
Effects of GPU and CPU Loads on
Performance of CUDA Applications

M. Bobrov1, R. Melton1, S. Radziszowski2, and M. Łukowiak1

1Department of Computer Engineering, Rochester Institute of Technology, Rochester, New York, USA
2Department of Computer Science, Rochester Institute of Technology, Rochester, New York, USA

Abstract — General purpose computing on GPUs provides a
way for certain applications to benefit from a commonly
available massively parallel architecture. As such deployment
becomes more widespread, multiple GPU applications will
have to execute on the same hardware in systems that have
only one GPU. The aggregate loads of the GPU and CPU
impact the performance of each application. This work
investigates the effects of CPU and GPU loads on the
performance of two CUDA GPU applications with
significantly different CPU-GPU interaction profiles:
implementations of the AES encryption and Keccak hashing
algorithms. The percentage degradation in performance of
these applications from CPU and GPU loads indicates
dependence on the total execution time of the application, with
the greatest degradation for the shortest execution times.
Performance degradations as high as 22% and 36% were
observed for CPU and GPU loads, respectively.

Keywords: CUDA; GPGPU; GPU; load; performance

1 Introduction
 The advent of NVIDIA’s Compute Unified Device
Architecture (CUDA) and ATI's FireStream Technology has
shifted Graphics Processing Units (GPUs) from primarily
graphics enabling devices to general purpose stream
processing systems. These GPU architectures are a cost
effective alternative to traditional parallel processing
machines, (e.g., clusters), with comparable performance for
certain applications [1]. This change ushers in a new era in
computing, which allows any modern personal computer to
take advantage of parallel processing capabilities previously
available only in specialized systems.

 For such applications, processing may occur primarily
on the GPU or may be partitioned between the GPU and CPU.
The first configuration will efficiently support only a certain
class of applications whose computations fit the single
program, multiple data (SPMD) paradigm with a sufficient
ratio of computations to memory accesses. On the other hand,
the second configuration with the workload partitioned
between GPU and CPU provides the opportunity for a wider
range of applications to benefit from GPU computing by

offloading only the part of the computation that can best
benefit from the GPU architecture.

 If a CPU/GPU system is not dedicated to execution of an
application, performance of that application will be affected
by the other applications targeting the same GPU. In other
words, there is the potential for additional CPU and/or
additional GPU loads. As offloading tasks from the CPU to
the GPU on standard desktop configurations becomes more
common, the likelihood of having multiple loads from
different applications increases. Such is the case for a general
desktop user who will not have a dedicated GPU for non-
graphics related tasks. Thus, performance in a typical system
will be affected by other applications run by the user.

 This research investigates the effects of additional CPU
and GPU loads on CUDA performance. The Advanced
Encryption Standard (AES) and Keccak hashing algorithms
were selected as the test cases. CPU and GPU loads were
simulated using various applications, and the performance of
the encryption and hashing algorithms was recorded. These
values were then used to determine the effects of CPU and
GPU loads on performance.

2 CUDA
 CUDA is a highly parallel computing architecture of
recent NVIDIA GPUs [2]. Unlike traditional GPUs, CUDA
GPUs are designed with greater focus on data processing as
opposed to flow control and caching. They are capable of
executing thousands of lightweight threads simultaneously
with many more queued. This high degree of parallelism
leads to an immense increase in potential performance such
that current generation GPUs can vastly outperform
contemporary CPUs in certain applications [3]. However, not
all applications can realize these benefits. CUDA is based on
the stream processing model, which is an extension of the
SIMD (single instruction, multiple data) paradigm. This
design paradigm makes CUDA optimal for performing a
single program instruction many times on different data
elements. The rest of this section briefly describes CUDA
stream processing, and it follows the presentation in [2–4].

 The CUDA architecture consists of two main
components: the memory and the processing cores, which

work in conjunction. Their interaction must be considered
carefully when designing a CUDA application. Memory is
divided into five categories: global, constant, textured,
shared, and local. Each type of memory has distinct features
with regard to location, caching, and access. The overall
architecture is shown in Fig. 1.

Host

Local

Global

Constant

Texture

Memory

Registers

Shared Memory

Constant Cache

Texture Cache

Multiprocessor
Multiprocessor

Multiprocessor

GPU
CUDA Device

Figure 1. CUDA hardware architecture [4]

 The most basic unit of execution in the CUDA
architecture is the thread, and threads are organized in a
hierarchy, as depicted in Fig. 2. Each thread is allocated a
segment of local memory for local variables. Threads may be
grouped into 1-dimensional, 2-dimensional, or 3-dimensional
blocks, which consist of up to 512 threads per block. Each
block has a unique section of shared memory allotted to it,
which can be accessed by all threads belonging to that block.
All blocks execute independently, but all threads within a
block execute simultaneously. There is a mechanism to
synchronize threads within a block. At the top level of the
thread hierarchy, blocks are grouped into 1-dimensional or 2-

Grid

Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Block (0,2) Block (1,2) Block (2,2)

Block (1,2)

Thread (0,0) Thread (1,0) Thread (2,0)

Thread (0,1) Thread (1,1) Thread (2,1)

Figure 2. CUDA thread hierarchy [2]

dimensional grids. All grids have access to global memory,
constant memory, and texture memory.

 To facilitate software design, CUDA implements
numerous extensions to ANSI C. Applications are divided
into two categories: code designed to execute on the host
CPU and code designed to execute on the GPU. The code
that is to execute on the GPU is called the kernel.
Communication between the CPU and GPU is achieved
through memory reads and writes.

 CUDA processing consists of four steps, as indicated in
Fig. 3: 1) data transfer to GPU memory, 2) CPU invocation
of kernel, 3) GPU kernel execution, and 4) data transfer from
GPU memory. The first step before executing a kernel is a
transfer of data for GPU processing to memory on the GPU.
Next, the CPU initiates kernel execution on the GPU. Once
execution is complete, the CPU retrieves the processed data
from the GPU. Since communication between a CPU and its
peripherals is relatively slow, the process of copying data
back and forth can often be a major bottleneck. Therefore, an
important aspect of an efficient CUDA implementation is the
ability to overlap GPU communication from/to the CPU or
from/to PC memory with GPU computation.

CPU

Memory

Host CUDA Device

Memory

GPU
Cores

1

2 3

4

Figure 3. CUDA process flow

3 Test applications
 Given the roles of both computation and communication
in GPU performance, two general types of algorithms were
identified for evaluation of the performance effects of other
CPU and GPU loads: communication intensive and
computation intensive. A GPU application that is
communication intensive requires a significant amount of data
transfer from/to the CPU or from/to PC memory, to the extent
that execution time is dominated by this communication. In
contrast, GPU computation time dominates the execution time
of a GPU application that is computation intensive.

 Analyzing the performance effects of additional loads on
each type of application required suitable candidates. The
performance results of GPU implementations of basic
cryptographic algorithms [5] provided insight for selecting a
test algorithm to represent each type of GPU application.
AES was selected as an algorithm whose execution time is
dominated more by CPU-GPU communication, and Keccak

was selected as an algorithm whose execution time is
dominated more by GPU processing.

3.1 AES
 Advanced Encryption Standard (AES) is based on the
principles of substitution-permutation networks (SP networks)
[6]. To begin, the plaintext to be encrypted is divided into
fixed-length blocks of data. These blocks are then converted
into a 4×4 array of bytes, known as the state, as illustrated in
Fig. 5, where the shading signifies grouping of bytes in
columns (words).

Figure 5. AES state array [6]

 Multiple rounds of substitutions, permutations, and key-
based operations are performed on the input data to obtain the
encrypted ciphertext. The substitution portion of the cipher is
a simple replacement of each byte in the array with its entry in
a fixed 8-bit Rijndael substitution box (S-box). Next, the
permutation portion of the cipher consists of two steps: shift
and mix. Shift consists of a row permutation in the form of a
left-circular shift, starting with a zero shift for the top row and
increasing the shift stride by one for each consecutive row.
Mix is then a linear transformation of bytes forming columns
of the state matrix. Finally, the round key is determined using
Rijndael’s key schedule, and the key is then added to the state
via a bitwise exclusive or (XOR).

 To increase the security and usability of block ciphers
like AES, numerous modes of operation have been developed
[7]. These modes extend the algorithm in order to ensure that
identical message blocks encrypted at different positions in
the plaintext with identical keys will not produce equal values.

 The tested implementation of AES uses counter (CTR)
mode, which performs the AES encryption on a counter value
and XORs the result with the corresponding message block to
obtain the encrypted output. CTR mode has two
characteristics that are favorable for an efficient CUDA
implementation. First, it preserves block-level parallelism,
which represents the bulk of parallelism available in AES.
Second, its encryption of a counter value instead of the
plaintext provides the potential for reducing data transfers
between the CPU and GPU; the final XOR can be performed
either on the GPU or on the CPU.

3.2 Keccak
 Keccak is a hash function based on sponge construction
[8], and it is one of five finalists in the National Institute of

Standards and Technology (NIST) Cryptographic Hash
Algorithm Competition to select SHA-3 [9]. The sponge
construction, depicted in Fig. 6, consists of two steps:
absorbing and squeezing. It operates on a state, which is
arranged in a 5×5 array of 64-bit lanes as shown in Fig. 7.

Figure 6. Sponge construction [8]

Row
Figure 7. Keccak state [10]

 Multiple rounds of squeezing and absorbing are
performed on the input data to obtain the final hash. The
absorption phase absorbs one r-bit block of the input message
at a time by XORing the block with the state and then
scrambling the result using a function f. Absorption continues
until all blocks of the message have been absorbed. Likewise,
the squeezing phase uses the function f to scramble the data
further.

 The function f used by Keccak is a permutation, which
incorporates innovative security improvements [8]. The
permutation performed by Keccak can be considered either as
an SP network with five-bit wide S-boxes or as a combination
of linear transforms followed by a very simple nonlinear
transform [11]. The tested implementation of Keccak consists
of 24 rounds, which is the recommendation for SHA-3 [8].

4 Test methodology
 The test system utilized consists of a dual-core AMD
Athlon 5600+ CPU and an NVIDIA GeForce GTX 285 GPU.
The GTX 285 contains 240 processing cores and 1 GB of
memory. Although this particular model is a midrange GPU,
it is generally representative of CUDA enabled GPUs.

 For each application, the total execution time (tTotal) and
the GPU execution time (tGPU) were measured. The total
execution time is the time required to encrypt or hash a
dataset, including time to transfer data between the CPU and
the GPU. The GPU time consists only of the time required to
compute the encryption or hashing on the GPU. For each
dataset size and application variant, (e.g., AES-128, AES-192,
AES-256, Keccak-224, Keccek-256, Keccak-384, and
Keccak-512), these timings were measured 1000 times. The
average time for each was then calculated.

 To measure the effects of CPU and GPU loads
additional to the encryption algorithms, CPU and GPU loads
were simulated using custom applications. The CPU load
application was a simple infinite loop with varying sleep times
to achieve the desired 20%, 40%, and 60% loads. The GPU
load application consisted of rotating a number of displayed
images. Varying the number of images adjusted the GPU
load to 25%, 50%, or 75%.

 The loads of these applications were determined using
Microsoft Perfmon for the CPU and TechPowerUp GPU-Z
version 4.4 [12] for the GPU, (shown in Fig. 8). These
industry proven tools provide an estimate of the average load
over a given period of time. Both applications were run in
parallel with the test code. They produced files containing
measured CPU loads and GPU loads, respectively. These
loads were recorded every second; the average load over the

Figure 8. GPU load application

execution period for each test was calculated based on the
values found in these files. Throughput measurements were
made for loads ranging between 0% and 60% on the CPU and
0% to 75% on the GPU. The throughputs calculated under
each load were then compared to the unloaded values.

5 Results
 To determine the effects of GPU offloading for the
applications without any additional system workload, the
effective CPU time (tCPU) of each GPU implementation was
calculated by subtracting the measured GPU execution time
(tGPU) from the measured total execution time (tTotal):
tCPU = tTotal − tGPU. To determine the percentage of CPU time
saved by offloading computation to the GPU (tSaved), this
effective CPU time (tCPU) was then compared to the time
required for the application to compute solely on the CPU
without any GPU offloading of computations (tNoGPU).

 tSaved =
tNoGPU − tCPU

tNoGPU
100% (1)

 Figs. 9 and 10 show the percentage of CPU time saved
versus dataset size from offloading AES and Keccak,
(respectively). A performance benefit from GPU offloading
of these cryptographic applications was observed for datasets
of 256 KB and larger. The best improvement was in AES-
256, for which GPU offloading reduced CPU time by 60%.
All implementations realized a time savings of at least 20%
for datasets of 256 KB and larger, and the time savings
increased with dataset size.

 The remainder of this section describes performance
results for the test applications running in a system with
additional workloads. First the results of additional CPU
loads are given. Next the effects of additional GPU loads are
presented.

10
4

10
5

10
6

10
7

10
8

-250

-200

-150

-100

-50

0

50

100

Data Size (bytes)

%
 T

im
e

S
av

ed

AES-128
AES-192
AES-256

Figure 9. Offloading effects for AES

0 2 4 6 8 10 12

x 10
5

-40

-20

0

20

40

Data Size (bytes)

%
 T

im
e

S
av

ed

Keccak-256

Figure 10. Offloading effects for Keccak

5.1 CPU load effects
 Fig. 11 shows the effects of CPU load for AES-256.
AES-128 and AES-192 performed similarly. CPU loading
effects for Keccak-512 are illustrated in Fig. 12. For dataset
sizes over 1 KB, the total computation time for Keccak is
significantly longer than for AES.

 For AES with its much lower total time, a CPU load may
have a significant negative effect. With a 20% load, datasets
larger than 1 MB experienced an average performance
degradation of 4%. Average degradations of 12% and 22%
are experienced with 40% and 60% loads, respectively, for
datasets larger than 1 MB. The precise effects on datasets
smaller than 1 MB are difficult to measure as they are
generally encrypted quite fast and are prone to experience
large percentage increases and decreases with small variations
in performance. However, the effects on smaller datasets are
generally minimal in terms of time. Thus, the effects of CPU
loads are expected to increase as total time of the algorithm
decreases.

 In contrast, for the higher total time of Keccak, a CPU
load has a negligible impact because the majority of the total
time is from GPU processing. CPU loading effects for
Keccak-512 are illustrated in Fig. 12. The bottom graph
shows results for datasets larger than 128 KB, which are not
distinguishable in the top graph. No degradation in execution
time greater than 1.5% was measured for files larger than 32
KB. Again, the effects on datasets smaller than 32KB are
difficult to measure but are minimal in terms of time.

5.2 GPU load effects
 Like the CPU load, the effects of introducing a GPU
load are highly dependent on the execution time of the
algorithm. However, the GPU load effects are quite different
in nature from the CPU load effects. A GPU load consumes
some portion of the resources available on the GPU and
therefore makes those resources unavailable for a test
application. Furthermore, a typical application producing the
GPU load would also be expected to transfer data between the

0 0.5 1 1.5 2 2.5 3 3.5

x 10
7

-10

0

10

20

30

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

20% CPU Load
40% CPU Load
60% CPU Load

Figure 11. AES-256 CPU load effects

0 2 4 6 8 10 12

x 10
5

-5

0

5

10

15

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

20% CPU Load
40% CPU Load
60% CPU Load

2 3 4 5 6 7 8 9 10 11

x 10
5

-0.05

0

0.05

0.1

0.15

0.2

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

20% CPU Load
40% CPU Load
60% CPU Load

Figure 12. Keccak-512 CPU load effects

CPU and GPU. This additional data transfer requirement
increases the load on the already slow PCI Express bus.

 The primary effect of GPU utilization is on total time,
which is shown in Fig. 13 for AES-256. The corresponding
graph for Keccak-512 is not included here since the wide
variation in magnitude among the data points causes them to
appear compressed along the axes when plotted on the same
scale. Instead, the top graph in Fig. 14 plots dataset sizes
smaller than 8 KB, and the bottom graph shows 8 KB and
larger sizes. Since GPU utilization affects both the GPU and
CPU, it produces a greater increase in total execution time
than does a purely CPU load. The overall trend, however, is
similar to that of CPU load effects.

0 0.5 1 1.5 2 2.5 3 3.5

x 10
7

0

50

100

150

200

250

300

350

400

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

25% GPU Load
50% GPU Load
75% GPU Load

Figure 13. AES-256 GPU load effects on total time

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

500

1000

1500

2000

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

25% GPU Load
50% GPU Load
75% GPU Load

1 2 3 4 5 6 7 8 9 10 11

x 10
5

0

2

4

6

8

10

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

25% GPU Load
50% GPU Load
75% GPU Load

Figure 14. Keccak-512 GPU load effects on total time

 As observed with CPU loading, the GPU loading results
are highly dependent on total time of the algorithm. With
slower algorithms such as Keccak-512, as the dataset size
increases, the increase in time approaches 2%. These results
likely indicate that the GPU resources were underutilized by
the Keccak implementation and thus are available to support
additional computation. On the other hand, for faster
algorithms like AES, as the dataset size increases, the increase
in time is much larger. In the case of AES-256, the increase

in time approaches 25%, 27%, and 36% for loads of 25%,
50%, and 75%, respectively. Smaller datasets are not capable
of masking the effects of the load well and thus are more
affected with greatly increased execution times up to 2000%.

 The effects of GPU utilization on GPU time are less
noticeable than those on total time, as seen in Fig. 15 for
Keccak-512 on datasets smaller than 8 KB. (Again, a single
graph of all data points is not included because the data points
appear compressed along the axes. The general trend is
similar to Fig. 14, and the percent increase in time is less than
0.2% for datasets of 8KB and larger.) Smaller datasets are
affected more since they are hashed in very short times, which
do not mask the overhead as well as larger datasets. They
experience an increase in GPU time of 6–11% for Keccak-
512. As the size of the dataset increases, the overhead is
better masked, decreasing the percentage to 0–1% beyond 1
MB for AES-256 and beyond 32 KB for Keccak-512.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

2

4

6

8

10

Data Size (bytes)

%
 In

cr
ea

se
 in

 T
im

e

25% GPU Load
50% GPU Load
75% GPU Load

Figure 15. Keccak-512 GPU load effects on GPU time

6 Conclusions
 To simulate a typical system environment, various CPU
and GPU loads were introduced, and their effects on
encryption and hashing performance using GPU co-
processing were measured. CPU loads were found to have no
effect on GPU time, but they did increase the total execution
time. AES-256 experienced the largest increase by as much
as 22% total execution time, but Keccak-512 saw minimal
increases in total time because the CPU load effect was
masked by the GPU execution time. GPU loads had similar
effects on total time, although to a greater degree than CPU
loads. The total time of AES-128 increased as much as 36%,
whereas Keccak experienced minimal increases in total time.

 For GPU processing, the effects of additional CPU loads
are highly dependent on the total time of the algorithm. For
such applications, the primary requirements of the CPU are
for transferring data and initializing the kernel. Consequently,
adding a CPU load has no effect on GPU processing time.
However, total time can be adversely affected.

 Similarly to CPU loads, the effects of introducing
additional GPU loads are highly dependent on the total
execution time of the algorithm; however, the effects are quite
different in nature. A GPU load consumes some portion of
the resources available on the GPU, which become
unavailable for the GPU application. In addition to GPU
computation, a typical GPU load also requires data transfer
between the CPU and GPU. This extra data transfer
requirement increases the load on the PCI Express bus, which
increases total execution time.

 As GPU processing for non-graphics applications
becomes more common, such applications will certainly be
deployed on platforms, such a general desktop computer, that
have CPU and/or GPU loads in addition to the application.
This investigation is a first step toward characterizing the
effects of additional CPU and GPU loads on the performance
of a GPU application. In this work, the effects of these
additional types of loads have been considered independently
of each other. Further investigation should evaluate both
types of additional loads present simultaneously, as one would
expect on a typical desktop system. Also, these effects have
been evaluated only relative to the performance of two GPU
encryption algorithms. Testing with other GPU applications
is needed to see if they experience the same effects observed
in this investigation. Also, performance effects on a variety of
GPU applications with varying communication versus
computation profiles need to be evaluated.

7 Acknowledgements
 The authors wish to thank their colleagues at the
Rochester Institute of Technology who contributed to this
work: Dr. Andreas Savakis for equipment support from the
Computer Engineering Real-time Vision and Image
Processing Lab, and Dr. Muhammad Shaaban for helpful
comments on drafts of this paper.

8 References
[1] David B. Kirk and Wen-mei W. Hwu, Programming
Massively Parallel Processors: A Hands-on Approach,
Burlington, MA: Morgan Kaufmann Publishers, 2010.

[2] NVIDIA Corporation, “NVIDIA CUDA Programming
Guide, Version 2.3.1,” August 29, 2009,
http://developer.download.nvidia.com/compute/c
uda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_G
uide_2.3.pdf.

[3] NVIDIA Corporation, “CUDA Zone,” [July 2010]
http://www.nvidia.com/cuda.

[4] NVIDIA Corporation, “NVIDIA CUDA C Programming
Best Practices Guide, CUDA Toolkit 2.3," July 2009,
http://developer.download.nvidia.com/compute/c
uda/2_3/toolkit/docs/NVIDIA_CUDA_BestPractices
Guide_2.3.pdf.

[5] Max Bobrov, “Cryptographic Algorithm Acceleration
Using CUDA Enabled GPUs in Typical System
Configurations,” master’s thesis, Department of Computer
Engineering, Rochester Institute of Technology, Rochester,
NY, August 2010.

[6] National Institute of Standards and Technology,
“Advanced Encryption Standard (FIPS-197),” 2001.

[7] Morris Dworkin, “Recommendation for Block Cipher
Modes of Operation,” NIST, Gaithersburg, MD, Special
Publication 800-38A, 2001.

[8] Guido Bertoni, Joan Daemen, Michael Peeters, and
Gilles Van Assche, “Keccak Sponge Function Family Main
Document, Version 2.1,” June 19, 2010,
http://keccak.noekeon.org/Keccak-main-2.1.pdf.

[9] National Institute of Standards and Technology,
“Cryptographic Hash Algorithm Competition,” December 13,
2010, http://csrc.nist.gov/groups/ST/hash/sha-
3/index.html.

[10] Guido Bertoni, Joan Daemen, Michael Peeters, and
Gilles Van Assche, “Keccak Specifications, Version 2,”
September 10, 2009, http://keccak.noekeon.org/
Keccak-specifications-2.pdf.

[11] Meltem Sönmez Turan, Ray Perlner, Lawrence E.
Bassham, William Burr, Donghoon Chang, Shu-jen Chang,
Morris J. Dworkin, John M. Kelsey, Souradyuti Paul, and
Rene Peralta, “Status Report on the Second Round of the
SHA-3 Cryptographic Hash Algorithmic Competition,” NIST,
Gaithersburg, MD, Interagency Report 7764, February 2011.

[12] techPowerUp. “GPU-Z,” July 2010,
http://www.techpowerup.com/gpuz/.

