchy, as depicted in Fig. 2.  Each thread is allocated a 
segment of local memory for local variables.  Threads may be 
grouped into 1-dimensional, 2-dimensional, or 3-dimensional 
blocks, which consist of up to 512 threads per block.  Each 
block has a unique section of shared memory allotted to it, 
which can be accessed by all threads belonging to that block.  
All blocks execute independently, but all threads within a 
block execute simultaneously.  There is a mechanism to 
synchronize threads within a block.  At the top level of the 
thread hierarchy, blocks are grouped into 1-dimensional or 2- 
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Figure 2.  CUDA thread hierarchy [2] 

dimensional grids.  All grids have access to global memory, 
constant memory, and texture memory. 

 To facilitate software design, CUDA implements 
numerous extensions to ANSI C.  Applications are divided 
into two categories:  code designed to execute on the host 
CPU and code designed to execute on the GPU.  The code 
that is to execute on the GPU is called the kernel.  
Communication between the CPU and GPU is achieved 
through memory reads and writes. 

 CUDA processing consists of four steps, as indicated in 
Fig. 3:  1) data transfer to GPU memory, 2) CPU invocation 
of kernel, 3) GPU kernel execution, and 4) data transfer from 
GPU memory.  The first step before executing a kernel is a 
transfer of data for GPU processing to memory on the GPU.  
Next, the CPU initiates kernel execution on the GPU.  Once 
execution is complete, the CPU retrieves the processed data 
from the GPU.  Since communication between a CPU and its 
peripherals is relatively slow, the process of copying data 
back and forth can often be a major bottleneck.  Therefore, an 
important aspect of an efficient CUDA implementation is the 
ability to overlap GPU communication from/to the CPU or 
from/to PC memory with GPU computation. 
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Figure 3.  CUDA process flow 

3 Test applications 
 Given the roles of both computation and communication 
in GPU performance, two general types of algorithms were 
identified for evaluation of the performance effects of other 
CPU and GPU loads:  communication intensive and 
computation intensive.  A GPU application that is 
communication intensive requires a significant amount of data 
transfer from/to the CPU or from/to PC memory, to the extent 
that execution time is dominated by this communication.  In 
contrast, GPU computation time dominates the execution time 
of a GPU application that is computation intensive. 

 Analyzing the performance effects of additional loads on 
each type of application required suitable candidates.  The 
performance results of GPU implementations of basic 
cryptographic algorithms [5] provided insight for selecting a 
test algorithm to represent each type of GPU application.  
AES was selected as an algorithm whose execution time is 
dominated more by CPU-GPU communication, and Keccak 



was selected as an algorithm whose execution time is 
dominated more by GPU processing. 

3.1 AES 
 Advanced Encryption Standard (AES) is based on the 
principles of substitution-permutation networks (SP networks) 
[6].  To begin, the plaintext to be encrypted is divided into 
fixed-length blocks of data.  These blocks are then converted 
into a 4×4 array of bytes, known as the state, as illustrated in 
Fig. 5, where the shading signifies grouping of bytes in 
columns (words). 

 
Figure 5.  AES state array [6] 

 Multiple rounds of substitutions, permutations, and key-
based operations are performed on the input data to obtain the 
encrypted ciphertext.  The substitution portion of the cipher is 
a simple replacement of each byte in the array with its entry in 
a fixed 8-bit Rijndael substitution box (S-box).  Next, the 
permutation portion of the cipher consists of two steps:  shift 
and mix.  Shift consists of a row permutation in the form of a 
left-circular shift, starting with a zero shift for the top row and 
increasing the shift stride by one for each consecutive row.  
Mix is then a linear transformation of bytes forming columns 
of the state matrix.  Finally, the round key is determined using 
Rijndael’s key schedule, and the key is then added to the state 
via a bitwise exclusive or (XOR). 

 To increase the security and usability of block ciphers 
like AES, numerous modes of operation have been developed 
[7].  These modes extend the algorithm in order to ensure that 
identical message blocks encrypted at different positions in 
the plaintext with identical keys will not produce equal values. 

 The tested implementation of AES uses counter (CTR) 
mode, which performs the AES encryption on a counter value 
and XORs the result with the corresponding message block to 
obtain the encrypted output.  CTR mode has two 
characteristics that are favorable for an efficient CUDA 
implementation.  First, it preserves block-level parallelism, 
which represents the bulk of parallelism available in AES.  
Second, its encryption of a counter value instead of the 
plaintext provides the potential for reducing data transfers 
between the CPU and GPU; the final XOR can be performed 
either on the GPU or on the CPU. 

3.2 Keccak 
 Keccak is a hash function based on sponge construction 
[8], and it is one of five finalists in the National Institute of 

Standards and Technology (NIST) Cryptographic Hash 
Algorithm Competition to select SHA-3 [9].  The sponge 
construction, depicted in Fig. 6, consists of two steps:  
absorbing and squeezing.  It operates on a state, which is 
arranged in a 5×5 array of 64-bit lanes as shown in Fig. 7. 

Figure 6.  Sponge construction [8] 

Row  
Figure 7.  Keccak state [10] 

 Multiple rounds of squeezing and absorbing are 
performed on the input data to obtain the final hash.  The 
absorption phase absorbs one r-bit block of the input message 
at a time by XORing the block with the state and then 
scrambling the result using a function f.  Absorption continues 
until all blocks of the message have been absorbed.  Likewise, 
the squeezing phase uses the function f to scramble the data 
further. 

 The function f used by Keccak is a permutation, which 
incorporates innovative security improvements [8].  The 
permutation performed by Keccak can be considered either as 
an SP network with five-bit wide S-boxes or as a combination 
of linear transforms followed by a very simple nonlinear 
transform [11].  The tested implementation of Keccak consists 
of 24 rounds, which is the recommendation for SHA-3 [8]. 

4 Test methodology 
 The test system utilized consists of a dual-core AMD 
Athlon 5600+ CPU and an NVIDIA GeForce GTX 285 GPU.  
The GTX 285 contains 240 processing cores and 1 GB of 
memory.  Although this particular model is a midrange GPU, 
it is generally representative of CUDA enabled GPUs. 



 For each application, the total execution time (tTotal) and 
the GPU execution time (tGPU) were measured.  The total 
execution time is the time required to encrypt or hash a 
dataset, including time to transfer data between the CPU and 
the GPU.  The GPU time consists only of the time required to 
compute the encryption or hashing on the GPU.  For each 
dataset size and application variant, (e.g., AES-128, AES-192, 
AES-256, Keccak-224, Keccek-256, Keccak-384, and 
Keccak-512), these timings were measured 1000 times.  The 
average time for each was then calculated. 

 To measure the effects of CPU and GPU loads 
additional to the encryption algorithms, CPU and GPU loads 
were simulated using custom applications.  The CPU load 
application was a simple infinite loop with varying sleep times 
to achieve the desired 20%, 40%, and 60% loads.  The GPU 
load application consisted of rotating a number of displayed 
images.  Varying the number of images adjusted the GPU 
load to 25%, 50%, or 75%. 

 The loads of these applications were determined using 
Microsoft Perfmon for the CPU and TechPowerUp GPU-Z 
version 4.4 [12] for the GPU, (shown in Fig. 8).  These 
industry proven tools provide an estimate of the average load 
over a given period of time.  Both applications were run in 
parallel with the test code.  They produced files containing 
measured CPU loads and GPU loads, respectively.  These 
loads were recorded every second; the average load over the 
 

Figure 8.  GPU load application 

execution period for each test was calculated based on the 
values found in these files.  Throughput measurements were 
made for loads ranging between 0% and 60% on the CPU and 
0% to 75% on the GPU.  The throughputs calculated under 
each load were then compared to the unloaded values. 

5 Results 
 To determine the effects of GPU offloading for the 
applications without any additional system workload, the 
effective CPU time (tCPU) of each GPU implementation was 
calculated by subtracting the measured GPU execution time 
(tGPU) from the measured total execution time (tTotal):   
tCPU = tTotal − tGPU.  To determine the percentage of CPU time 
saved by offloading computation to the GPU (tSaved), this 
effective CPU time (tCPU) was then compared to the time 
required for the application to compute solely on the CPU 
without any GPU offloading of computations (tNoGPU). 

 tSaved = 
tNoGPU − tCPU

tNoGPU
100% (1) 

 Figs. 9 and 10 show the percentage of CPU time saved 
versus dataset size from offloading AES and Keccak, 
(respectively).  A performance benefit from GPU offloading 
of these cryptographic applications was observed for datasets 
of 256 KB and larger.  The best improvement was in AES-
256, for which GPU offloading reduced CPU time by 60%.  
All implementations realized a time savings of at least 20% 
for datasets of 256 KB and larger, and the time savings 
increased with dataset size. 

 The remainder of this section describes performance 
results for the test applications running in a system with 
additional workloads.  First the results of additional CPU 
loads are given.  Next the effects of additional GPU loads are 
presented. 
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Figure 9.  Offloading effects for AES 
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Figure 10.  Offloading effects for Keccak 

5.1 CPU load effects 
 Fig. 11 shows the effects of CPU load for AES-256.  
AES-128 and AES-192 performed similarly.  CPU loading 
effects for Keccak-512 are illustrated in Fig. 12.  For dataset 
sizes over 1 KB, the total computation time for Keccak is 
significantly longer than for AES. 

 For AES with its much lower total time, a CPU load may 
have a significant negative effect.  With a 20% load, datasets 
larger than 1 MB experienced an average performance 
degradation of 4%.  Average degradations of 12% and 22% 
are experienced with 40% and 60% loads, respectively, for 
datasets larger than 1 MB.  The precise effects on datasets 
smaller than 1 MB are difficult to measure as they are 
generally encrypted quite fast and are prone to experience 
large percentage increases and decreases with small variations 
in performance.  However, the effects on smaller datasets are 
generally minimal in terms of time.  Thus, the effects of CPU 
loads are expected to increase as total time of the algorithm 
decreases. 

 In contrast, for the higher total time of Keccak, a CPU 
load has a negligible impact because the majority of the total 
time is from GPU processing.  CPU loading effects for 
Keccak-512 are illustrated in Fig. 12.  The bottom graph 
shows results for datasets larger than 128 KB, which are not 
distinguishable in the top graph.  No degradation in execution 
time greater than 1.5% was measured for files larger than 32 
KB.  Again, the effects on datasets smaller than 32KB are 
difficult to measure but are minimal in terms of time. 

5.2 GPU load effects 
 Like the CPU load, the effects of introducing a GPU 
load are highly dependent on the execution time of the 
algorithm.  However, the GPU load effects are quite different 
in nature from the CPU load effects.  A GPU load consumes 
some portion of the resources available on the GPU and 
therefore makes those resources unavailable for a test 
application.  Furthermore, a typical application producing the 
GPU load would also be expected to transfer data between the 
 

0 0.5 1 1.5 2 2.5 3 3.5

x 10
7

-10

0

10

20

30

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

 

 

20% CPU Load
40% CPU Load
60% CPU Load

Figure 11.  AES-256 CPU load effects 
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Figure 12.  Keccak-512 CPU load effects 

CPU and GPU.  This additional data transfer requirement 
increases the load on the already slow PCI Express bus. 

 The primary effect of GPU utilization is on total time, 
which is shown in Fig. 13 for AES-256.  The corresponding 
graph for Keccak-512 is not included here since the wide 
variation in magnitude among the data points causes them to 
appear compressed along the axes when plotted on the same 
scale.  Instead, the top graph in Fig. 14 plots dataset sizes 
smaller than 8 KB, and the bottom graph shows 8 KB and 
larger sizes.  Since GPU utilization affects both the GPU and 
CPU, it produces a greater increase in total execution time 
than does a purely CPU load.  The overall trend, however, is 
similar to that of CPU load effects. 
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Figure 13.  AES-256 GPU load effects on total time 
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Figure 14.  Keccak-512 GPU load effects on total time 

 As observed with CPU loading, the GPU loading results 
are highly dependent on total time of the algorithm.  With 
slower algorithms such as Keccak-512, as the dataset size 
increases, the increase in time approaches 2%.  These results 
likely indicate that the GPU resources were underutilized by 
the Keccak implementation and thus are available to support 
additional computation.  On the other hand, for faster 
algorithms like AES, as the dataset size increases, the increase 
in time is much larger.  In the case of AES-256, the increase 

in time approaches 25%, 27%, and 36% for loads of 25%, 
50%, and 75%, respectively.  Smaller datasets are not capable 
of masking the effects of the load well and thus are more 
affected with greatly increased execution times up to 2000%. 

 The effects of GPU utilization on GPU time are less 
noticeable than those on total time, as seen in Fig. 15 for 
Keccak-512 on datasets smaller than 8 KB.  (Again, a single 
graph of all data points is not included because the data points 
appear compressed along the axes.  The general trend is 
similar to Fig. 14, and the percent increase in time is less than 
0.2% for datasets of 8KB and larger.)  Smaller datasets are 
affected more since they are hashed in very short times, which 
do not mask the overhead as well as larger datasets.  They 
experience an increase in GPU time of 6–11% for Keccak-
512.  As the size of the dataset increases, the overhead is 
better masked, decreasing the percentage to 0–1% beyond 1 
MB for AES-256 and beyond 32 KB for Keccak-512. 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

 

 
25% GPU Load
50% GPU Load
75% GPU Load

Figure 15.  Keccak-512 GPU load effects on GPU time 

6 Conclusions 
 To simulate a typical system environment, various CPU 
and GPU loads were introduced, and their effects on 
encryption and hashing performance using GPU co-
processing were measured.  CPU loads were found to have no 
effect on GPU time, but they did increase the total execution 
time.  AES-256 experienced the largest increase by as much 
as 22% total execution time, but Keccak-512 saw minimal 
increases in total time because the CPU load effect was 
masked by the GPU execution time.  GPU loads had similar 
effects on total time, although to a greater degree than CPU 
loads.  The total time of AES-128 increased as much as 36%, 
whereas Keccak experienced minimal increases in total time. 

 For GPU processing, the effects of additional CPU loads 
are highly dependent on the total time of the algorithm.  For 
such applications, the primary requirements of the CPU are 
for transferring data and initializing the kernel.  Consequently, 
adding a CPU load has no effect on GPU processing time.  
However, total time can be adversely affected. 



 Similarly to CPU loads, the effects of introducing 
additional GPU loads are highly dependent on the total 
execution time of the algorithm; however, the effects are quite 
different in nature.  A GPU load consumes some portion of 
the resources available on the GPU, which become 
unavailable for the GPU application.  In addition to GPU 
computation, a typical GPU load also requires data transfer 
between the CPU and GPU.  This extra data transfer 
requirement increases the load on the PCI Express bus, which 
increases total execution time. 

 As GPU processing for non-graphics applications 
becomes more common, such applications will certainly be 
deployed on platforms, such a general desktop computer, that 
have CPU and/or GPU loads in addition to the application.  
This investigation is a first step toward characterizing the 
effects of additional CPU and GPU loads on the performance 
of a GPU application.  In this work, the effects of these 
additional types of loads have been considered independently 
of each other.  Further investigation should evaluate both 
types of additional loads present simultaneously, as one would 
expect on a typical desktop system.  Also, these effects have 
been evaluated only relative to the performance of two GPU 
encryption algorithms.  Testing with other GPU applications 
is needed to see if they experience the same effects observed 
in this investigation.  Also, performance effects on a variety of 
GPU applications with varying communication versus 
computation profiles need to be evaluated. 
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