Small Ramsey Numbers

Stanislaw P. Radziszowski
Department of Computer Science
Rochester Institute of Technology
Rochester, NY 14623, spr@cs.rit.edu
http://www.cs.rit.edu/~spr

Submitted: June 11, 1994; Revision #14: January 12, 2014
http://www.combinatorics.org

ABSTRACT: We present data which, to the best of our knowledge, includes all known nontrivial values and bounds for specific graph, hypergraph and multicolor Ramsey numbers, where the avoided graphs are complete or complete without one edge. Many results pertaining to other more studied cases are also presented. We give references to all cited bounds and values, as well as to previous similar compilations. We do not attempt complete coverage of asymptotic behavior of Ramsey numbers, but rather we concentrate on their specific values.

Mathematical Reviews Subject Number 05C55

Revisions

1993, February preliminary version, RIT-TR-93-009 [Ra2]
1994, July 3 first posted on the web at the EIJC
1994, November 7 EIJC revision #1
1995, August 28 EIJC revision #2
1996, March 25 EIJC revision #3
1997, July 11 EIJC revision #4
1998, July 9 EIJC revision #5
1999, July 5 EIJC revision #6
2000, July 25 EIJC revision #7
2001, July 12 EIJC revision #8
2002, July 15 EIJC revision #9
2004, July 4 EIJC revision #10
2006, August 1 EIJC revision #11
2009, August 4 EIJC revision #12
2011, August 22 EIJC revision #13
2014, January 12 EIJC revision #14
Table of Contents

1. Scope and Notation 3

2. Classical Two-Color Ramsey Numbers 4
 2.1 Values and bounds for $R(k,l)$, $k \leq 10$, $l \leq 15$ 4
 2.2 Bounds for $R(k,l)$, higher parameters 6
 2.3 General results on $R(k,l)$ 8

3. Two Colors: $K_n-e, K_3, K_{m,n}$ 11
 3.1 Dropping one edge from complete graph 11
 3.2 Triangle versus other graphs 13
 3.3 Complete bipartite graphs 14

4. Two Colors: Numbers Involving Cycles 18
 4.1 Cycles, cycles versus paths and stars 18
 4.2 Cycles versus complete graphs 19
 4.3 Cycles versus wheels 21
 4.4 Cycles versus books 22
 4.5 Cycles versus other graphs 23

5. General Graph Numbers in Two Colors 24
 5.1 Paths 24
 5.2 Wheels 24
 5.3 Books 25
 5.4 Trees and forests 25
 5.5 Stars, stars versus other graphs 26
 5.6 Paths versus other graphs 27
 5.7 Fans, fans versus other graphs 28
 5.8 Wheels versus other graphs 28
 5.9 Books versus other graphs 29
 5.10 Trees and forests versus other graphs 29
 5.11 Cases for $n(G), n(H) \leq 5$ 30
 5.12 Mixed cases 31
 5.13 Multiple copies of graphs, disconnected graphs 31
 5.14 General results for special graphs 32
 5.15 General results for sparse graphs 32
 5.16 General results 34

6. Multicolor Ramsey Numbers 36
 6.1 Bounds for classical numbers 36
 6.2 General results for complete graphs 38
 6.3 Cycles 39
 6.4 Paths, paths versus other graphs 43
 6.5 Special cases 45
 6.6 General results for special graphs 46
 6.7 General results 47

7. Hypergraph Numbers 49
 7.1 Values and bounds for numbers 49
 7.2 Cycles and paths 49
 7.3 General results for 3-uniform hypergraphs 51
 7.4 General results 51

8. Cumulative Data and Surveys 52
 8.1 Cumulative data for two colors 52
 8.2 Cumulative data for three colors 53
 8.3 Electronic resources 54
 8.4 Surveys 54

9. Concluding Remarks 56

References 57-94
1. Scope and Notation

There is vast literature on Ramsey type problems starting in 1930 with the original paper of Ramsey [Ram]. Graham, Rothschild and Spencer in their book [GRS] present an exciting development of Ramsey Theory. The subject has grown amazingly, in particular with regard to asymptotic bounds for various types of Ramsey numbers (see the survey papers [GrRö, Neš, ChGra2, Ros2]), but the progress on evaluating the basic numbers themselves has been unsatisfactory for a long time. In the last three decades, however, considerable progress has been obtained in this area, mostly by employing computer algorithms. The few known exact values and several bounds for different numbers are scattered among many technical papers. This compilation is a fast source of references for the best results known for specific numbers. It is not supposed to serve as a source of definitions or theorems, but these can be easily accessed via the references gathered here.

Ramsey Theory studies conditions when a combinatorial object contains necessarily some smaller given objects. The role of Ramsey numbers is to quantify some of the general existential theorems in Ramsey Theory.

Let \(G_1, G_2, \ldots, G_m \) be graphs or \(s \)-uniform hypergraphs (\(s \) is the number of vertices in each edge). \(R(G_1, G_2, \ldots, G_m; s) \) denotes the \(m \)-color Ramsey number for \(s \)-uniform graphs/hypergraphs, avoiding \(G_i \) in color \(i \) for \(1 \leq i \leq m \). It is defined as the least integer \(n \) such that, in any coloring with \(m \) colors of the \(s \)-subsets of a set of \(n \) elements, for some \(i \) the \(s \)-subsets of color \(i \) contain a sub-(hyper)graph isomorphic to \(G_i \) (not necessarily induced). The value of \(R(G_1, G_2, \ldots, G_m; s) \) is fixed under permutations of the first \(m \) arguments. If \(s=2 \) (standard graphs) then \(s \) can be omitted. If \(G_i \) is a complete graph \(K_k \), then we may write \(k \) instead of \(G_i \), and if \(G_i = G \) for all \(i \) we may use the abbreviation \(R_m(G; s) \) or \(R_m(G) \). For \(s=2 \), \(K_k-e \) denotes a \(K_k \) without one edge, and for \(s=3 \), \(K_k-t \) denotes a \(K_k \) without one triangle (hyperedge).

The graph \(nG \) is formed by \(n \) disjoint copies of \(G \). \(G \cup H \) stands for vertex disjoint union of graphs, and the join \(G+H \) is obtained by adding all of the edges between vertices of \(G \) and \(H \) to \(G \cup H \). \(P_i \) is a path on \(i \) vertices, \(C_i \) is a cycle of length \(i \), and \(W_i \) is a wheel with \(i-1 \) spokes, i.e. a graph formed by some vertex \(x \), connected to all vertices of the cycle \(C_{i-1} \) (thus \(W_i = K_1 + C_{i-1} \)). \(K_{n,m} \) is a complete \(n \) by \(m \) bipartite graph, in particular \(K_{1,n} \) is a star graph. The book graph \(B_i = K_2 + \overline{K_i} = K_1 + K_{1,i} \) has \(i+2 \) vertices, and can be seen as \(i \) triangular pages attached to a single edge. The fan graph \(F_n \) is defined by \(F_n = K_1 + nK_2 \). For a graph \(G \), \(n(G) \) and \(e(G) \) denote the number of vertices and edges, respectively, and \(\delta(G) \) and \(\Delta(G) \) minimum and maximum degree of \(G \). Finally, \(\chi(G) \) denotes the chromatic number of \(G \). In general, we follow the notation used by West [West].

Section 2 contains the data for the classical two color Ramsey numbers \(R(k,l) \) for complete graphs, section 3 for the much studied two color cases of \(K_n-e \), \(K_3 \), \(K_{m,n} \), and section 4 for numbers involving cycles. Section 5 lists other often studied two color cases for general graphs. The multicolor and hypergraph cases are gathered in sections 6 and 7, respectively. Finally, section 8 gives pointers to cumulative data and to other surveys.
2. Classical Two-Color Ramsey Numbers

2.1. Values and bounds for $R(k, l)$, $k \leq 10$, $l \leq 15$

<table>
<thead>
<tr>
<th>l</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>28</td>
<td>36</td>
<td>40</td>
<td>42</td>
<td>47</td>
<td>50</td>
<td>52</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>25</td>
<td>36</td>
<td>49</td>
<td>58</td>
<td>73</td>
<td>92</td>
<td>98</td>
<td>149</td>
<td>238</td>
<td>291</td>
<td>349</td>
<td>417</td>
</tr>
<tr>
<td>5</td>
<td>43</td>
<td>58</td>
<td>80</td>
<td>101</td>
<td>126</td>
<td>144</td>
<td>171</td>
<td>191</td>
<td>213</td>
<td>239</td>
<td>265</td>
<td>317</td>
<td>401</td>
</tr>
<tr>
<td>6</td>
<td>102</td>
<td>113</td>
<td>132</td>
<td>169</td>
<td>179</td>
<td>253</td>
<td>263</td>
<td>317</td>
<td>401</td>
<td>503</td>
<td>6911</td>
<td>6911</td>
<td>401</td>
</tr>
<tr>
<td>7</td>
<td>205</td>
<td>495</td>
<td>780</td>
<td>1171</td>
<td>1804</td>
<td>2566</td>
<td>3703</td>
<td>5033</td>
<td>6911</td>
<td>15263</td>
<td>22112</td>
<td>22112</td>
<td>401</td>
</tr>
<tr>
<td>8</td>
<td>282</td>
<td>3583</td>
<td>6090</td>
<td>10630</td>
<td>16944</td>
<td>10578</td>
<td>15263</td>
<td>22112</td>
<td>22112</td>
<td>22112</td>
<td>401</td>
<td>63609</td>
<td>63609</td>
</tr>
<tr>
<td>9</td>
<td>565</td>
<td>581</td>
<td>12677</td>
<td>22325</td>
<td>38832</td>
<td>64864</td>
<td>10578</td>
<td>15263</td>
<td>22112</td>
<td>22112</td>
<td>22112</td>
<td>401</td>
<td>63609</td>
</tr>
<tr>
<td>10</td>
<td>798</td>
<td>23556</td>
<td>45881</td>
<td>81123</td>
<td>1265</td>
<td>1265</td>
<td>1265</td>
<td>1265</td>
<td>1265</td>
<td>1265</td>
<td>1265</td>
<td>1265</td>
<td>1265</td>
</tr>
</tbody>
</table>

Table I. Known nontrivial values and bounds for two color Ramsey numbers $R(k, l) = R(k, l; 2)$.

<table>
<thead>
<tr>
<th>l</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>GG</td>
<td>GG</td>
<td>Kéry</td>
<td>Ka2</td>
<td>GR</td>
<td>Ka2</td>
<td>GR</td>
<td>Ex5</td>
<td>GoR1</td>
<td>Ex12</td>
<td>Les</td>
<td>Piw1</td>
</tr>
<tr>
<td>4</td>
<td>GG</td>
<td>Ka1</td>
<td>MR4</td>
<td>Ex19</td>
<td>Ex3</td>
<td>Ex20</td>
<td>Ex16</td>
<td>HaKr1</td>
<td>HaKr1</td>
<td>HaKr1</td>
<td>Ex17</td>
<td>SLL</td>
</tr>
<tr>
<td>5</td>
<td>Ex4</td>
<td>MR5</td>
<td>HaKr1</td>
<td>Ex17</td>
<td>HaKr1</td>
<td>Ex17</td>
<td>Ex17</td>
<td>Ex17</td>
<td>Ex17</td>
<td>Ex17</td>
<td>Ex17</td>
<td>Ex17</td>
</tr>
<tr>
<td>6</td>
<td>Ka1</td>
<td>Ex16</td>
<td>XSR2</td>
<td>XXER</td>
<td>XXER</td>
<td>XXER</td>
<td>XXER</td>
<td>XXER</td>
<td>XXER</td>
<td>XXER</td>
<td>XXER</td>
<td>XXER</td>
</tr>
<tr>
<td>7</td>
<td>She2</td>
<td>XSR2</td>
<td>XXER</td>
</tr>
<tr>
<td>8</td>
<td>BR</td>
<td>XSR2</td>
<td>XXER</td>
</tr>
<tr>
<td>9</td>
<td>SHZ1</td>
<td>XSR2</td>
<td>SHZ1</td>
<td>XSR2</td>
<td>XSR2</td>
<td>XSR2</td>
<td>XSR2</td>
<td>XSR2</td>
<td>XSR2</td>
<td>XSR2</td>
<td>XSR2</td>
<td>XSR2</td>
</tr>
<tr>
<td>10</td>
<td>She2</td>
<td>SHZ1</td>
<td>She2</td>
<td>SHZ1</td>
<td>She2</td>
<td>She2</td>
<td>She2</td>
<td>She2</td>
<td>She2</td>
<td>She2</td>
<td>She2</td>
<td>She2</td>
</tr>
</tbody>
</table>

References for Table I:
HW+ abbreviates HWSYZH, as enhanced by Boza [Boza5], see 2.1.m.
We split the data into the table of values and a table with corresponding references. In Table I, known exact values appear as centered entries, lower bounds as top entries, and upper bounds as bottom entries. For some of the exact values two references are given when the lower and upper bound credits are different.

(a) The task of proving $R(3, 3) \leq 6$ was the second problem in Part I of the William Lowell Putnam Mathematical Competition held in March 1953 [Bush].

(b) Greenwood and Gleason [GG] established the initial values $R(3, 4) = 9$, $R(3, 5) = 14$ and $R(4, 4) = 18$ in 1955.

(c) Kéry [Kéry] proved that $R(3, 6) = 18$ in 1964, but only in 2007 an elementary and self-contained proof of this result appeared in English [Car].

(d) All of the critical graphs for the numbers $R(k, l)$ (graphs on $R(k, l) - 1$ vertices without K_k and without K_l in the complement) are known for $k = 3$ and $l = 3, 4, 5$ [Kéry], 6 [Ka2], 7 [RK2, MZ], 8 [BrGS] and 9 [GoR1], and there are 1, 3, 1, 7, 191, 477142, and 1 of them, respectively. All $(3, k)$-graphs, for $k \leq 6$, were enumerated in [RK2], and all $(4, 4)$-graphs in [MR2]. There exists a unique critical graph for $R(4, 4)$ [Ka2]. There are 350904 known critical graphs for $R(4, 5)$ [MR4], but there might be more of them.

(e) In [MR5], strong evidence is given for the conjecture that $R(5, 5) = 43$ and that there exist exactly 656 critical graphs on 42 vertices.

(f) The graphs constructed by Exoo in [Ex9, Ex12-Ex20], and some others, are available electronically from http://ginger.indstate.edu/ge/RAMSEY. Fujita [Fuj1] maintains a website with some lower bound constructions; in particular, it presents the bound $R(4, 8) \geq 58$ obtained independently from Exoo.

(g) Cyclic (or circular) graphs are often used for Ramsey graph constructions. Several cyclic graphs establishing lower bounds were given in the Ph.D. dissertation by J.G. Kalbfleisch in 1966, and many others were published in the next few decades (see [RK1]). Harborth and Krause [HaKr1] presented all best lower bounds up to 102 from cyclic graphs avoiding complete graphs. In particular, no lower bound in Table I can be improved with a cyclic graph on less than 102 vertices, except possibly for $R(3, k)$ for $k \geq 13$. See also item 2.3.k and section 5.16 [HaKr1]. Several best lower bounds from distance colorings, a slightly more general concept than circular graphs, are presented in [HaKr2].

(h) The claim that $R(5, 5) = 50$ posted on the web [Stone] is in error, and despite being shown to be incorrect more than once, this value is still being cited by some authors. The bound $R(3, 13) \geq 60$ [XieZ] cited in the 1995 version of this survey was shown to be incorrect in [Piw1]. Another incorrect construction for $R(3, 10) \geq 41$ was described in [DuHu].

(i) There are really only two general upper bound inequalities useful for small parameters, namely 2.3.a and 2.3.b. Stronger upper bounds for specific parameters were difficult to obtain, and they often involved massive computations, like those for the cases of $(3, 8)$ [MZ], $(3, 10)$ [GoR1], $(4, 5)$ [MR4], $(4, 6)$ and $(5, 5)$ [MR5]. The bound $R(6, 6) \leq 166$, only 1 more than the best known [Mac], is an easy consequence of a theorem in [Walk]
(2.3.b) and \(R(4, 6) \leq 41. \)

(j) T. Spencer [Spe4], Mackey [Mac], and Huang and Zhang [HZ1], using the bounds for minimum and maximum number of edges in (4,5) Ramsey graphs listed in [MR3, MR5], were able to establish new upper bounds for several higher Ramsey numbers, improving on all of the previous longstanding best results by Giraud [Gi3, Gi5, Gi6].

(k) Only some of the higher bounds implied by 2.3.* are shown, and more similar bounds could be derived. In general, we show bounds beyond the contiguous small values if they improve on results previously reported in this survey or published elsewhere. Some easy upper bounds implied by 2.3.a are marked as [Ea1].

(l) In 2009, we have recomputed the upper bounds in Table I marked [HZ1] using the method from the paper [HZ1], because the bounds there relied on an overly optimistic personal communication from T. Spencer. Further refinements of this method are studied in [HZ2, ShZ1, Shi2]. The paper [Shi2] subsumes the main results of the manuscripts [ShZ1, Shi2].

(m) In 2013, Boza [Boza5] using the method of [HWSYZH], which is abbreviated as HW+ in Table I, computed the bounds marked HW+ by starting from better upper bounds for smaller parameters. Most of the currently shown bounds are thus better than those originally listed in [HWSYZH, HZ2]. Five upper bounds not shown in Table I can be obtained similarly but they are larger than \(10^5 \).

2.2. Bounds for \(R(k, l) \), higher parameters

<table>
<thead>
<tr>
<th>(k)</th>
<th>(l)</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>WW</td>
<td>73</td>
<td>82</td>
<td>92</td>
<td>99</td>
<td>106</td>
<td>111</td>
<td>122</td>
<td>131</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Ex21</td>
<td>87</td>
<td>98</td>
<td>109</td>
<td>121</td>
<td>132</td>
<td>145</td>
<td>158</td>
<td>171</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>GoR1</td>
<td>Back1</td>
<td>Back1</td>
<td>Back1</td>
<td>Back2</td>
<td>Back2</td>
<td>Back2</td>
<td>Back2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>XSR</td>
<td>153</td>
<td>164</td>
<td>200</td>
<td>205</td>
<td>213</td>
<td>234</td>
<td>242</td>
<td>314</td>
<td>314</td>
</tr>
<tr>
<td></td>
<td>Gerb</td>
<td>265</td>
<td>289</td>
<td>388</td>
<td>396</td>
<td>411</td>
<td>424</td>
<td>441</td>
<td>485</td>
<td>521</td>
</tr>
<tr>
<td></td>
<td>Lia+</td>
<td>401</td>
<td>434</td>
<td>548</td>
<td>614</td>
<td>710</td>
<td>878</td>
<td>1070</td>
<td>SLWL</td>
<td>SLWL</td>
</tr>
<tr>
<td></td>
<td>2.3.h</td>
<td>609</td>
<td>711</td>
<td>797</td>
<td>908</td>
<td>1214</td>
<td>1214</td>
<td>1214</td>
<td>SLLL</td>
<td>SLLL</td>
</tr>
<tr>
<td>7</td>
<td>861</td>
<td>961</td>
<td>1045</td>
<td>1236</td>
<td>1617</td>
<td>2.3.h</td>
<td>2.3.h</td>
<td>2.3.h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.3.h</td>
<td>2.3.h</td>
<td>2.3.h</td>
<td>2.3.h</td>
<td>2.3.h</td>
<td>2.3.h</td>
<td>2.3.h</td>
<td>2.3.h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table IIa. Known bounds for higher two-color Ramsey numbers \(R(k, l) \), with references. Lower and upper bounds are given for \(k = 3 \), only lower bounds for \(k \geq 4 \); Lia+, W1+ and W2+ abbreviate LiaWXS, WWY1 and WSLX2, respectively.
Table IIb. Known lower bounds for higher Ramsey numbers $R(3, l)$ for $l \geq 24$; $W1+$, $W2+$ and $Ch+$ abbreviate $WSLX1$, $WSLX2$ and $ChWXSL$, respectively.

<table>
<thead>
<tr>
<th>l</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>143</td>
<td>154</td>
<td>159</td>
<td>167</td>
<td>173</td>
<td>184</td>
<td>190</td>
<td>199</td>
</tr>
<tr>
<td></td>
<td>$W1+$</td>
<td>$W2+$</td>
<td>$W1+$</td>
<td>$W1+$</td>
<td>$W2+$</td>
<td>$W2+$</td>
<td>$W2+$</td>
<td>$W2+$</td>
</tr>
</tbody>
</table>

Table IIc. Known lower bounds for diagonal Ramsey numbers $R(k, k)$ for $k \geq 11$; $Lia+$ abbreviates $LiaWXCS$, see also 2.2.c below.

<table>
<thead>
<tr>
<th>k</th>
<th>lower bound</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>1597</td>
<td>XSR2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2.c</td>
</tr>
<tr>
<td>12</td>
<td>1639</td>
<td>LSL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2.c</td>
</tr>
<tr>
<td>13</td>
<td>2557</td>
<td>LSL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2.c</td>
</tr>
<tr>
<td>14</td>
<td>2989</td>
<td>LSL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2.c</td>
</tr>
<tr>
<td>15</td>
<td>5485</td>
<td>LSL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2.c</td>
</tr>
<tr>
<td>16</td>
<td>5605</td>
<td>LSL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.2.c</td>
</tr>
<tr>
<td>17</td>
<td>8917</td>
<td>LSL</td>
</tr>
</tbody>
</table>

(a) The upper bounds in Tables I and IIa marked [GoR1, Les, Back1] were obtained mainly by deriving lower bounds for several cases of $e(3, k, n)$, which denotes the minimum number of edges in n-vertex triangle-free graphs with independence number less than k. The study of $e(3, k, n)$ was also the main tool for the results obtained in [GrY, GR, RK2, RK3, GoR2].

(b) *Ramsey Calculus* [Back1], is an extensive manuscript by Backelin, which, among other goals, addresses the derivation of $e(3, k, n)$ and the corresponding realisers while avoiding reliance on computer assisted results as far as possible. It achieves the derivation of several lower bounds for $e(3, k+1, n)$ better than those in [GoR1, RK3, RK4] for n close to and above $13k/4$.

(c) The construction by Mathon [Mat] and Shearer [She2] (see also items 2.3.i, 6.2.k and 6.2.1), using the data obtained by Shearer [She4] for primes up to 7000, implies the lower bounds in Table IIc marked 2.2.c. The first two bounds credited in Table IIc to [LSL] also follow similarly from the data in [She4]. The same approach does not improve on the bound $R(12,12) \geq 1639$ [XSR2]. The bounds in [Lia+] were obtained by extending data for Payley graphs beyond [Sha4].

(d) The lower bounds marked [XXR], [XXER], [XSR2], 2.3.e and 2.3.h need not be cyclic. Several of the Cayley colorings from [Ex16] are also non-cyclic. All other lower bounds listed in Table IIa were obtained by construction of cyclic graphs.
(e) The graphs establishing lower bounds marked 2.3.g can be constructed by using appropriately chosen graphs G and H with a common m-vertex induced subgraph, similarly as it was done in several cases in [XXR].

(f) Yu [Yu2] constructed a special class of triangle-free cyclic graphs establishing several lower bounds for $R(3,k)$, for $k \geq 61$. All of these bounds can be improved by the inequalities in 2.3.c and data from Tables I and II.

(g) Unpublished bound $R(4,22) \geq 314$ [LSLW] improves over 282 given in [SL]. [LSLW] includes also $R(4,25) \geq 458$. Not yet published bounds $R(3,23) \geq 139$ [XWCS] and $R(4,17) \geq 200$ [LiaWXS] improve over 137 and 182 obtained in [WSLX2] and [LSS1], respectively.

(h) Two special cases which improve on bounds listed in earlier revisions: $R(9,17) \geq 1411$ is given in [XXR] and $R(10,15) \geq 1265$ can be obtained using 2.3.h.

(i) One can expect that the lower bounds in Table II are weaker than those in Table I, especially smaller ones, in the sense that some of them should not be that hard to improve, in contrast to the bounds in Table I.

2.3. General results on $R(k,l)$

(a) $R(k,l) \leq R(k-1,l) + R(k,l-1)$, with strict inequality when both terms on the right hand side are even [GG]. There are obvious generalizations of this inequality for avoiding graphs other than complete.

(b) $R(k,k) \leq 4R(k,k-2) + 2$ [Walk].

(c) Explicit construction for $R(3,3k+1) \geq 4R(3,k+1)−3$, for all $k \geq 2$ [CleDa], explicit construction for $R(3,4k+1) \geq 6R(3,k+1)−5$, for all $k \geq 1$ [ChCD].

(d) Explicit triangle-free graphs with independence k on $\Omega(k^{3/2})$ vertices [Alon2, CPR]. For other constructive results in relation to $R(3,k)$ see [BBH1, BBH2, Fra1, Fra2, FrLo, GoR1, Gri, KlaM1, Loc, RK2, RK3, RK4, Stat, Yu1]. See also 2.3.(3) and 2.3.(4) below.

(e) The study of bounds for the difference between consecutive Ramsey numbers was initiated in [BEFS], where the bound $R(k,l) \geq R(k,l-1) + 2k - 3$, for $k,l \geq 3$, was established by a construction. In 1980, Erdős and Sós (cf. [Erd2, ChGra2]) asked: If we set $\Delta_{k,l} = R(k,l) - R(k,l-1)$, then is it true that $\Delta_{k,k+1}/k \rightarrow \infty$ as $k \rightarrow \infty$? Only easy bounds on $\Delta_{k,l}$ are known, in particular $3 \leq \Delta_{3,l} \leq l$ for $k = 3$. For some discussion of the latter see [XSR2, GoR2].

(f) By taking a disjoint union of two critical graphs one can easily see that $R(k,p) \geq s$ and $R(k,q) \geq t$ imply $R(k,p+q-1) \geq s + t - 1$. Xu and Xie [XX1] improved this construction to yield better general lower bounds, in particular $R(k,p+q-1) \geq s + t + k - 3$.

(g) For $2 \leq p \leq q$ and $3 \leq k$, if (k,p)-graph G and (k,q)-graph H have a common induced subgraph on m vertices without K_{k-1}, then $R(k,p+q-1) \geq n(G) + n(H) + m$. In particular, this implies the bounds $R(k,p+q-1) \geq R(k,p) + R(k,q) + k - 3$ and $R(k,p+q-1) \geq R(k,p) + R(k,q) + p - 2$ [XX1, XXR], with further small
improvements in some cases, such as using the term \(k - 2 \) instead of \(k - 3 \) in the previous bound [XSR2].

(h) \(R(2k-1, l) \geq 4R(k, l-1) - 3 \) for \(l \geq 5 \) and \(k \geq 2 \), and in particular for \(k = 3 \) we have \(R(5, l) \geq 4R(3, l-1) - 3 \) [XXER].

(i) If the quadratic residues Paley graph \(Q_p \) of prime order \(p = 4t + 1 \) contains no \(K_k \), then \(R(k, k) \geq p + 1 \) and \(R(k + 1, k + 1) \geq 2p + 3 \) [She2, Mat]. Data for larger \(p \) was obtained in [LSL]. See also 3.1.c, and items 6.2.k and 6.2.l for similar multicolor results.

(j) Study of Ramsey numbers for large disjoint unions of graphs [Bu1, Bu9], in particular \(R(nK_k, nK_l) = n(k + l - 1) + R(K_{k-1}, K_{l-1}) - 2 \), for \(n \) large enough [Bu8].

(k) \(R(k, l) \geq L(k, l) + 1 \), where \(L(k, l) \) is the maximal order of any cyclic \((k, l)\)-graph. A compilation of many best cyclic bounds was presented in [HaKr1].

(l) The graphs critical for \(R(k, l) \) are \((k-1)\)-vertex connected and \((2k-4)\)-edge connected, for \(k, l \geq 3 \) [BePi]. This was improved to vertex connectivity \(k \) for \(k \geq 5 \) and \(l \geq 3 \) in [XSR2].

(m) All Ramsey-critical \((k, l)\)-graphs are Hamiltonian for \(k \geq l - 1 \geq 1 \) and \(k \geq 3 \), except when \((k, l) = (3, 2)\) [XSR2].

(n) Two-color lower bounds can be obtained by using items 6.2.m, 6.2.n and 6.2.o with \(r = 2 \). Some generalizations of these were obtained in [ZLLS].

In the last seven items (1)-(7) of this section we only briefly mention some pointers to the literature dealing with asymptotics of Ramsey numbers. This survey was designed mostly for small, finite, and combinatorial results, but still we wish to give the reader some useful and representative references to more traditional papers studying the infinite.

(1) In 1947, Erdős gave a simple probabilistic proof that \(R(k, k) \geq ck^{2k/2} \) [Erd1]. Spencer [Spe1] improved the constant \(c \) to \(\sqrt{2}/e \). More probabilistic asymptotic lower bounds for other Ramsey numbers were obtained in [Spe1, Spe2, ALPu].

(2) The limit of \(R(k, k)^{1/k} \), if it exists, is between \(\sqrt{2} \) and 4 [GRS, GrRö, ChGra2].

(3) In 1995, Kim obtained a breakthrough result by proving that \(R(3, k) = \Theta(k^{2/\log k}) \) [Kim]. The best known lower and upper bounds constants are 1/4 [BohK2] and 1 (implicit in [She1]), respectively. An independent proof of the lower bound constant 1/4 and a conjecture that it is the best possible are presented in [FizGM].

(4) Other asymptotic and general results on triangle-free graphs in relation to \(R(3, k) \) can be found in [Boh, AIBK, AjKS, Alon2, CleDa, ChCD, CPR, Gri, FrLo, Loc, She1, She3].

(5) Explicit constructions yielded the lower bounds \(R(4, k) \geq \Omega(k^{8/5}) \), \(R(5, k) \geq \Omega(k^{5/3}) \) and \(R(6, k) \geq \Omega(k^2) \) [KosPR]. For the same cases of \(k \) classical probabilistic arguments give \(\Omega(k^{2/\log k} k^{5/2}) \), \(\Omega(k^{2/\log k} k^{3}) \) and \(\Omega(k^{2/\log k} k^{7/2}) \), respectively [Spe2]. These were improved to \(\Omega(k^{5/2}/(\log k)^2) \), \(\Omega(k^{3}/(\log k)^{8/3}) \) and \(\Omega(k^{7/2}/(\log k)^{13/4}) \), respectively, in [Boh, BohK1], and in general to \(R(s, t) = \Omega(t^{(s+1)/2}/(\log t)^{(s^2-s-4)/(2s-4)}) \), for fixed \(s \) and large \(t \) [BohK1].
(6) Explicit construction of a graph with clique and independence k on $2^{c \log^2 k / \log \log k}$ vertices was presented by Frankl and Wilson [FraWi], and further constructions by Chung [Chu3] and Grolmusz [Grol1, Grol2]. In 2012, the best explicit construction for large k by Barak et al. [BarRSW] improved over [FraWi] by giving such a graph on $2^{(\log \log k)^c}$ vertices for some $c > 1$, or equivalently, on n vertices, where $\log \log n = (\log \log k)^c$. Explicit constructions such as these are usually weaker than known probabilistic results.

(7) In 2010, Conlon [Con1] obtained the best until now upper bound for the diagonal case:

$$R(k+1, k+1) \leq {2k \choose k} - c \log k / \log \log k$$

Other asymptotic bounds can be found, for example, in [Chu3, McS, Boh, BohK1] (lower bound) and [Tho] (upper bound), and for many other bounds in the general case of $R(k, l)$ consult [Spe2, GRS, GrRö, Chu4, ChGra2, LiRZ1, AlPu, Kriv].
3. Two Colors: $K_n - e, K_3, K_{m,n}$

3.1. Dropping one edge from complete graph

This section contains known values and nontrivial bounds for the two color case when the avoided graphs are complete or have the form $K_k - e$, but not both are complete.

<table>
<thead>
<tr>
<th>G</th>
<th>$K_3 - e$</th>
<th>$K_4 - e$</th>
<th>$K_5 - e$</th>
<th>$K_6 - e$</th>
<th>$K_7 - e$</th>
<th>$K_8 - e$</th>
<th>$K_9 - e$</th>
<th>$K_{10} - e$</th>
<th>$K_{11} - e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_3 - e$</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>K_4</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>31</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>$K_5 - e$</td>
<td>5</td>
<td>10</td>
<td>13</td>
<td>17</td>
<td>28</td>
<td>29</td>
<td>34</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>K_6</td>
<td>7</td>
<td>11</td>
<td>19</td>
<td>30</td>
<td>37</td>
<td>52</td>
<td>75</td>
<td>105</td>
<td>139</td>
</tr>
<tr>
<td>$K_7 - e$</td>
<td>7</td>
<td>13</td>
<td>22</td>
<td>31</td>
<td>40</td>
<td>66</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_8</td>
<td>9</td>
<td>16</td>
<td>30</td>
<td>43</td>
<td>67</td>
<td>112</td>
<td>183</td>
<td>277</td>
<td>409</td>
</tr>
<tr>
<td>$K_9 - e$</td>
<td>9</td>
<td>17</td>
<td>31</td>
<td>45</td>
<td>70</td>
<td>59</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_{10}</td>
<td>11</td>
<td>21</td>
<td>37</td>
<td>53</td>
<td>110</td>
<td>205</td>
<td>373</td>
<td>621</td>
<td>1007</td>
</tr>
<tr>
<td>$K_{11} - e$</td>
<td>11</td>
<td>28</td>
<td>40</td>
<td>66</td>
<td>59</td>
<td>135</td>
<td>251</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K_{12}</td>
<td>13</td>
<td>30</td>
<td>51</td>
<td>83</td>
<td>193</td>
<td>392</td>
<td>753</td>
<td>1336</td>
<td>2303</td>
</tr>
<tr>
<td>K_{13}</td>
<td>15</td>
<td>42</td>
<td>123</td>
<td>300</td>
<td>657</td>
<td>1349</td>
<td>2558</td>
<td>4722</td>
<td>8200</td>
</tr>
</tbody>
</table>

Table IIIa. Two types of Ramsey numbers $R(G,H)$, includes all known nontrivial values.

(a) The exact values in Table IIIa involving $K_3 - e$ are obvious, since one can easily see that $R(K_3 - e, K_k) = R(K_3 - e, K_{k+1} - e) = 2k - 1$ for all $k \geq 2$.

(b) More bounds (beyond those shown in Tables IIIa/b) can be easily obtained using Table I, an obvious generalization of the inequality $R(k,l) \leq R(k-1,l) + R(k,l-1)$, and by monotonicity of Ramsey numbers, in this case $R(K_{k-1}, G) \leq R(K_k - e, G) \leq R(K_k, G)$.

(c) If the quadratic residues Paley graph Q_p of prime order $p = 4t + 1$ contains no $K_k - e$, then $R(K_{k+1} - e, K_{k+1} - e) \geq 2p + 1$. In particular, $R(K_{14} - e, K_{14} - e) \geq 2987$ [LiShen]. This was generalized to $K_k - F$ for some small graphs F instead of an edge $e (= K_2)$ [WaLi]. See also item 2.3.i.
References for Table IIIa;
CE+ abbreviates CEHMS, for some details on BZ1 and BZ2 see item 3.1.d below.

Table IIIb. Lower and upper bounds for $R(K_3, K_k-e)$ for $11 \leq k \leq 16$;
lower bounds for $k = 12, 14, 16$ are the same as for $R(K_3, K_{k-1})$.

(d) This item follows personal communication from Boza [Boza5]. The upper bounds marked [BZ1] were obtained until 2012, while ones marked [BZ2] are from 2013. They are implied by [Boza6], the previous work [Boza1, Boza3, BoPo], the method of [HZ2], and the bounds given in [GoR2]. The enumeration of all (K_6, K_4-e)-graphs [ShWR] is used in [BoPo].

(e) All (K_3, K_k-e)-graphs were enumerated for $k \leq 6$ [Ra1] and $k = 7$ [Fid2, GoR2]. Full sets of (K_l, K_k-e)-graphs were posted for the parameters (K_3, K_k-e) for $k \leq 7$, (K_4, K_k-e) for $k \leq 5$, and (K_5, K_k-e) for $k \leq 4$ at [Fid2], and other full and restricted families at [BrCGM, Fuj1].
(f) The number of \((K_3, K_I - e)\)-critical graphs for \(l = 4, 5\) and 8 is 4, 2 and 9, respectively [MPR]. There are 7 critical graphs for \(R(K_3, K_9 - e)\), and at least 40 such graphs for \(R(K_3, K_{10} - e)\) [GoR2].

(g) The critical graphs are unique for: \(R(K_3, K_l - e)\) for \(l = 3\) [Tr], 6 and 7 [Ra1], \(R(K_4 - e, K_4 - e)\) [FRS2], \(R(K_5 - e, K_5 - e)\) [Ra3] and \(R(K_4 - e, K_7 - e)\) [McR].

(h) All of the critical graphs for the cases \(R(K_4 - e, K_4)\) [EHM1], \(R(K_4 - e, K_5)\) and \(R(K_5 - e, K_4)\) [DzFi1] are known, and there are 5, 13 and 6 of them, respectively. The unpublished value of \(R(K_4 - e, K_6)\) [McN] was confirmed in [ShWR], where in addition all 24976 critical graphs were found.

(i) It is known that \(R(K_4, K_{12} - e) \geq 128\) [Shao] by using one color of the \((4,4,4;127)\)-coloring defined in [HiIr].

(j) \(R(K_k - e, K_k - e) \leq 4R(K_{k-2}, K_k - e) - 2\) [LiShen]. For a similar inequality for complete graphs see 2.3.b.

(k) Study of the cases \(R(K_m, K_n - K_{1,s})\) and \(R(K_m - e, K_n - K_{1,s})\), with several exact values for special parameters [ChaMR].

(l) The upper bounds from [ShZ1, ShZ2] are subsumed by a later article [Shi2].

(m) The upper bounds in [HZ2] were obtained by a reasoning generalizing the bounds for classical numbers in [HZ1]. Several other results from section 2.3 apply, though checking in which situation they do may require looking inside the proofs whether they still hold for \(K_n - e\).

3.2. Triangle versus other graphs

(a) \(R(3, k) = \Theta(k^2/\log k)\) [Kim]. For more comments on asymptotics see section 2.3 and the item 3.2.o/p below.

(b) Explicit construction for \(R(3, 3k + 1) \geq 4R(3, k + 1) - 3\), for all \(k \geq 2\) [CleDa], explicit construction for \(R(3, 4k + 1) \geq 6R(3, k + 1) - 5\), for all \(k \geq 1\) [ChCD].

(c) Explicit triangle-free graphs with independence \(k\) on \(\Omega(k^{3/2})\) vertices [Alon2, CPR].

(d) \(R(K_3, K_7 - 2P_2) = R(K_3, K_7 - 3P_2) = 18\) [SchSch2].

(e) \(R(K_3, K_3 + \overline{K}_m) = R(K_3, K_3 + C_m) = 2m + 5\) for \(m \geq 212\) [Zhou1].

(f) \(R(K_3, K_2 + T_n) = 2n + 3\) for \(n\)-vertex trees \(T_n\), for \(n \geq 4\) [SonGQ].

(g) \(R(K_3, G) = 2n(G) - 1\) for any connected \(G\) on at least 4 vertices and with at most \((17n(G) + 1)/15\) edges, in particular for \(G = P_i\) and \(G = C_i\), for all \(i \geq 4\) [BEFRS1].

(h) \(R(K_3, Q_n) = 2^{n+1} - 1\) for large \(n\) [FizGMSS], where \(Q_n\) is the \(n\)-dimensional hypercube. For the general case of \(R(K_m, Q_n)\) see item 5.15.n.

(i) Relations between \(R(3, k)\) and graphs with large \(\chi(G)\) [Für], further detailed study of the relation between \(R(3, k)\) and the chromatic gap [GySeT].
(j) $R(K_3, G) \leq 2e(G) + 1$ for any graph G without isolated vertices [Sid3, GoK].

(k) $R(K_3, G) \leq n(G) + e(G)$ for all G, a conjecture [Sid2].

(l) $R(K_3, G)$ for all connected G up to 9 vertices [BBH1, BBH2].

(m) $R(K_3, G)$ for all graphs G on 10 vertices [BrGS], except 10 cases (three of which, including $G = K_{10} - e$, were solved [GoR2]). See also section 8.1.

(n) Formulas for $R(nK_3, mG)$ for all G of order 4 without isolates [Zeng].

(o) For every positive constant c, Δ, and n large enough, there exists graph G with $\Delta(G) \leq \Delta$ for which $R(K_3, G) > cn$ [Bra3].

(p) $R(K_3, K_{k,k}) = \Theta(k^2/\log k)$ [LinLi2].

(q) For $R(K_3, K_n)$ see section 2, and for $R(K_3, K_n - e)$ see section 3.1.

(r) Since $B_1 = F_1 = C_3 = W_3 = K_3$, other sections apply. See also [Boh, AjKS, BBH1, BBH2, FrLo, Fra1, Fra2, Für, Gri, GySeT, Loc, KlaM1, LiZa1, RK2, RK3, RK4, She1, She3, Spe2, Stat, Yu1].

3.3. Complete bipartite graphs

Note: This subsection gathers information on Ramsey numbers where specific bipartite graphs are avoided in edge colorings of K_n (as everywhere in this survey), in contrast to the often studied bipartite Ramsey numbers, which are not covered in this survey, where the edges of complete bipartite graphs $K_{n,m}$ are colored.

3.3.1. Numbers

The following Tables IVa and IVb gather information mostly from the surveys by Lortz and Mengersen [LoM3, LoM4]. All cases involving $K_{1,2} = P_3$ are solved by a formula for $R(P_3, G)$, which holds for all isolate-free graphs G, derived in [CH2]. All star versus star numbers are given below in the item 3.3.2.a and in section 5.5.
Table IVa. Ramsey numbers $R(K_{m,n}, K_{p,q})$;
unpublished results are marked with a *, and Sh1+, Sh2+ abbreviate ShaXBP, ShaoWX.

<table>
<thead>
<tr>
<th>m,n</th>
<th>1, 2</th>
<th>1, 3</th>
<th>1, 4</th>
<th>1, 5</th>
<th>1, 6</th>
<th>2, 2</th>
<th>2, 3</th>
<th>2, 4</th>
<th>2, 5</th>
<th>3, 3</th>
<th>3, 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 2</td>
<td>CH2</td>
<td>CH2</td>
<td>Par3</td>
<td>Par3</td>
<td>FRS4</td>
<td>CH1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 3</td>
<td>5</td>
<td>6</td>
<td>FRS4</td>
<td>Stev</td>
<td>FRS4</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>HaMe4</td>
<td>10</td>
<td>Bu4</td>
</tr>
<tr>
<td>2, 4</td>
<td>6</td>
<td>7</td>
<td>CH2</td>
<td>HaMe3</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td>12</td>
<td>14</td>
</tr>
<tr>
<td>2, 5</td>
<td>7</td>
<td>8</td>
<td>CH2</td>
<td>HaMe3</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>2, 6</td>
<td>8</td>
<td>9</td>
<td>CH2</td>
<td>HaMe3</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>15*</td>
<td>12</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>3, 3</td>
<td>7</td>
<td>8</td>
<td>CH2</td>
<td>HaMe3</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>3, 4</td>
<td>7</td>
<td>9</td>
<td>CH2</td>
<td>HaMe3</td>
<td>11</td>
<td>13</td>
<td>14</td>
<td>11</td>
<td>14</td>
<td>17</td>
<td>≤21</td>
</tr>
<tr>
<td>3, 5</td>
<td>9</td>
<td>10</td>
<td>CH2</td>
<td>HaMe3</td>
<td>13</td>
<td>14</td>
<td>15*</td>
<td>16*</td>
<td>17</td>
<td>17*</td>
<td>≥21</td>
</tr>
</tbody>
</table>

Table IVb. Known Ramsey numbers $R(K_{2,n}, K_{2,m})$ for $6 \leq n \leq 11, 2 \leq m \leq 11$;
unpublished results improving over [LoM3] are marked with a *.

<table>
<thead>
<tr>
<th>m</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>HaMe4</td>
<td>LaM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM1</td>
<td>EHM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>HaMe4</td>
<td>LaM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM1</td>
<td>EHM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>HaMe4</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM1</td>
<td>EHM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>HaMe4</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM1</td>
<td>EHM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>HaMe4</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM1</td>
<td>EHM2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>HaMe4</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM3</td>
<td>LoM1</td>
<td>EHM2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 15 -
(a) The next few easily computed values of \(R(K_{1,n}, K_{2,2}) \), extending data in the first row of Table IVa, are 13, 14, 21 and 22 for \(n \) equal to 9, 10, 16 and 17, respectively. See function \(f(n) \) in 3.3.2.c of the next subsection below.

(b) Formula for \(R(K_{1,n}, K_{k_1,k_2, \ldots, k_r,m}) \) for \(m \) large enough, in particular for \(t = 1,k_1 = 2 \)

(c) The values and bounds for higher cases of \(R(K_{2,2}, K_{2,n}) \) are 20, 22, 24, 25, 26, 27/28, 28/29, 30 and 32 for \(12 \leq n \leq 21 \), respectively. All of them were given in [HaMe4], except those for \(n = 14 \), 15 and 18, which were obtained in [Dyb]. More exact values for prime powers \(\lceil \sqrt{n} \rceil \) and \(\lceil \sqrt{n} \rceil + 1 \) can be found in [HaMe4].

(d) The known values of \(R(K_{2,2}, K_{3,n}) \) are 15, 16, 17, 20 and 22 for \(6 \leq n \leq 10 \) [Lortz], and \(R(K_{2,2}, K_{3,12}) = 24 \) [Shao]. See Tables IVa and IVb for the smaller cases, and [HaMe4] for upper bounds and values for some prime powers \(\lceil \sqrt{n} \rceil \).

(e) \(R(K_{2,n}, K_{2,n}) \) is equal to 46, 50, 54, 57 and 62 for \(12 \leq n \leq 16 \), respectively. The first open diagonal case is 65 \(\leq R(K_{2,17}, K_{2,17}) \leq 66 \) [EHM2].

(f) A number of general upper and lower bounds for \(R(K_{s,t}, K_{s,t}) \), in particular for small fixed \(s \), and for some slightly off-diagonal cases were obtained in [LoM2]. They can be used to derive the upper bounds for the cases listed in (h) and (i) below.

(g) Several lower bounds of the form \(R(K_{s,t}, K_{s,t}) \geq m \) from distance colorings, a slightly more general concept than circular graphs, were presented in [HaKr2] for the following triples \((s, t, m)\): \((3, 6, 38), (3, 7, 42), (3, 8, 43), (3, 9, 54), (4, 5, 42), (4, 6, 43), (4, 7, 54), (5, 5, 54)\).

(h) \(30 \leq R(K_{3,5}, K_{3,5}) \leq 38 \) [HaKr2][LoM2]

(i) \(30 \leq R(K_{4,4}, K_{4,4}) \leq 62 \) [HaKr2][LoM2]

3.3.2. General results

(a) \(R(K_{1,n}, K_{1,m}) = n + m - \varepsilon \), where \(\varepsilon = 1 \) if both \(n \) and \(m \) are even and \(\varepsilon = 0 \) otherwise [Har1]. It is also a special case of multicolor numbers for stars obtained in [BuRo1].

(b) \(R(K_{1,3}, K_{m,n}) = m + n + 2 \) for \(m, n \geq 1 \) [HaMe3].

(c) \(R(K_{1,n}, K_{2,2}) = f(n) \leq n + \sqrt{n} + 1 \), with \(f(q^2) = q^2 + q + 1 \) and \(f(q^2 + 1) = q^2 + q + 2 \) for every \(q \) which is a prime power [Par3]. Furthermore, \(f(n) \geq n + \sqrt{n} - 6n^{11/40} \) [BEFRS4]. For more bounds on \(f(n) \) see [Par5, Chen, ChenJ, MoCa, WuSZR].
(d) \(R(K_{1,n+1}, K_{2,2}) \leq R(K_{1,n}, K_{2,2}) + 2 \) [Chen].

(e) \(R(K_{2,k+1}, K_{1,v-k+1}) \) is either \(v + 1 \) or \(v + 2 \) if there exists a \((v, k, \lambda)\)-difference set. This and other related results are presented in [Par4, Par5]. See also [GoCM, GuLi].

(f) Formulas and bounds on \(R(K_{2,2}, K_{2,n}) \), and bounds on \(R(K_{2,2}, K_{m,n}) \). In particular, we have \(R(K_{2,2}, K_{2,k}) = n + k \sqrt{n} + c \), for \(k = 2, 3, 4 \), some prime powers \(\lceil \sqrt{n} \rceil \) and \(\lceil \sqrt{n} \rceil + 1 \), and some \(-1 \leq c \leq 3 \) [HaMe4]. An improvement of the latter for some special cases of \(n \) was obtained in [Dyb].

(g) \(R(K_{2,n}, K_{2,n}) \leq 4n - 2 \) for all \(n \geq 2 \), and the equality holds if and only if there exists a strongly regular \((4n - 3, 2n - 2, n - 2, n - 1)\)-graph [EHM2].

(h) Conjecture that \(4n - 3 \leq R(K_{2,n}, K_{2,n}) \leq 4n - 2 \) for all \(n \geq 2 \). Many special cases are solved and several others are discussed in [LoM1].

(i) \(R(K_{2,n-1}, K_{2,n}) \leq 4n - 4 \) for all \(n \geq 3 \), with the equality if there exists a symmetric Hadamard matrix of order \(4n - 4 \). There are only 4 cases in which the equality is still open for \(3 \leq n \leq 58 \), namely 30, 40, 44 and 48 [LoM1].

(j) \(R(K_{2,n-s}, K_{2,n}) \leq 4n - 2s - 3 \) for \(s \geq 2 \) and \(n \geq s + 2 \), with the equality in many cases involving Hadamard matrices or strongly regular graphs. Asymptotics of \(R(K_{2,n}, K_{2,m}) \) for \(m \gg n \) [LoM3].

(k) Some algebraic lower and upper bounds on \(R(K_{s,n}, K_{1,m}) \) for various combinations of \(n \), \(m \) and \(1 \leq t, s \leq 3 \) [BaiLi, BaLX]. A general lower bound \(R(K_{m,n}) \geq 2^m (n - n^{0.525}) \) for large \(n \) [Dong].

(l) Upper bounds for \(R(K_{2,2}, K_{m,n}) \) for \(m, n \geq 2 \), with several cases identified for which the equality holds. Special focus on the cases for \(m = 2 \) [HaMe4].

(m) Bounds for the numbers of the form \(R(K_{k,n}, K_{m,n}) \), specially for fixed \(k \) and close to the diagonal cases. Asymptotics of \(R(K_{3,n}, K_{3,m}) \) for \(m \gg n \) [LoM2].

(n) \(R(nK_{1,3}, mK_{1,3}) = 4n + m - 1 \) for \(n \geq m \geq 1 \), \(n \geq 2 \) [BES].

(o) Asymptotics for \(K_{2,m} \) versus \(K_n \) [CaLRZ]. Upper bound asymptotics for \(K_{k,m} \) versus \(K_n \) [LiZa1] and for some bipartite graphs \(K_n \) [JiSa].

(p) Special two-color cases apply in the study of asymptotics for multicolor Ramsey numbers for complete bipartite graphs [ChGra1].
4. Two Colors: Numbers Involving Cycles

4.1. Cycles, cycles versus paths and stars

Note: The paper *Ramsey Numbers Involving Cycles* [Ra4] is based on the revision #12 of this survey. It collects and comments on the results involving cycles versus any graphs, in two or more colors. It contains some more details than this survey, but only until 2009.

Cycles

(a) \(R(C_3, C_3) = 6 \) [GG, Bush],
\[R(C_4, C_4) = 6 \] [CH1].

(b) \(R(C_3, C_n) = 2n - 1 \) for \(n \geq 4 \), \(R(C_4, C_n) = n + 1 \) for \(n \geq 6 \),
\[R(C_5, C_n) = 2n - 1 \] for \(n \geq 5 \), and \(R(C_6, C_6) = 8 \) [ChaS].

(c) Result obtained independently in [Ros1] and [FS1], a new simpler proof in [KáRos]:
\[
R(C_m, C_n) = \begin{cases}
2n - 1 & \text{for } 3 \leq m \leq n, m \text{ odd, } (m, n) \neq (3,3), \\
\frac{n - 1 + m}{2} & \text{for } 4 \leq m \leq n, m \text{ and } n \text{ even, } (m, n) \neq (4,4), \\
\max\{ n - 1 + m/2, 2m - 1 \} & \text{for } 4 \leq m < n, m \text{ even and } n \text{ odd.}
\end{cases}
\]

(d) Characterization of all graphs critical for \(R(C_4, C_n) \) [WuSR].

(e) \(R(mC_3, nC_3) = 3n + 2m \) for \(n \geq m \geq 1, n \geq 2 \) [BES].

(f) \(R(mC_4, nC_4) = 2n + 4m - 1 \) for \(m \geq n \geq 1, (n, m) \neq (1,1) \) [LiWa1].

(g) Formulas for \(R(mC_4, nC_5) \) [LiWa2].

(h) Formulas and bounds for \(R(nC_m, nC_m) \) [Den2, Biel1].

(i) Study of \(R(S_1, S_2) \), where \(S_1 \) and \(S_2 \) are sets of cycles [Hans].

(j) Unions of cycles, formulas and bounds for various cases including diagonal, different lengths, different multiplicities [MiSa, Den2], powers of cycles [AllBS], disjoint cycles versus \(K_n \) [Fuj2], and their relation to 2-local Ramsey numbers [Biel1].

Cycles versus paths

Result obtained by Faudree, Lawrence, Parsons and Schelp in 1974 [FLPS]:
\[
R(C_m, P_n) = \begin{cases}
2n - 1 & \text{for } 3 \leq m \leq n, m \text{ odd,} \\
\frac{n - 1 + m}{2} & \text{for } 4 \leq m \leq n, m \text{ even,} \\
\max\{ m - 1 + \lfloor n/2 \rfloor, 2n - 1 \} & \text{for } 2 \leq n \leq m, m \text{ odd,} \\
\frac{m - 1 + n/2}{2} & \text{for } 2 \leq n \leq m, m \text{ even.}
\end{cases}
\]

For all \(n \) and \(m \) it holds that \(R(P_m, P_n) \leq R(C_m, P_n) \leq R(C_m, C_n) \). Each of the two inequalities can become an equality, and, as derived in [FLPS], all four possible combinations of \(< \) and \(= \) hold for an infinite number of pairs \((m,n)\). For example, if both \(m \) and \(n \) are even, and at least one of them is greater than 4, then \(R(P_m, P_n) = R(C_m, P_n) = R(C_m, C_n) \).
For related generalizations see [BEFRS2].

Cycles versus stars

Only partial results for \(C_m \) versus stars are known. Lawrence [La1] settled the cases for odd \(m \) and for long cycles (see also [Clark, Par6]). The case for short even cycles is open, and it is related in particular to bipartite graphs. Partial results for \(C_4 = K_{2,2} \) are pointed to in subsections 3.3.1 and 3.3.2. The most known exact result in [La1] is:

\[
R(C_m, K_{1,n}) = \begin{cases}
2n + 1 & \text{for odd } m \leq 2n + 1, \\
m & \text{for } m \geq 2n.
\end{cases}
\]

4.2. Cycles versus complete graphs

Since 1976, it was conjectured that \(R(C_n, K_m) = (n - 1)(m - 1) + 1 \) for all \(n \geq m \geq 3 \) except \(n = m = 3 \) [FS4, EFRS2]. Various parts of this conjecture were proved as follows: for \(n \geq m^2 - 2 \) [BoEr], for \(n > 3 = m \) [ChaS], for \(n \geq 4 = m \) [YHZ1], for \(n \geq 5 = m \) [BoIJY+], for \(n \geq 6 = m \) [Schi1], for \(n \geq m \geq 7 \) with \(n \geq m(m - 2) \) [Schi1], for \(n \geq 7 = m \) [ChenCZ1], and for \(n \geq 4m + 2, m \geq 3 \) [Nik]. Open conjectured cases are marked in Table V by "conj."

<table>
<thead>
<tr>
<th>(n)</th>
<th>(K_3)</th>
<th>(K_4)</th>
<th>(K_5)</th>
<th>(K_6)</th>
<th>(K_7)</th>
<th>(K_8)</th>
<th>(K_9)</th>
<th>(K_{10})</th>
<th>(K_{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>GG-Bush</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>18</td>
<td>23</td>
<td>28</td>
<td>36</td>
<td>47-50</td>
</tr>
<tr>
<td></td>
<td>ChaS</td>
<td>7</td>
<td>10</td>
<td>GG</td>
<td>17</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>Ex5-GoR1</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td>He2/JR4</td>
<td>Clan</td>
<td>He2/JR4</td>
<td>Ex2-Rojal</td>
<td>Ke2-GrY</td>
<td>Ex5-GoR1</td>
<td>LivLR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>JR2</td>
<td>...</td>
<td>JR2</td>
<td>...</td>
<td>RT-JR1</td>
<td>RT-JR1</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>YHZ1</td>
<td>...</td>
<td>YHZ2</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Table V. Known Ramsey numbers \(R(C_n, K_m) \);
Ch+ abbreviates ChenCZ1, for comments on joint credits see 4.2.b.
(a) The first column in Table V gives data from the first row in Table I.

(b) Joint credit [He2/JR4] in Table V refers to two cases in which Hendry [He2] announced the values without presenting the proofs, which later were given in [JR4]. The special cases of $R(C_6, K_5) = 21$ [JR2] and $R(C_7, K_5) = 25$ were solved independently in [YHZ2] and [BoJY+]. The double pointer [JaBa/ChenCZ1] refers to two independent papers, similarly as [JaAl1/ZZ3], except that in the latter case [ZZ3] refers to an unpublished manuscript. For joint credits marked in Table V with "-", the first reference is for the lower bound and the second for the upper bound.

(c) Erdős et al. [EFRS2] asked what is the minimum value of $R(C_n, K_m)$ for fixed m, and they suggested that it might be possible that $R(C_n, K_m)$ first decreases monotonically, then attains a unique minimum, then increases monotonically with n.

(d) There exist constants $c_1, c_2 > 0$ such that $c_1(m^{3/2}/\log m) \leq R(C_4, K_m) \leq c_2(m/\log m)^2$. The lower bound, recently obtained by Bohman and Keevash ([BohK1], see also 4.2.h below) improved over an almost 40 years old bound $c(m/\log m)^{3/2}$ by Spencer [Spe2], using the probabilistic method. The upper bound was reported in a paper by Caro, Li, Rousseau and Zhang [CaLRZ], who in turn give the credit to an unpublished work by Szemerédi from 1980.

(e) Erdős, in 1981, in the Ramsey problems section of the paper [Erd3] formulated a challenge by asking for a proof of $R(C_4, K_m) < m^{2-\varepsilon}$, for some $\varepsilon > 0$. To date, no such proof is known.

(f) Let $C_{\leq m}$ be the set of cycles of length at most m, and let the girth $g(G)$ be the length of the shortest cycle in graph G. Probabilistic lower bound asymptotics for $R(C_{\leq m}, K_k)$ [Spe2] currently is the same as for $R(C_m, K_k)$, for fixed m. However, there are clear differences already for girth 4 and 5 and small k: Backelin [Back1, Back2] found that $R(C_{\leq 4}, K_k) = 6, 8, 11, 15, 18$ for $k = 3, 4, 5, 6, 7$, and that $R(C_{\leq 5}, K_k) = 5, 8, 10, 13, 15$ also for $k = 3, 4, 5, 6, 7$, respectively.

(g) Erdős et al. [EFRS2] proved various facts about $R(C_{\leq m}, K_k)$, and in particular that it is equal to $2n-1$ for $m \geq 2n-1$, and to $2n$ for $n < m < 2n-1$. The upper asymptotics for $R(C_{\leq m}, K_k)$ is implied in the study of independence number in graphs with odd girth m [Den1].

(h) The best known lower bound asymptotics $R(C_n, K_m) = \Omega(m^{(n-1)/(n-2)}/\log m)$, for fixed n and large m, was obtained by Bohman and Keevash [BohK1]. Note that for $n = 4$ it gives the lower bound in 4.2.d above. See also [Spe2, FS4, AİRö] for previous results.

(i) Upper bound asymptotics [BoEr, FS4, EFRS2, CaLRZ, Sud1, LiZa2, AİRö, DoLL2].
4.3. Cycles versus wheels

Note: In this survey the wheel graph $W_n = K_1 + C_{n-1}$ has n vertices, while some authors use the definition $W_n = K_1 + C_n$ with $n + 1$ vertices.

For the cases involving $W_3 = C_3$ versus C_m see sections 3.2 and 4.2.

<table>
<thead>
<tr>
<th>W_n</th>
<th>C_3</th>
<th>C_4</th>
<th>C_5</th>
<th>C_6</th>
<th>C_7</th>
<th>C_8</th>
<th>C_m for</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_4</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>3m – 2 m ≥ 4</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>CH2</td>
<td>He4</td>
<td>JR2</td>
<td>YHZ1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_5</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>2m – 1 m ≥ 5</td>
</tr>
<tr>
<td></td>
<td>Clan</td>
<td>Clan</td>
<td>He2</td>
<td>JR2</td>
<td>SuBB2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_6</td>
<td>11</td>
<td>10</td>
<td>13</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>3m – 2 m ≥ 4</td>
</tr>
<tr>
<td></td>
<td>BE3</td>
<td></td>
<td>ChvS</td>
<td>SuBB2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_7</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>11</td>
<td>13</td>
<td></td>
<td>2m – 1 m ≥ 10</td>
</tr>
<tr>
<td></td>
<td>BE3</td>
<td>Tse1</td>
<td>LuLL</td>
<td>LuLL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_8</td>
<td>15</td>
<td>11</td>
<td>15</td>
<td>16</td>
<td>19</td>
<td>22</td>
<td>3m – 2 m ≥ 6</td>
</tr>
<tr>
<td></td>
<td>BE3</td>
<td>Tse1</td>
<td>LuLL</td>
<td>LuLL</td>
<td>Ch2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_9</td>
<td>17</td>
<td>12</td>
<td>17</td>
<td>13</td>
<td>17</td>
<td></td>
<td>2m – 1 m ≥ 13</td>
</tr>
<tr>
<td></td>
<td>BE3</td>
<td>Tse1</td>
<td>LuLL</td>
<td>LuLL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W_{10}</td>
<td>19</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3m – 2 m ≥ 9</td>
</tr>
<tr>
<td></td>
<td>BE3</td>
<td>Tse1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table VI. Ramsey numbers $R(W_n, C_m)$ for $n ≤ 10$, $m ≤ 8$;
Ch1 abbreviates ChenCMN, Ch2 abbreviates ChenCNZ.

(a) $R(C_3, W_n) = 2n – 1$ for $n ≥ 6$ [BE3]. All critical graphs have been enumerated. The critical graphs are unique for $n = 3, 5$, and for no other n [RaJi].

(b) $R(C_4, W_n) = 14, 16, 17$ for $n = 11, 12, 13$, respectively [Tse1], $R(C_4, W_{14}) = 18, 19, 20, 21$ for $n = 14, 15, 16, 17$, respectively [DyDz2], and several higher values and bounds, including 9 cases of n between 18 and 44 [WuSR, WuSZR].

(c) $R(C_4, W_n) ≤ n + \lceil (n – 1)/3 \rceil$ for $n ≥ 7$ [SuBUB], which was improved to $R(C_4, W_n) ≤ n + \lceil n/2 – 1 \rceil + 1$ for $n ≥ 11$ [DyDz2].

(d) $R(C_4, W_{q^2+1}) = q^2 + q + 1$ for prime power $q ≥ 4$ [DyDz2], exact values of $R(C_4, W_{q^2+2})$ and $R(C_4, W_{q^2+1})$ for special q and small i [WuSZR].

(e) $R(W_n, C_m) = 2n – 1$ for odd m with $n ≥ 5m – 6$ [Zhou2].

(f) $R(W_n, C_m) = 3m – 2$ for even $n ≥ 4$ with $m ≥ n – 1$, was conjectured by Surahmat et al. [SuBT1, SuBT2, Sur]. Parts of this conjecture were proved in [SuBT1, ZhaCC1, Shi5], and the proof was completed in [ChenCNZ].
(g) Conjecture that \(R(W_n, C_m) = 2m - 1 \) for odd \(n \geq 3 \) and all \(m \geq 5 \) with \(m > n \) [Sur]. It was proved for \(2m \geq 5n - 7 \) [SuBT1], and further for \(2m \geq 3n - 1 \) [ChenCMN]. See also [Shi5].

(h) Observe apparently four distinct situations with respect to parity of \(m \) and \(n \).

(i) Cycles are Ramsey unsaturated for some wheels [AliSur], see also comments on [BaLS] in subsection 5.16.

(j) Study of cycles versus generalized wheels \(W_{k,n} \) [Sur, SuBTB, Shi5].

4.4. Cycles versus books

\[
\begin{array}{cccccccccc}
& C_3 & C_4 & C_5 & C_6 & C_7 & C_8 & C_9 & C_{10} & C_{11} & C_m \\
B_2 & 7 & 7 & 9 & 11 & 13 & 15 & 17 & 19 & 21 & \text{for} \\
& \text{RS1} & \text{Fal8} & \text{Cal} & \text{Fal8} & \text{...} & \text{Fal8} & \text{...} & \text{Fal8} & \text{...} & \text{Fal8} \\
B_3 & 9 & 9 & 10 & 11 & 13 & 15 & 17 & 19 & 21 & \text{...} \\
& \text{RS1} & \text{Fal6} & \text{Fal8} & \text{Jr2} & \text{Shi5} & \text{Fal8} & \text{...} & \text{Fal8} & \text{...} & \text{Fal8} \\
B_4 & 11 & 11 & 12 & 13 & 15 & 17 & 19 & 21 & \text{...} \\
& \text{RS1} & \text{Fal6} & \text{Fal8} & \text{Sal1} & \text{Sal1} & \text{Shi5} & \text{Shi5} & \text{Fal8} & \text{...} & \text{Fal8} \\
B_5 & 13 & 12 & 14 & 15 & 15 & 17 & 19 & 21 & \text{...} \\
& \text{RS1} & \text{Fal6} & \text{Fal8} & \text{Sal1} & \text{Sal1} & \text{Sal2} & \text{Sal2} & \text{Shi5} & \text{Shi5} & \text{Fal8} \\
B_6 & 15 & 13 & 15 & 16 & 17 & 18 & 18 & 21 & \text{...} \\
& \text{RS1} & \text{Fal6} & \text{Fal8} & \text{Sal2} & \text{Sal2} & \text{Sal2} & \text{Sal2} & \text{Shi5} & \text{Fal8} & \text{...} \\
B_7 & 17 & 16 & 17 & 18 & 18 & 19 & 20 & 21 & \text{...} \\
& \text{RS1} & \text{Fal6} & \text{Fal8} & \text{Sal2} & \text{Sal2} & \text{Sal2} & \text{Sal2} & \text{Shi5} & \text{Fal8} & \text{...} \\
B_8 & 19 & 17 & 19 & 19 & 22 & \geq 23 & \geq 23 & \geq 26 & \geq 26 & \text{...} \\
& \text{RS1} & \text{Tse1} & \text{Fal8} & \text{Sal2} \\
B_9 & 21 & 18 & 21 & \geq 25 & \geq 25 & \geq 25 & \geq 26 & \geq 26 & \geq 26 & \text{...} \\
& \text{RS1} & \text{Tse1} & \text{Fal8} & \text{Sal2} \\
B_{10} & 23 & 19 & 23 & \geq 28 & \geq 28 & \geq 28 & \geq 28 & \geq 28 & \geq 28 & \text{...} \\
& \text{RS1} & \text{Tse1} & \text{Fal8} & \text{Sal2} \\
B_{11} & 25 & 20 & 25 & \text{cycles} & \text{large} & \text{books} & \text{...} & \text{...} & \text{...} & \text{...} \\
& \text{RS1} & \text{Tse1} & \text{Fal8} & \text{...} \\
\end{array}
\]

Table VII. Ramsey numbers \(R(B_n, C_m) \) for \(n, m \leq 11 \); \(et al. \) abbreviations: Fal/FRS, Cal/CRSPS, Sal1/ShaXBP, Sal2/ShaXB.

(a) For the cases of \(B_1 = K_3 \) versus \(C_m \) see section 4.2.

The exact values for the cases (3,7), (4,8), (4,9), (5,10), (5,11) were obtained independently in [Sal1, Sal2]/[ShaXBP, ShaXB] using computer algorithms.
4.5. Cycles versus other graphs

(a) C_4 versus stars [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, GoMC, MoCa, WuSZR]. For several exact results see $K_{2,2}$ in Tables IVa and IVb, and for general results see items 3.3.1.a, 3.3.2.c and 3.3.2.d.

(b) C_4 versus unions of stars [HaABS, Has]

c) C_4 versus trees [EFRS4, Bu7, BEFRS4, Chen]

d) C_4 versus all graphs on six vertices [JR3]

e) C_4 versus various types of complete bipartite graphs, see section 3.3

(f) $R(C_4, G) \leq 2q + 1$ for any isolate-free graph G with q edges [RoJa2]

g) $R(C_4, G) \leq p + q - 1$ for any connected graph G on p vertices and q edges [RoJa2]

(h) $R(C_5, K_6-e) = 17$ [JR4]

(i) $R(C_5, K_4-e) = 9$ [CRSPS]

(j) C_5 versus all graphs on six vertices [JR4]

(k) $R(C_6, K_5-e) = 17$ [JR2]

(l) C_6 versus all graphs on five vertices [JR2]

(m) $R(C_{2m+1}, G) = 2n - 1$ for sufficiently large sparse graphs G on n vertices, in particular $R(C_{2m+1}, T_n) = 2n - 1$ for all $n > 1512m + 756$, for n-vertex trees T_n [BEFRS2].

(n) $R(C_n, G) \leq 2q + \lfloor n/2 \rfloor - 1$, for $3 \leq n \leq 5$, for any isolate-free graph G with $q > 3$ edges. It is conjectured that it also holds for other n [RoJa2].

(o) Cycles versus trees [BEFRS2, FSS1]

(p) Monotone paths and cycles [Lef]

(q) Cycles versus $K_{n,m}$ and multipartite complete graphs [BoEr]

(r) Cycles versus generalized books and wheels [Shi5, Sur, SuBTB], and versus other special graphs of the form K_n+G with small $n \leq 3$ and sparse G [Shi5].
5. General Graph Numbers in Two Colors

This section includes data with respect to general graph results. We tried to include all nontrivial values and identities regarding exact results, or references to them, but only those out of general bounds and other results which, in our opinion, may have a direct connection to the evaluation of specific numbers. If some small value cannot be found below, it may be covered by the cumulative data gathered in section 8, or be a special case of a general result listed in this section. Note that \(P_2 = K_2, B_1 = F_1 = C_3 = W_3 = K_3, B_2 = K_4 - e, P_3 = K_3 - e, W_4 = K_4 \) and \(C_4 = K_{2,2} \) imply other identities not mentioned explicitly.

5.1. Paths

\[
R(P_m, P_n) = \lceil n + \lfloor m/2 \rfloor \rceil - 1 \quad \text{for all } n \geq m \geq 2 \quad [\text{GeGy}]
\]

Stripes \(mP_2 \) [CocL1, CocL2, Lor]
Disjoint unions of paths (also called linear forests) [BuRo2, FS2]

5.2. Wheels

Note: In this survey the wheel graph \(W_n = K_1 + C_{n-1} \) has \(n \) vertices, while some authors use the definition \(W_n = K_1 + C_n \) with \(n + 1 \) vertices.

<table>
<thead>
<tr>
<th>(n)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m)</td>
<td>3</td>
<td>9</td>
<td>11</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>Clan</td>
<td></td>
<td>BE3</td>
<td>BE3</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>17</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GG</td>
<td>He3</td>
<td>FM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>He2</td>
<td>FM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table VIII. Ramsey numbers \(R(W_m, W_n) \) for \(m \leq n \leq 7 \).

(a) \(R(W_3, W_n) = 2n - 1 \) for all \(n \geq 6 \) [BE3],
All critical colorings for \(R(W_3, W_n) \) for all \(n \geq 3 \) [RaJi].
(b) The value \(R(W_5, W_5) = 15 \) was given in the Hendry’s table [He2] without a proof. Later the proof was published in [HaMe2].
(c) All critical colorings (2, 1 and 2) for \(R(W_n, W_6) \), for \(n = 4, 5, 6 \) [FM].
(d) \(R(W_6, W_6) = 17, R(4,4) = 18 \) and \(\chi(W_6) = 4 \) give a counterexample \(G = W_6 \) to the Erdős conjecture (Erd2, see also [GRS]) that \(R(G, G) \geq R(K_{\chi(G)}, K_{\chi(G)}) \).
5.3. Books

Table IX. Ramsey numbers $R(B_m, B_n)$ for $m, n \leq 7$; Sh1+ abbreviates ShaXBP.

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>11</td>
<td>13</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>15</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) $254 \leq R(B_{37}, B_{88}) \leq 255$ [Par6].
(b) Unpublished result $R(B_2, B_6) = 17$ [Rou] was confirmed in [BILR].
(c) There are 4 Ramsey-critical graphs for $R(B_2, B_3)$, a unique graph for $R(B_3, B_4)$ [ShaXBP], 3 for $R(B_2, B_6)$ and 65 for $R(B_2, B_7)$ [BILR].
(d) $R(B_1, B_n) = 2n + 3$ for all $n > 1$ [RS1].
(e) $R(B_n, B_m) = 2n + 3$ for all $n \geq cm$ for some $c < 10^6$ [NiRo2, NiRo3].
(f) $R(B_n, B_n) = (4 + o(1))n$ [RS1, NiRS].
(g) In general, $R(B_n, B_n) = 4n + 2$ for $4n + 1$ a prime power. Several other specific values (like $R(B_{62}, B_{65}) = 256$) and general equalities and bounds for $R(B_n, B_m)$ can be found in [RS1, FRS8, Par6, NiRS, LiRZ2].

5.4. Trees and forests

In this subsection T_n and F_n denote n-vertex tree and forest, respectively.

(a) $R(T_n, T_n) \leq 4n + 1$ [EG].
(b) $R(T_n, T_n) \geq \lceil (4n - 1)/3 \rceil$ [BE2], see also section 5.15.
(c) Conjecture that $R(T_n, T_n)$ is at most $2n - 2$ for even n and $2n - 3$ for odd n [BE2]. Note that this is the same as asking if $R(T_n, T_n) \leq R(K_{1,n-1}, K_{1,n-1})$. Zhao proved that $R(T_n, T_n) \leq 2n - 2$ and thus confirmed the conjecture for even n. Independently, Ajtai
et al. [AjKSS] announced a full proof for large \(n \). This recent progress subsumes some of the results pointed to in items (d)-(l) below.

(d) For general discussion of related problems see [Bu7, FSS1, ChGra2], in particular of the conjecture that \(R(T_m, T_n) \leq n + m - 2 \) holds for all trees [FSS1].

(e) If \(\Delta(T_m) = m - 2 \) and \(\Delta(T_n) = n - 2 \) then the exact values of \(R(T_m, T_n) \) are known, and they are between \(n + m - 5 \) and \(n + m - 3 \) depending on \(n \) and \(m \). In particular, for \(n = 2k + 1 \) we have \(R(T_{2k+1}, T_{2k+1}) = 2n - 5 \) [GuoV].

(f) Examples of families \(T_m \) and \(T_n \) (including \(P_n \)) for which \(R(T_m, T_n) = n + m - c \), \(c = 3, 4, 5 \) [SunZ], extending the results in [GuoV].

(g) View tree \(T \) as a bipartite graph with parts \(t_1 \) and \(t_2 \), \(t_2 \geq t_1 \). Define \(b(T) = \max\{2t_1 + t_2 - 1, 2t_2 - 1\} \). Then the bound \(R(T, T) \geq b(T) \) holds always, \(R(T, T) = b(T) \) holds for many classes of trees [EFRS3, GeGy], and asymptotically [HaLTF], but cases for nonequality have been found [GHK].

(h) Comments in [BaLS] about some conjectures on Ramsey saturation of non-star trees, which would imply that \(R(T_n, T_n) \leq 2n - 2 \) holds for sufficiently large \(n \).

(i) Formulas for \(R(T_m, T_n) \) for some subcases of when \(T_m \) and \(T_n \) satisfy \(\Delta(T_m) = m - 3 \) and \(\Delta(T_n) = n - 3 \) [SunWW].

(j) \(R(T_m, K_{1,n}) \leq m + n - 1 \), with equality for \((m - 1) \mid (n - 1) \) [Bu1].

(k) \(R(T_m, K_{1,n}) = m + n - 1 \) for sufficiently large \(n \) for almost all trees \(T_m \) [Bu1]. Many cases were identified for which \(R(T_m, K_{1,n}) = m + n - 2 \) [Coc, ZZ1], see also [Bu1].

(l) \(R(T_m, K_{1,n}) \leq m + n \) if \(T_n \) is not a star and \((m - 1) \nmid (n - 1) \), some classes of trees and stars for which the equality holds [GuoV].

(m) \(R(F_n, F_n) > n + \log_2 n - O(\log\log n) \) [BE2], forests are tight for this bound [CsKo].

(n) Forests, linear forests (unions of paths) [BuRo2, FS3, CsKo].

(o) Paths versus trees [FSS1], see also other parts of this survey involving special graphs, in particular sections 5.5, 5.6, 5.10, 5.12 and 5.15.

5.5. **Stars, stars versus other graphs**

\[R(K_{1,n}, K_{1,m}) = n + m - \varepsilon, \text{ where } \varepsilon = 1 \text{ for even } n \text{ and } m, \text{ and } \varepsilon = 0 \text{ otherwise} \] [Har1]. This is also a special case of multicolor numbers for stars 6.6.e obtained in [BuRo1].

\[R(K_{1,n}, K_m) = n(m - 1) + 1 \] by Chvátal's theorem [Chv].

Stars versus \(C_4 \) [Par3, Par4, Par5, BEFRS4, Chen, ChenJ, GoMC, MoCa, WuSZR]

Stars versus \(K_{2,n} \) [Par4, GoMC]

Stars versus \(K_{n,m} \) [Stev, Par3, Par4]

See also section 3.3

\[R(K_{1,4}, B_4) = 11 \] [RS2]

\[R(K_{1,4}, K_{1,2,3}) = R(K_{1,4}, K_{2,2,2}) = 11 \] [GuSL]
Stars versus paths [Par2, BEFRS2]
Stars versus cycles [La1, Clark], see also [Par6] and section 4.1
Stars versus $2K_2$ [MeO]
Stars versus stripes mP_2 [CocL1, CocL2, Lor]
Stars versus W_5 and W_6 [SuBa1]
$nK_{1,m}$ versus W_5 [BaHA]
Stars versus W_9 [Zhang2, ZhaCZ1]
Stars versus wheels [HaBA1, ChenZZ2, Kor]
Stars versus books [CRSPS, RS2]
Stars versus trees [Bu1, Cheng, Coc, GuoV, SunZ, ZZ1]
Stars versus $K_n - iK_2$ [Hua1, Hua2]
Union of two stars [Gros2]
Unions of stars versus C_4 and W_5 [HaABS, Has]
Unions of stars versus wheels [BaHA, HaBA2, SuBAU1]

5.6. Paths versus other graphs
Note: for cycles versus P_n see section 4.1.

P_3 versus all isolate-free graphs [CH2]
Paths versus stars [Par2, BEFRS2]
Paths versus trees [FS4, FSS1, SunZ]
Paths versus books [RS2]
Paths versus K_n [Par1]
Paths versus $2K_n$ [SuAM, SuAAM]
Paths versus $K_{n,m}$ [Häg]
Paths versus some balanced complete multipartite graphs [Pokr]
Paths versus W_5 and W_6 [SuBa1]
Paths versus W_7 and W_8 [Bas]
Paths versus wheels [BaSu, ChenZZ1, SaBr3, Zhang1]
$R(P_n, mW_4) = 2n + m - 2$ [Sudar]
Paths versus beaded wheels [AliBT2]
Paths versus powers of paths [Pokr, AllBS]
Paths versus fans [SaBr2]
Paths versus $K_1 + P_m$ [SaBr1, SaBr4]
Paths and cycles versus trees [FSS1]
Powers of paths [AllBS]
Unions of paths [BuRo2]
Paths and unions of paths versus Jahangir graphs [AliBas, AliBT1, AliSur]
Paths and unions of paths versus $K_{2m - mK_2}$ [AliBB]
Sparse graphs versus paths and cycles [BEFRS2]
Graphs with long tails [Bu2, BG]
Monotone paths and cycles [Lef]
5.7. Fans, fans versus other graphs

\[R(F_1, F_n) = R(K_3, F_n) = 4n + 1 \] for \(n \geq 2 \), and bounds for \(R(F_m, F_n) \) [LiR2, GGS]

\[R(F_2, F_n) = 4n + 1 \] for \(n \geq 2 \) and \(R(F_m, F_n) \leq 4n + 2m \) for \(n \geq m \geq 2 \) [LinLi1]

\[R(K_4, F_n) = 6n + 1 \] for \(n \geq 3 \) [SuBB3]

Fans versus paths, formulas for a number of cases including \(R(P_6, F_n) \) [SaBr2].

Missing case \(R(P_6, F_4) = 12 \) solved in [Shao].

Fans versus cycles [Shi5]
Fans versus \(K_n \) [LiR2]
Lower bounds on \(R(F_2, K_n) \) from cyclic graphs for \(n \leq 9 \) [Shao]

5.8. Wheels versus other graphs

Notes: In this survey the wheel graph \(W_n = K_1 + C_{n-1} \) has \(n \) vertices, while some authors use the definition \(W_n = K_1 + C_n \) with \(n + 1 \) vertices.

For cycles versus \(W_n \) see section 4.3.

\[R(W_5, K_5 - e) = 17 \] [He2][YH]
\[R(W_5, K_5) = 27 \] [He2][RST]
\[R(W_5, K_6) \geq 33, R(W_5, K_7) \geq 43 \] [Shao, ShaoWX]

\(W_5 \) and \(W_6 \) versus stars and paths [SuBa1]
\(W_5 \) versus \(nK_{1,m} \) [BaHA]
\(W_5 \) versus unions of stars [Has]
\(W_5 \) and \(W_6 \) versus trees [BaSNM]
\(W_7 \) and \(W_8 \) versus paths [Bas]

\(W_7 \) versus trees \(T_n \) with \(\Delta(T_n) \geq n - 3 \), other special trees \(T \), and for \(n \leq 8 \) [ChenZZ3, ChenZZ5, ChenZZ6]

\(W_7 \) and \(W_8 \) versus trees [ChenZZ4, ChenZZ5]
\(W_9 \) versus stars [Zhang2, ZhaCZ1, ZhaCC2]
\(W_9 \) versus trees of high degree [ZhaCZ2]

Wheels versus stars [HaBA1, ChenZZ2, Kor]
Wheels \(W_n \), for even \(n \), versus star-like trees [SuBB1]
Wheels versus paths [BaSu, ChenZZ1, SaBr3, Zhang1]
Wheels versus books [Zhou3]
Wheels versus unions of stars [BaHA, HaBA2, SuBAU1]
Wheels versus linear forests (disjoint unions of paths) [SuBa2]
Generalized wheels versus cycles [Shi5]
Upper asymptotics for \(R(W_n, K_m) \) [Song5, SonBL]
Upper asymptotics for generalized wheels versus \(K_n \) [Song9]
5.9. Books versus other graphs

Note: for cycles versus B_n see section 4.4.

\[R(B_3, K_4) = 14 \text{ [He3]} \]
\[R(B_3, K_5) = 20 \text{ [He2][BaRT]} \]
\[R(B_4, K_{1,4}) = 11 \text{ [RS2]} \]

Cyclic lower bounds for $R(B_m, K_n)$ for $m \leq 7, n \leq 9$
and for $R(B_3, K_n - e)$ for $n \leq 7$ [Shao, ShaoWX]

Books versus paths [RS2]
Books versus stars [CRSPS, RS2]
Books versus trees [EFRS7]
Books versus K_n [LiR1, Sud2]
Books versus wheels [Zhou3]
Books versus $K_2 + C_n$ [Zhou3]
Books and $(K_1 + \text{tree})$ versus K_n [LiR1]
Generalized books $K_3 + qK_1$ versus cycles [Shi5]
Generalized books $K_r + qK_1$ versus K_n [NiRo1, NiRo4]

5.10. Trees and forests versus other graphs

In this subsection T_n and F_n denote n-vertex tree and forest, respectively.

\[R(T_n, K_m) = (n - 1)(m - 1) + 1 \text{ [Chv]} \]
\[R(T_n, C_{2m+1}) = 2n - 1 \text{ for all } n > 1512m + 756 \text{ [BEFRS2]} \]
\[R(T_n, B_m) = 2n - 1 \text{ for all } n \geq 3m - 3 \text{ [EFRS7]} \]
\[R(F_{nk}, K_m) = (n - 1)(m - 2) + nk \text{ for all forests } F_{nk} \text{ consisting of } k \text{ trees with } n \text{ vertices each, also exact formula for all other cases of forests versus } K_m \text{ [Stahl]} \]

Exact results for almost all small $(n(G) \leq 5)$ connected graphs G versus all trees [FRS4]

Trees versus stars [Bu1, Cheng, Coc, GuoV, ZZ1]
Trees versus paths [FS4, FSS1]
Trees versus C_4 [EFRS4, Bu7, BEFRSS5, Chen]
Trees versus cycles [FSS1, EFRS6]
Trees versus books [EFRS7]
Trees versus W_5 and W_6 [BaSNM]
Trees versus W_7 and W_8 [ChenZZ4, ChenZZ5]

Trees T_n with $\Delta(T_n) \geq n - 3$, other special trees T,
and for $n \leq 8$ versus W_7 [ChenZZ3, ChenZZ5, ChenZZ6]
Trees T_n with $\Delta(T_n) \geq n - 4$ versus W_9 [ZhaCZ2]

Star-like trees versus odd wheels [SuBB1, ChenZZ3]
Trees versus $K_n + K_m$ [RS2, FSR]
Trees versus bipartite graphs [BEFRS4, EFRS6]
Trees versus almost complete graphs [GoJa2]
Trees versus multipartite complete graphs [EFRS8, BEFRSGJ]

Linear forests versus $3K_3$ and $2K_4$ [SuBAU2]
Linear forests versus $2K_m$ [SuAAM]
Linear forests versus wheels [SuBa2]
Forests versus almost complete graphs [ChGP]
Forests versus complete graphs [BE1, Stahl, BaHA]

Study of graphs G for which all or almost all trees are G-good [BF, BEFRSGJ], see also section 5.15 and 5.16, item [Bu2], for the definition and more pointers.

See also various parts of this survey for special trees, and section 5.4.

5.11. Cases for $n(G), n(H) \leq 5$

Clancy [Clan], in 1977, presented a table of $R(G,H)$ for all isolate-free graphs G with $n(G) = 5$ and H with $n(H) \leq 4$, except 5 entries. All five of the open entries have been solved as follows:

\begin{align*}
R(B_3, K_4) &= 14 & \text{[He3]} \\
R(K_5, K_4 - e) &= 16 & \text{[BoH]} \\
R(W_5, K_4) &= 17 & \text{[He2]} \\
R(K_5 - e, K_4) &= 19 & \text{[EHM1]} \\
R(K_5, K_4) &= R(4,5) = 25 & \text{[MR4]}
\end{align*}

An interesting case in [Clan] is

$$R(K_4, K_5 - P_3) = R(K_4, K_4 + e) = R(4, 4) = 18.$$

Hendry [He2], in 1989, presented a table of $R(G,H)$ for all graphs G and H on 5 vertices without isolates, except 7 entries. Five of the open entries have been solved:

\begin{align*}
R(K_5, K_4 + e) &= R(4,5) = 25 & \text{[Ka1][MR4]} \\
R(K_5, K_5 - P_3) &= 25 & \text{[Ka1][Boza2, CalSR]} \\
R(K_5, B_3) &= 20 & \text{[He2][BaRT]} \\
R(K_5, W_5) &= 27 & \text{[He2][RST]} \\
R(W_5, K_5 - e) &= 17 & \text{[He2][YH]}
\end{align*}

The still open cases for K_5 versus $K_5 - e$ and K_5 are:

\begin{align*}
30 \leq R(K_5, K_5 - e) & \leq 34 & \text{[Ex6][Ex8]} \\
43 \leq R(K_5, K_5) & \leq 49 & \text{[Ex4][MR5]}
\end{align*}

All critical colorings for the case $R(C_5 + e, K_5) = 17$ were found by Hendry [He5].
5.12. Mixed cases

12 \leq R(Q_3, Q_3), \text{ where } Q_3 \text{ is the 8-vertex } 3\text{-dimensional cube graph,}
19 \leq R(P, P), \text{ where } P \text{ is the 10-vertex Petersen graph,}
30 \leq R(K_{2,2,2}, K_{2,2,2}), \text{ where } K_{2,2,2} \text{ is the octahedron [HaKr2].}

Unicyclic graphs [Gros1, Köh, KrRod]

K_{2,m} \text{ and } C_{2m} \text{ versus } K_n \text{ [CaLRZ]}

K_{2,n} \text{ versus any graph [RoJaZ]}

Union of two stars [Gros2]

Double stars* [GHK, BahS]

Brooms+ [EFRS3]

Graphs with bridge versus } K_n \text{ [Li1]}

Multipartite complete graphs [BFRS, FRS3, Stev]

Multipartite complete graphs versus trees [EFRS8, BEFRSGJ]

Multipartite complete graphs versus sparse graphs [EFRS4]

Graphs with bridge versus } K_n \text{ [Li1]}

Multipartite complete graphs versus trees [EFRS8, BEFRSGJ]

Multipartite complete graphs versus sparse graphs [EFRS4]

Graphs with bridge versus } K_n \text{ [Li1]}

5.13. Multiple copies of graphs, disconnected graphs

(a) 2K_2 \text{ versus all isolate-free graphs [CH2]}

(b) nK_2 \text{ versus } mK_2, \text{ in particular } R(nK_2, nK_2) = 3n - 1 \text{ for } n \geq 1 \text{ [CocL1, CocL2, Lor]}

(c) nK_3 \text{ versus } mK_3, \text{ in particular } R(nK_3, nK_3) = 5n \text{ for } n \geq 2 \text{ [BES], see also section 4.1}

(d) nK_3 \text{ versus } mK_4 \text{ [LorMu]}

(e) nK_{1,m} \text{ versus } W_5 \text{ [BaHA]}

(f) R(nK_4, nK_4) = 7n + 4 \text{ for large } n \text{ [Bu8]}

(g) Stripes } mP_2 \text{ [CocL1, CocL2, Lor]}

(h) R(G, H) \text{ for all disconnected isolate-free graphs } H \text{ on at most 6 vertices versus all } G \text{ on at most 5 vertices, except 3 cases [LoM5]. Missing cases were completed in [KroMe].}

(i) R(F, G \cup H) \leq \max \{ R(F, G) + n(H), R(F, G) \} \text{ [Par6]}

(j) R(mG, nH) \leq (m - 1)n(G) + (n - 1)n(H) + R(G, H) \text{ [BES],}

Formulas for } R(nK_3, mG) \text{ for all isolate-free graphs } G \text{ on 4 vertices [Zeng],}

Variety of results for numbers } R(nG, mh) \text{ [Bu1, BES, HaBA2, SuBAU1].}

(k) Disjoint unions of paths \text{ (linear forests) [BuRo2, FS2]}

Linear forests versus } 3K_3 \cup 2K_4 \text{ [SuBAU2]}

(l) Forests versus } K_n \text{ [Stahl, BaHA] and } W_n \text{ [BaHA]. Generalizations to forests versus other graphs } G \text{ in terms of } \chi(G) \text{ and the chromatic surplus of } G \text{ [Biel4], and for linear forests versus } 2K_n \text{ [SuAM].}

* double star is a union of two stars with their centers joined by an edge

+ broom is a star with a path attached to its center
(m) Disconnected graphs versus other graphs [BE1, GoJa1]
(n) See section 4.1 for cases involving unions of cycles
(o) See also [Bu9, BE1, LorMu, MiSa, Den2, Biel1, Biel2]

5.14. General results for special graphs

(a) \(R(K_m^n, K_n^q) = R(K_m, K_n) \) for \(m, n \geq 3, \ m + n \geq 8, \ p \leq m/(n-1) \) and \(q \leq n/(m-1) \), where \(K_t^i \) is a \(K_t \) with additional vertex connected to it by \(t \) edges [BEFS]. Some applications can be found in [BILR].

(b) \(R(K_{2,k}, G) \leq kq + 1, \) for \(k \geq 2, \) for isolate-free graphs \(G \) with \(q \geq 2 \) edges [RoJa2].

(c) \(R(W_6, W_6) = 17 \) and \(\chi(W_6) = 4 \) [FM]. This gives a counterexample \(G \equiv W_6 \) to the Erdős conjecture (see [GRS]) \(R(G, G) \geq R(K_{\chi(G)}, K_{\chi(G)}) \), since \(R(4,4) = 18 \).

(d) \(R(G + K_1, H) \leq R(K_{1,R(G,H),H}, H) \) [BE1].

(e) \(R(K_2 + G, K_2 + G) \leq 4R(G, K_2 + G) - 2 \) [LiShen].

(f) Study of \(R(G + K_1, nH + K_1) \) [LinLD].

(g) \(R(K_{p+1}, B_q^r) = p(q + r - 1) + 1 \) for generalized books \(B_q^r = K_r + qK_1 \), for sufficiently large \(q \) [NiRo1].

(h) Study of the cases \(R(K_m^i, K_n - K_{1,s}^j) \) and \(R(K_m^i - e, K_n - K_{1,s}^j) \), with several exact values for special parameters [ChaMR].

(i) Study of \(R(T + K_1, K_n) \) for trees \(T \) [LiR1]. Asymptotic upper bounds for \(R(T + K_2, K_n) \) [Song7], see also [SonGQ].

(j) Bounds on \(R(H + K_n^i, K_n^j) \) for general \(H \) [LiR3]. Also, for fixed \(k \) and \(m, \) as \(n \to \infty, \)
\[R(K_k + K_m^i, K_n^j) \leq (m + o(1)) n^k/(\log n)^{k-1} \] [LiRZ1].

(k) Asymptotics of \(R(H + K_n^i, K_n^j) \). In particular, the order of magnitude of \(R(K_m, K_n) \) is \(n^{m+1}/(\log n)^m \) [LiTZ]. Upper asymptotics for \(R(K_s + K_m, K_n) \) [Song9].

(l) Study of the largest \(k \) such that if the star \(K_{1,k} \) is removed from \(K_r, \ r = R(G, H) \), any edge 2-coloring of the remaining part still contains monochromatic \(G \) or \(H \), as for \(K_r \), for various special \(G \) and \(H \) [HoIs].

(m) Let \(G'' \) be a graph obtained from \(G \) by deleting two vertices with adjacent edges. Then
\[R(G, H) \leq A + B + 2 + 2 \sqrt{(A^2 + AB + B^2)/3}, \] where \(A = R(G'', H) \) and \(B = R(G, H'') \) [LiRZ2].

5.15. General results for sparse graphs

(a) \(R(K_n^i, T_m) = (n-1)(m-1) + 1 \) for any tree \(T_m \) on \(m \) vertices [Chv].

(b) Graphs yielding \(R(K_s^i, G) = (n-1)(n(G)-1) + 1 \), called Ramsey \(n \)-good [BE3], and related results [EFRS5]. An extensive survey and further study of \(n \)-goodness appeared in [NiRo4].
(c) \(R(C_{2m+1}, G) = 2n - 1 \) for sufficiently large sparse graphs \(G \) on \(n \) vertices, little more complicated formulas for \(P_{2m+1} \) instead of \(C_{2m+1} \) [BEFRS2].

(d) \(R(G, G) \leq c_d n(G) \) for all \(G \), where constant \(c_d \) depends only on the maximum degree \(d \) in \(G \) [CRST]. The constant was improved in [GRR1, FoxSu1]. Tight lower and upper bounds for bipartite \(G \) [GRR2, Con2]. Further improvements of the constant \(c_d \) in general were obtained in [ConFS4], and for graphs with bounded bandwidth in [AllBS].

(e) Study of \(L \)-sets, which are sets of pairs of graphs whose Ramsey numbers are linear in the number of vertices. Conjecture that Ramsey numbers grow linearly for \(d \)-degenerate graphs (graph is \(d \)-degenerate if all its subgraphs have minimum degree at most \(d \)) [BE1]. Progress towards this conjecture was obtained by several authors, including [KoRö1, KoRö2, KoSu, FoxSu1, FoxSu2].

(f) \(R(G, G) \leq c_d n \) for all \(d \)-arrangeable graphs \(G \) on \(n \) vertices, in particular with the same constant for all planar graphs [ChenS]. The constant \(c_d \) was improved in [Eaton]. An extension to graphs not containing a subdivision of \(K_d \) [RöTh].

(g) Conjecture that \(R(G, G) \leq 12n(G) \) for all planar \(G \), for sufficiently large \(n \) [AllBS].

(h) Ramsey numbers grow linearly for degenerate graphs versus some sparser graphs, arrangeable graphs, crowns, graphs with bounded maximum degree, planar graphs, and graphs without any topological minor of a fixed clique [Shi3].

(i) Discussion of various old and new classes of Ramsey linear graphs [NeOs].

(j) Study of graphs \(G \), called Ramsey size linear, for which there exists a constant \(c_G \) such that for all \(H \) with no isolates \(R(G, H) \leq c_G e(H) \) [EFRS9]. An overview and further results were given in [BaSS].

(k) \(R(G, G) < 6n \) for all \(n \)-vertex graphs \(G \), in which no two vertices of degree at least \(3 \) are adjacent [LiRS]. This improves the result \(R(G, G) \leq 12n \) in [Alon1]. In an early paper by Burr and Erdős [BE1] it was proved that if any two points of degree at least \(3 \) are at distance at least \(3 \) then \(R(G, G) \leq 18n \).

(l) \(R(G_{a,b}, G_{a,b}) = (3/2 + o(1))ab \), where \(G_{a,b} \) is the rectangular \(a \times b \) grid graph. Other similar results follow for bipartite planar graphs with bounded degree and grids of higher dimension [MoSST].

(m) \(R(Q_n, Q_n) \leq 2^{(3+\sqrt{5})n/2+o(n)} \), for the \(n \)-dimensional hypercube \(Q_n \) with \(2^n \) vertices [Shi1]. This bound can also be derived from a theorem in [KoRö1]. An improvement was obtained in [Shi4], and a further one to \(R(Q_n, Q_n) \leq 2^{2n+5}n \) in [FoxSu1]. A lower bound construction for \(12 \leq R(Q_3, Q_3) \) was presented in [HaKr2].

(n) \(R(K_m, Q_n) = (m-1)(2^n - 1) + 1 \) for every fixed \(m \) and sufficiently large \(n \) [FizGMSS].

(o) Conjecture that \(R(G, G) = 2n(G) - 1 \) if \(G \) is unicyclic of odd girth [Gros1]. Further support for the conjecture was given in [Köh, KrRod].

(p) See also earlier subsections 5.* for various specific sparse graphs.
5.16. General results

[CH2] \(R(G, H) \geq (\chi(G) - 1)(c(H) - 1) + 1 \), where \(\chi(G) \) is the chromatic number of \(G \), and \(c(H) \) is the size of the largest connected component of \(H \).

[CH3] \(R(G, G) > (s2^{e(G)-1})^{1/n(G)} \), where \(s \) is the number of automorphisms of \(G \). Hence \(R(K_{n,n}, K_{n,n}) > 2^n \), see also item 6.7.i.

[BE2] \(R(G, G) \geq \left\lceil (4n(G) - 1)/3 \right\rceil \) for any connected \(G \), and \(R(G, G) \geq 2n - 1 \) for any connected nonbipartite \(G \). These bounds can be achieved for all \(n \geq 4 \).

[Bu2] Graphs \(H \) yielding \(R(G, H) = (\chi(G) - 1)(n(H) - 1) + s(G), \) where \(s(G) \) is a chromatic surplus of \(G \), defined as the minimum number of vertices in some color class under all vertex colorings in \(\chi(G) \) colors (such \(H \)'s are called \(G \)-good). This idea, initiated in [Bu2], is a basis of a number of exact results for \(R(G, H) \) for large and sparse graphs \(H \) [BG, BEFRS2, BEFRS3, Bu5, FS, EFRS4, FRS3, BEFSRGJ, BF, LiR4, Biel2, SuBAU3, Song6, AllBS]. Surveys of this area appeared in [Furs5, NiRo4].

[BaLS] Graph \(G \) is Ramsey saturated if \(R(G + e, G + e) > R(G, G) \) for every edge \(e \) in \(G \). This paper contains several theorems involving cycles, cycles with chords and trees on Ramsey saturated and unsaturated graphs, and also seven conjectures including one stating that almost all graphs are Ramsey unsaturated. Some classes of graphs were proved to be Ramsey unsaturated [Ho]. Special cases involving cycles and Jahangir graphs were studied in [AliSur].

[Für] Relations between \(R(3, k) \) and graphs with large \(\chi(G) \). Further detailed study of the relation between \(R(3, k) \) and the chromatic gap [GySeT].

[Bra3] \(R(G, H) > h(G, d) n(H) \) for all nonbipartite \(G \) and almost every \(d \)-regular \(H \), for some \(h \) unbounded in \(d \).

[DoLL1] Lower asymptotics of \(R(G, H) \) depending on the average degree of \(G \) and the size of \(H \). This continues the study initiated in [EFRS5], later much enhanced for both lower and upper bounds in [Sud3].

[LiZa1] Lower bound asymptotics of \(R(G, H) \) for large dense \(H \).

[Erd4] A conjecture posed by Erdős in 1983 that there exists a constant \(c \) such that \(R(G, G) \leq 2^{c\sqrt{e(G)}} \) for all isolate-free graphs \(G \). Discussion of this conjecture and partial results, proof for bipartite graphs and progress in other cases are included in [AIKS]. In 2011, Sudakov [Sud4] completed the proof of this conjecture. An extension of the latter to some off-diagonal cases is presented in [MaOm], and an improvement of the constant for bipartite graphs is given in [JoPe]. For the multicolor case see item 6.7.i.

[Kriv] Lower bound on \(R(G, K_n) \) depending on the density of subgraphs of \(G \). This construction for \(G = K_m \) produces a bound similar to the best known probabilistic lower bound by Spencer [Spe2]. Further lower and upper bounds on \(R(G, K_n) \) in terms of \(n \) and \(e(G) \) can be found in [Sud3].
[Con3] Upper bounds on $R(G, K_n)$ for dense graphs G.

[BE1] Relations between the cases of G or $G + K_1$ versus H or $H + K_1$.

[HaKr1] Study of cyclic graphs yielding lower bounds for Ramsey numbers. Exact formulas for paths and cycles, and values for small complete graphs and for graphs with up to five vertices.

[Par3] Relations between some Ramsey graphs and block designs. See also [Par4].

[Li2] Relations between the Shannon capacity of noisy communication channels and graph Ramsey numbers. See also section 6 in [Ros2], and [XuR3].

[Bu6] Given integer m and graphs G and H, determining whether $R(G, H) \leq m$ holds is NP-hard. Further complexity results related to Ramsey theory were presented in [Bu10].

[Scha] Ramsey arrowing is Π^p_2-complete, a rare natural example of a problem higher than NP in the polynomial hierarchy of computational complexity theory.

[-] Special cases of multicolor results listed in section 6.

[-] See also surveys listed in section 8.
6. Multicolor Ramsey Numbers

The only known value of a multicolor classical Ramsey number:

\[R_3(3) = R(3,3,3) = R(3,3,3;2) = 17 \]

[GG]

- 2 critical colorings (on 16 vertices) [KaSt, LayMa]
- 2 colorings on 15 vertices [Hein]
- 115 colorings on 14 vertices [PR1]

6.1. Bounds for classical numbers

General upper bound, implicit in [GG]:

\[R(k_1,\ldots,k_r) \leq 2 - r + \sum_{i=1}^{r} R(k_1,\ldots,k_{i-1},k_i-1,k_{i+1},\ldots,k_r) \] \hspace{1cm} (a)

Inequality in (a) is strict if the right hand side is even and at least one of the terms in the summation is even. It is suspected that this upper bound is never tight for \(r \geq 3 \) and \(k_i \geq 3 \), except for \(r = k_1 = k_2 = k_3 = 3 \). However, only two cases are known to improve over (a), namely \(R_4(3) \leq 62 \) [FKR] and \(R(3,3,4) \leq 31 \) [PR1, PR2], for which (a) produces the bounds of 66 and 34, respectively.

Diagonal Cases

<table>
<thead>
<tr>
<th>(r)</th>
<th>(m)</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>GG</td>
<td>17</td>
<td>128</td>
<td>417</td>
<td>1070</td>
<td>3214</td>
<td>6079</td>
<td>13761</td>
</tr>
<tr>
<td>4</td>
<td>Chu1</td>
<td>51</td>
<td>634</td>
<td>3049</td>
<td>15202</td>
<td>62017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Ex10</td>
<td>162</td>
<td>3416</td>
<td>26912</td>
<td>[\text{XXER}]</td>
<td>[\text{XXER}]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>FreSw</td>
<td>538</td>
<td>[\text{XXER}]</td>
<td>[\text{XXER}]</td>
<td>[\text{XXER}]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>FreSw</td>
<td>1682</td>
<td>[\text{XXER}]</td>
<td>[\text{XXER}]</td>
<td>[\text{XXER}]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table X. Known nontrivial lower bounds for diagonal multicolor Ramsey numbers \(R_r(m) \), with references.

The best published bounds corresponding to the entries in Table X marked as personal communications [Ex16] and [Xu] are \(415 \leq R_3(5) \), \(2721 \leq R_4(5) \) and \(26082 \leq R_5(5) \) [XXER].
The most studied and intriguing open case is

\[\text{[Chu1]} \quad 51 \leq R_4(3) = R(3,3,3,3) \leq 62 \quad \text{[FKR]} \]

The construction for \(51 \leq R_4(3) \) as described in [Chu1] is correct, but be warned of a typo found by Christopher Frederick in 2003 (there is a triangle \((31,7,28)\) in color 1 in the displayed matrix). The inequality 6.1.a implies \(R_4(3) \leq 66 \), Folkman [Fol] in 1974 improved this bound to 65, and Sánchez-Flores [San] in 1995 proved \(R_4(3) \leq 64 \).

The upper bounds in \(162 \leq R_5(3) \leq 307 \), \(538 \leq R_6(3) \leq 1838 \), \(1682 \leq R_7(3) \leq 12861 \), \(128 \leq R_3(4) \leq 236 \) and \(634 \leq R_4(4) \leq 6474 \) are implied by 6.1.a (we repeat lower bounds from Table X just to see easily the ranges). All the latter and other upper bounds obtainable from known smaller bounds and 6.1.a can be computed with the help of a LISP program written by Kerber and Rowat [KerRo].

Off-Diagonal Cases

Three colors:

<table>
<thead>
<tr>
<th>(m)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k)</td>
<td>30</td>
<td>45</td>
<td>60</td>
<td>85</td>
<td>103</td>
<td>129</td>
<td>147</td>
<td>162</td>
<td>185</td>
<td>212</td>
<td>233</td>
</tr>
<tr>
<td>3</td>
<td>Ka2</td>
<td>Ex2</td>
<td>Rob3</td>
<td>Ex18</td>
<td>Ex18</td>
<td>Ex18</td>
<td>Ex18</td>
<td>Ex18</td>
<td>6.2.f</td>
<td>6.2.f</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>89</td>
<td>117</td>
<td>145</td>
<td>193</td>
<td>229</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>89</td>
<td>139</td>
<td>181</td>
<td>237</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table XI. Known nontrivial lower bounds for 3-color Ramsey numbers of the form \(R(3,k,m) \), with references.

In addition, the bounds \(303 \leq R(3,6,6), 609 \leq R(3,7,7) \) and \(1689 \leq R(3,9,9) \) were derived in [XXER] (used there for building other lower bounds for some diagonal cases).

The other most studied, and perhaps the only open case of a classical multicolor Ramsey number, for which we can anticipate exact evaluation in the not-too-distance future is

\[\text{[Ka2]} \quad 30 \leq R(3,3,4) \leq 31 \quad \text{[PR1, PR2]} \]

In [PR1] it is conjectured that \(R(3,3,4) = 30 \), and the results in [PR2] eliminate some cases which could give \(R(3,3,4) = 31 \). The upper bounds in \(45 \leq R(3,3,5) \leq 57 \), \(55 \leq R(3,4,4) \leq 79 \), and \(89 \leq R(3,4,5) \leq 160 \) are implied by 6.1.a. We repeat lower bounds from Table XI to show explicitly the current ranges.
Four colors:

\[97 \leq R(3,3,3,4) \leq 153 \quad [Ex17, \text{6.1.a}] \]
\[171 \leq R(3,3,4,4) \leq 462 \quad [Ex15, \text{XXER}, \text{6.1.a}] \]
\[381 \leq R(3,4,4,4) \leq 1619 \quad \text{6.2.j, 6.1.a} \]
\[162 \leq R(3,3,3,5) \quad [\text{XXER}] \]
\[565 \leq R(3,3,3,11) \quad 6.2.f \]
\[681 \leq R(3,4,5,5) \quad [\text{XXER}] \]

Lower bounds for higher numbers can be obtained by using general constructive results from section 6.2 below. For example, the bounds \(261 \leq R(3,3,15) \) and \(247 \leq R(3,3,3,7) \) were not published explicitly but are implied by 6.2.f and 6.2.g, respectively.

6.2. General results for complete graphs

(a) \(R(k_1, \ldots, k_r) \leq 2 - r + \sum_{i=1}^r R(k_1, \ldots, k_{i-1}, k_i - 1, k_{i+1}, \ldots, k_r) \) [GG].

(b) \(R_r(3) \geq 3R_{r-1}(3) + R_{r-3}(3) - 3 \) [Chu1].

(c) \(R_r(m) \geq c_m(2m-3)^r \), and some slight improvements of this bound for small values of \(m \) were described in [AbbH, Gi1, Gi2, Song2]. For \(m = 3 \), the best known lower bound is \(R_r(3) \geq (3.199 \ldots)^r \) [XXER].

(d) \(R_r(3) \leq r!(e - e^{-1} + 3)/2 \approx 2.67r! \) [Wan], which improves the classical \(3r! \) [GRS].

(e) The limit \(L = \lim_{r \to \infty} R_r(3)^{1/r} \) exists, though it can be infinite [ChGri].

It is known that \(3.199 < L \), as implied by (c) above. For more related results, mostly on the asymptotics of \(R_r(3) \), see [AbbH, Fre, Chu2, GRS, GrRo È].

(f) \(R(3, k, l) \geq 4R(k, l - 1) - 3 \) for \(k \geq 3, l \geq 5 \), and in general for \(r \geq 2 \) and \(k_i \geq 2 \) it holds
\[R(3, k_1, \ldots, k_r) \geq 4R(k_1 - 1, k_2, \ldots, k_r) - 3 \quad \text{for} \ k_1 \geq 5, \text{and} \]
\[R(k_1, 2k_2 - 1, k_3, \ldots, k_r) \geq 4R(k_1 - 1, k_2, \ldots, k_r) - 3 \quad \text{for} \ k_1 \geq 5 \] [XX2, XXER].

(g) \(R(3, 3, 3, k_1, \ldots, k_r) \geq 3R(3, 3, k_1, \ldots, k_r) + R(k_1, \ldots, k_r) - 3 \) [Rob2].

(h) For \(r + 1 \) colors, avoiding \(K_3 \) in the first \(r \) colors and avoiding \(K_m \) in the last color, \(R(3, \ldots, 3, m) \leq r! m^{r+1} \) [Sár].

(i) \(R(k_1, \ldots, k_r) \geq S(k_1, \ldots, k_r) + 2 \), where \(S(k_1, \ldots, k_r) \) is the generalized Schur number [AbbH, Gi1, Gi2]. In particular, the special case \(k_1 = \ldots = k_r = 3 \) has been widely studied [Fre, FreSw, Ex10, Rob3].

(j) \(R(k_1, \ldots, k_r) \geq L(k_1, \ldots, k_r) + 1 \), where \(L(k_1, \ldots, k_r) \) is the maximal order of any cyclic \((k_1, \ldots, k_r)\)-coloring, which can be considered a special case of Schur partitions defining (symmetric) Schur numbers. Many lower bounds for Ramsey numbers were established
by cyclic colorings. The following recurrence can be used to derive lower bounds for higher parameters. For $k_i \geq 3$ [Gi2],

$$L(k_1, \ldots, k_r, k_{r+1}) \geq (2k_{r+1} - 3)L(k_1, \ldots, k_r) - k_{r+1} + 2.$$

(k) $R_r(m) \geq p + 1$ and $R_r(m + 1) \geq r(p + 1) + 1$ if there exists a K_m-free cyclotomic r-class association scheme of order p [Mat].

(l) If the quadratic residues Paley graph Q_p of prime order $p = 4t + 1$ contains no K_k, then $R(s, k + 1, k + 1) \geq 4ps - 6p + 3$ [XXER].

(m) $R_r(pq + 1) > (R_r(p + 1) - 1)(R_r(q + 1) - 1)$ [Abb1]

(n) $R_r(pq + 1) > R_r(p + 1)(R_r(q + 1) - 1)$ for $p \geq q$ [XXER]

(o) $R(p_1q_1 + 1, \ldots, p_rq_r + 1) > (R(p_1 + 1, \ldots, p_r + 1) - 1)(R(q_1 + 1, \ldots, q_r + 1) - 1)$ [Song3]

(p) $R_{r+5}(m) > (R_r(m) - 1)(R_{s}(m) - 1)$ [Song2]

(q) $R(k_1, k_2, \ldots, k_r) > (R(k_1, \ldots, k_i) - 1)(R(k_{i+1}, \ldots, k_r) - 1)$ in [Song1], see [XXER].

(r) $R(k_1, k_2, \ldots, k_r) > (k_1 + 1)(R(k_2 - k_1 + 1, k_3, \ldots, k_r) - 1)$ [Rob4]

(s) Further lower bound constructions, though with more complicated assumptions, were presented in [XX2, XXER].

(t) Grolmusz [Groll1] generalized the classical constructive lower bound by Frankl and Wilson [FraWi] (item 2.3.6) to more colors and to hypergraphs [Grol3] (item 7.4.k).

(u) Exact asymptotics of a very special but important case is known, namely $R(3, 3, n) = \Theta(n^3 \text{poly-log } n)$ [AlRö]. For general upper bounds and more asymptotics see in particular [Chu4, ChGra2, ChGri, GRS, GrRö].

All lower bounds in (b) through (t) above are constructive. Item (g) generalizes (b), (o) generalizes both (m) and (q), and (q) generalizes (p). (n) is stronger than (m). Finally, we note that the construction in (o) with $q_1 = \ldots = q_i = 1 = p_{i+1} = \ldots = p_r$ is the same as (q).

6.3. Cycles

Note: The paper *Ramsey Numbers Involving Cycles* [Ra4] is based on the revision #12 of this survey. It collects and comments on the results involving cycles versus any graphs, in two or more colors. It contains some more details than this survey, but only until 2009.

6.3.1. Three colors

(a) One long cycle.

The first larger paper in this area by Erdős, Faudree, Rousseau and Schelp [EFRS1] appeared in 1976. It gives several formulas and bounds for $R(C_m, C_n, C_k)$ and $R(C_m, C_n, C_k, C_l)$ for large m. For three colors [EFRS1] includes:

$$R(C_m, C_{2p+1}, C_{2q+1}) = 4m - 3 \text{ for } p \geq 2, q \geq 1,$$

$$R(C_m, C_{2p}, C_{2q+1}) = 2(m + p) - 3 \text{ and}$$

$$R(C_m, C_{2p}, C_{2q}) = m + p + q - 2 \text{ for } p, q \geq 1 \text{ and large } m.$$
Table XII. Ramsey numbers $R(C_m, C_n, C_k)$ for $m, n, k \leq 7$ and $m = n = k = 8$; Sun1+ abbreviates SunYWLX, Sun2+ abbreviates SunYLZ2, the work in [SunYWLX] and [SunYLZ2] is independent from [Tse3].

(b) Triple even cycles.

$R_3(C_{2m}) \geq 4m$ for all $m \geq 2$ [DzNS], see also 6.3.2.d/e/f. It was proven that $R(C_n, C_n, C_n) = (2 + o(1))n$ for even n [FiŁu1, GyRSS], which was improved to exactly $2n$, for large n, by Benevides and Skokan [BenSk]. In 2005, Dzido [Dzi1] conjectured that $R_3(C_{2m}) = 4m$ for all $m \geq 3$. The first open case is for $R_3(C_{10})$, known to be at least 20. A more general result holds for slightly off-diagonal cases [FiŁu1]:

\[
R_3(C_{2m}) \geq 4m \quad \text{for all} \quad m \geq 2 \quad \text{[DzNS], see also 6.3.2.d/e/f.}
\]

\[
R_3(C_{n}, C_{n}, C_{n}) = (2 + o(1))n \quad \text{for even} \quad n \quad \text{[FiŁu1, GyRSS], which was improved to exactly} \quad 2n, \quad \text{for large} \quad n, \quad \text{by Benevides and Skokan [BenSk].}
\]

\[
R_3(C_{2m}) = 4m \quad \text{for all} \quad m \geq 3. \quad \text{The first open case is for} \quad R_3(C_{10}), \quad \text{known to be at least 20.}
\]

A more general result holds for slightly off-diagonal cases [FiŁu1]:

\[
R_3(C_{2m}) = 4m \quad \text{for large} \quad q \quad \text{[BenSk].}
\]
The conjectured equality $R_3(C_{2m}) = 4m$, whenever true, implies $R_3(P_{2m+1}) = 4m + 1$ [DyDR] (see also section 6.4).

(c) Triple odd cycles.
Bondy and Erdős conjectured that $R(C_n, C_n, C_n) \leq 4n - 3$ for all $n \geq 4$ (see for example [Erd2]). If true, then for all odd $n \geq 5$ we have $R(C_n, C_n, C_n) = 4n - 3$. The first open case is for $R_3(C_9)$, known to be at least 33. Erdős [Erd3] and other authors credit this conjecture to Bondy and Erdős, often pointing to a 1973 paper [BoEr]. Interestingly, however, the conjecture is not mentioned in this paper.

Łuczak proved that $R(C_n, C_n, C_n) \leq (4 + o(1))n$, with equality for odd n [Łuc]. The result $R_3(C_{2m+1}) = 8m + 1$ for all sufficiently large m, or equivalently $R(C_n, C_n, C_n) = 4n - 3$ for large odd n, was announced with an outline of the proof by Kohayakawa, Simonovits and Skokan [KoSS1], followed by the full proof in [KoSS2].

(d) $R(C_3, C_3, C_k) = 5k - 4$ for $k \geq 5$ [SunYWLX], and $R(C_4, C_4, C_k) = k + 2$ for $k \geq 11$ [SunYLZ2]. All exceptions to these formulas for small k are listed in Table XII.

(e) Asymptotics for triples of cycles of mixed parity similar in form to (b) [FiŁu2].

(f) Almost all of the off-diagonal cases in Table XII required the use of computers.

6.3.2. More colors

<table>
<thead>
<tr>
<th>m</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>11</td>
<td>17</td>
<td>12</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>51</td>
<td>62</td>
<td>18</td>
<td>33</td>
<td>158</td>
<td>18</td>
</tr>
<tr>
<td>5</td>
<td>162</td>
<td>307</td>
<td>27</td>
<td>65</td>
<td>26</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>538</td>
<td>1838</td>
<td>32</td>
<td>129</td>
<td>193</td>
<td></td>
</tr>
</tbody>
</table>

Table XIII. Known values and bounds for $R_k(C_m)$ for small k,m.

(a) For the entries in the row $k = 3$ and in the column $m = 3$ in Table XIII, more details and all corresponding references are in sections 6.3.1 and 6.1, respectively. The lower bounds for $m = 5, 7$ are implied by 6.3.2.k, $R_k(C_m) \leq 158$ follows from 6.3.2.j, and references to other cases with $k,m \geq 4$ can be found below in this section.
\[R_4(C_4) = 18 \] \[R_4(C_6) \leq 20 \] \[R_5(C_4) \leq 29 \] \[R_5(C_6) = 26 \] \[24 \leq R(C_3, C_4, C_4, C_4) \leq 27 \] \[30 \leq R(C_3, C_3, C_4, C_4) \leq 36 \] \[49 \leq R(C_3, C_3, C_3, C_4) \]

(b) \[R_k(C_4) \leq k^2 + k + 1 \] for all \(k \geq 1 \), \[R_k(C_4) \geq k^2 - k + 2 \] for all \(k - 1 \) which is a prime power \([Ir, Chu2, ChGra1]\), and \[R_k(C_4) \geq k^2 + 2 \] for odd prime power \(k \) \([LaWo1]\). The latter was extended to any prime power \(k \) in \([Ling, LaMu]\).

(c) Formulas for \(R(C_m, C_n, C_k, C_l) \) for large \(m \) \([EFRS1]\).

Bounds in (d) through (i) below cover different situations and each is best in some respect.

(d) \[R_k(C_{2m}) \geq (k+1)m \] for odd \(k \) and \(m \geq 2 \), and \[R_k(C_{2m}) \geq (k+1)m-1 \] for even \(k \) and \(m \geq 2 \) \([DzNS]\).

(e) \[R_k(C_{2m}) \geq 2(k-1)(m-1) + 2 \] \([SunYXL]\).

(f) \[R_k(C_{2m}) \geq k^2 + 2m - k \] for \(2m \geq k + 1 \) and prime power \(k \) \([SunYLS]\).

(g) \[R_k(C_{2m}) = \Theta(k^{m/(m-1)}) \] for fixed \(m = 2, 3 \) and \(5 \) \([LiLih]\).

(h) \[R_k(C_{2m}) \leq 201km \] for \(k \leq 10^m/201m \) \([EG]\).

(i) \[R_k(C_{2m}) \leq 2km + o(m) \] for all fixed \(k \geq 2 \) \([ŁucSS]\).

(j) \[R_k(C_5) < \sqrt{18k^k!} / 10 \] \([Li4]\).

(k) \[2^k m < R_k(C_{2m+1}) \leq (k+2)!/(2m+1) \] \([BoEr]\).

Better upper bound \(R_k(C_{2m+1}) < 2(k+2)!m \) was obtained in \([EG]\).

Much better upper bound \(R_k(C_{2m+1}) \leq (c^k k!)^{1/m} \), for some positive constant \(c \), if all Ramsey-critical colorings for \(C_{2m+1} \) are not far from regular, was obtained in \([Li4]\).

(l) Conjecture that \(R_k(C_{2m+1}) = 2^k m + 1 \) for all \(m \geq 2 \) was credited by several authors to Bondy and Erdős \([BoEr]\), though only lower bound, not the conjecture, is in this paper.

(m) \[R(C_n, C_l, \ldots, C_l) = 2^k(n - 1) + 1 \] for all \(l \)'s odd with \(l_i > 2^i \), and sufficiently large \(n \), and support for the conjecture that \(R_k(C_n) = 2^{k-1}(n - 1) + 1 \) for large odd \(n \) \([AllBS]\).

(n) \[R_k(C_{2m+1}) \leq k 2^k (2m + 1) + o(m) \] for all fixed \(k \geq 4 \) \([ŁucSS]\).

(o) Asymptotic bounds for \(R_k(C_n) \) \([Bu1, GRS, ChGra2, Li4, LiLih, ŁucSS]\).

(p) Survey of multicolor cycle cases \([Li3]\).
6.3.3. Cycles versus other graphs

(a) Some cases involving C_4:

\begin{align*}
20 &\leq R(C_4, C_4, K_4) \leq 22 & \text{[DyDz1] [XSR1]} \\
27 &\leq R(C_3, C_4, K_4) \leq 32 & \text{[DyDz1] [XSR1]} \\
52 &\leq R(C_4, C_4, K_4) \leq 72 & \text{[XSR1]} \\
34 &\leq R(C_4, C_4, C_4, K_4) \leq 50 & \text{[DyDz1] [XSR1]} \\
43 &\leq R(C_3, C_4, C_4, K_4) \leq 76 & \text{[DyDz1] [XSR1]} \\
87 &\leq R(C_4, C_4, K_4, K_4) \leq 179 & \text{[XSR1]} \\
R(K_{1,3}, C_4, K_4) & = 16 & \text{[KlaM2]} \\
R(C_4, C_4, K_4 - e) & = 16 & \text{[DyDz1]} \\
R(C_4, C_4, C_4, T) & = 16 & \text{for } T = P_4 \text{ and } T = K_{1,3} & \text{[ExRe]}
\end{align*}

(b) Study of $R(C_n, K_{t_1}, \ldots, K_{t_k})$ and $R(C_n, K_{t_1, s_1}, \ldots, K_{t_k, s_k})$ for large n [EFRS1].

(c) $R(C_n, K_{t_1}, \ldots, K_{t_k}) = (n-1)(r-1)$ for $n \geq 4r + 2$, where $r = R(K_{t_1}, \ldots, K_{t_k})$ [OmRa2].

(d) Study of asymptotics for $R(C_m, \ldots, C_m, K_n)$, in particular for any fixed number of colors $k \geq 4$ we have $R(C_4, C_4, \ldots, C_4, K_n) = \Theta(n^2/\log^2 n)$ [AlRö].

(e) Study of asymptotics for $R(C_{2m}, C_{2m}, K_n)$ for fixed m [AlRö, ShiuLL], in particular $R(C_4, C_4, K_n) = \Theta(n^2 \text{ poly-log } n)$ [AlRö].

(f) Monotone paths and cycles [Lef].

(g) For combinations of C_3 and K_n see sections 2.2, 3.2, 4.2, 6.1 and 6.2.

6.4. Paths, paths versus other graphs

In 2007, Gyárfás, Ruszinkó, Sárközy and Szemerédi [GyRSS] established that for all n large enough we have

$$R(P_n, P_n, P_n) = 2n - 2 + (n \mod 2).$$

Faudree and Schelp [FS2] conjectured that the latter holds for all $n \geq 1$. It is true for $n \leq 9$ (see (c) below), and the first open case is that for P_10. The conjectured equality $R(C_{2m}, C_{2m}, C_{2m}) = 4m$ (see 6.3.1.a), whenever true, implies the above for three paths P_{2m+1} [DyDR].

6.4.1. Three color path and path-cycle cases

(a) $R(P_m, P_n, P_k) = m + \lfloor n/2 \rfloor + \lfloor k/2 \rfloor - 2$ for $m \geq 6(n + k)^2$ [FS2],

the equality holds asymptotically for $m \geq n \geq k$ with an extra term $o(m)$ [FiLu1],

extensions of the range of m, n, k for which (a) holds were obtained in [Biel3].

(b) $R(P_3, P_m, P_n) = m + \lfloor n/2 \rfloor - 1$ for $m \geq n$ and $(m, n) \neq (3, 3), (4, 3)$ [MaORS2].
(c) \(R_3(P_3) = 5 \) [Ea1], \(R_3(P_4) = 6 \) [Ir],
\(R(P_m, P_n, P_k) = 5 \) for other \(m-n-k \) combinations with \(3 \leq m, n, k \leq 4 \) [ArKM],
\(R_3(P_5) = 9 \) [YR1], \(R_3(P_6) = 10 \) [YR1], and \(R_3(P_7) = 13 \) [YY],
\(R_3(P_8) = 14 \), \(R_3(P_9) = 17 \) [DyDR].

(d) \(R(P_4, P_4, P_{2n}) = 2n + 2 \) for \(n \geq 2 \),
\(R(P_5, P_5, P_5) = R(P_5, P_5, P_6) = 9 \),
\(R(P_5, P_5, P_n) = n + 2 \) for \(n \geq 7 \),
\(R(P_5, P_6, P_n) = R(P_4, P_6, P_n) = n + 3 \) for \(n \geq 6 \),
\(R(P_6, P_6, P_{2n}) = R(P_4, P_8, P_{2n}) = 2n + 4 \) for \(n \geq 14 \) [OmRa1].

(e) \(R(P_m, P_n, C_k) = 2n + 2 \lfloor m/2 \rfloor - 3 \) for large \(n \) and odd \(m \geq 3 \) [DzFi2],
iimprovements on the range of \(m, n, k \) [Biel3, Fid1].

(f) \(R(P_3, P_3, C_m) = 5, 6, 6 \), for \(m = 3, 4 \) [ArKM], 5,
\(R(P_3, P_3, C_m) = m \) for \(m \geq 6 \) [Dzi2].
\(R(P_3, P_4, C_m) = 7 \) for \(m = 3, 4 \) [ArKM] and 5,
\(R(P_3, P_4, C_m) = m + 1 \) for \(m \geq 6 \) [Dzi2].
\(R(P_4, P_4, C_m) = 9, 7, 9 \) for \(m = 3, 4 \) [ArKM] and 5 [Dzi2],
\(R(P_4, P_4, C_m) = m + 2 \) for \(m \geq 6 \) [DzKP].

(g) \(R(P_3, P_5, C_m) = 9, 7, 9, 7, 9 \) for \(m = 3, 4, 5, 6, 7 \) [Dzi2, DzFi2],
\(R(P_3, P_5, C_m) = m + 1 \) for \(m \geq 8 \) [DzKP].

A table of \(R(P_3, P_k, C_m) \) for all \(3 \leq k \leq 8 \) and \(3 \leq m \leq 9 \) [DzFi2].

(h) \(R(P_4, P_5, C_m) = 11, 7, 11, 11, 11 \), and \(m + 2 \) for \(m = 3, 4, 5, 7 \) and \(m \geq 23 \),
\(R(P_4, P_6, C_m) = 13, 8, 13, 13, 13 \), and \(m + 3 \) for \(m = 3, 4, 5, 7 \) and \(m \geq 18 \) [ShaXSP].

(i) \(R(P_3, P_n, C_4) = n + 1 \) for \(n \geq 6 \) [DzFi2],
\(R(P_3, P_n, C_6) = n + 2 \) for \(n \geq 6 \),
\(R(P_3, P_n, C_8) = n + 3 \) for \(n \geq 7 \) [Fid1],
\(R(P_3, P_n, C_k) = 2n - 1 \), and
\(R(P_4, P_n, C_k) = 2n + 1 \) for odd \(k \geq 3 \) and \(n \geq k \) [DzFi2].

(j) \(R(P_3, P_6, C_m) = m + 2 \) for \(m \geq 23 \),
\(R(P_6, P_6, C_m) = R(P_4, P_8, C_m) = m + 4 \) for \(m \geq 27 \),
\(R(P_6, P_7, C_m) = m + 4 \) for \(m \geq 57 \),
\(R(P_4, P_n, C_4) = R(P_5, P_n, C_4) = n + 2 \) for \(n \geq 5 \) [OmRa1].

(k) \(R(P_3, C_3, C_3) = 11 \) [BE3], \(R(P_3, C_4, C_4) = 8 \) [ArKM], \(R(P_3, C_6, C_6) = 9 \) [Dzi2],
\(R(P_3, C_m, C_m) = R(C_m, C_m) = 2m - 1 \) for odd \(m \geq 5 \) [DzKP] (for \(m = 5, 7 \) [Dzi2]),

(l) \(R(P_3, C_n, C_m) = R(C_n, C_m) \) for \(n \geq 7 \) and odd \(m, 5 \leq m \leq n \), and
some values and bounds on \(R(P_3, C_n, C_m) \) in other cases [Fid1].

(m) \(R(P_3, C_3, C_4) = 8 \) [ArKM], \(R(P_3, C_3, C_5) = 9 \), \(R(P_3, C_3, C_6) = 11 \),
\(R(P_3, C_3, C_7) = 13 \), \(R(P_3, C_4, C_5) = 8 \), \(R(P_3, C_4, C_6) = 8 \),
\[R(P_3, C_4, C_7) = 8, \quad R(P_3, C_5, C_6) = 11, \quad R(P_3, C_5, C_7) = 13 \]
\[R(P_3, C_6, C_7) = 11 \quad \text{[Dzi2].} \]

(n) Formulas for \(R(pP_3, qP_3, rP_3) \) and \(R(pP_4, qP_4, rP_4) \) [Scob].

(o) \(R(P_3, K_4 - e, K_4 - e) = 11 \) [Ex7]. All colorings which can form any color neighborhood for the open case \(R_3(K_4 - e) \) (see section 6.5) were found in [Piw2].

6.4.2. More colors

(a) \(R_k(P_3) = k + 1 + (k \mod 2), \quad R_k(2P_2) = k + 3 \) for all \(k \geq 1 \) [Ir].

(b) \(R_k(P_4) = 2k + c_k \) for all \(k \) and some \(0 \leq c_k \leq 2 \). If \(k \) is not divisible by 3 then \(c_k = 3 - k \mod 3 \) [Ir]. Wallis [Wall] showed \(R_6(P_4) = 13 \), which already implied \(R_{3t}(P_4) = 6t + 1 \), for all \(t \geq 2 \). Independently, the case \(R_k(P_4) \) for \(k \neq 3^m \) was completed by Lindström in [Lind], and later Bierbrauer proved \(R_{3^m}(P_4) = (2(3^m)) + 1 \) for all \(m > 1 \). \(R_3(P_4) = 6 \) [Ir].

(c) Formula for \(R(P_{n_1}, \ldots, P_{n_k}) \) for large \(n_1 \) [FS2], and some extensions [Biel3]. Conjectures about \(R(P_{n_1}, \ldots, P_{n_k}) \) when all or all but one of \(n_i \)'s are even [OmRa1].

(d) Formulas for \(R(P_{n_1}, \ldots, P_{n_k}, C_m) \) for some cases, for large \(m \) [OmRa1].

(e) Formula for \(R(n_1P_2, \ldots, n_kP_2) \), in particular \(R(nP_2, nP_2, nP_2) = 4n - 2 \) [CocL1]. Note how close the latter is to \(R(C_{2n}, C_{2n}, C_{2n}) = 4n \), see an earlier item 6.3.1b.

(f) Cockayne and Lorimer [CocL1] found the exact formula for \(R(n_1P_2, \ldots, n_kP_2) \), and later Lorimer [Lor] extended it to a more general case of \(R(K_m, n_1P_2, \ldots, n_kP_2) \). More general cases of the latter, with multiple copies of the complete graph, paths, stars and forests, were studied in [Stahl, LorSe, LorSo, GyRSS]. A special 3-color case \(R(P_3, mP_2, nP_2) = 2m + n - 1 \) for \(m \geq n \geq 3 \) is given in [MaORS2].

(g) Multicolor cases for one large path or cycle involving small paths, cycles, complete and complete bipartite graphs [EFRS1].

(h) See sections 6.5 and 8.2, especially [ArKM, BoDD], for a number of cases for triples of small graphs.

6.5. Special cases

\[R_3(K_3 + e) = R_3(K_3) \quad [= 17] \quad \text{[YR3, ArKM], where } K_3 + e = K_4 - P_3 \]
\[R(K_3 + e, K_3 + e, K_4 - e) = 17 \quad \text{[ShWR]} \]

If \(R_4(K_3) = 51 \) then \(R_4(K_3 + e) = 52 \), and
if \(R_4(K_3) > 51 \) then \(R_4(K_3 + e) = R_4(K_3) \) \quad \text{[ShWR]}
28 \leq R_3(K_4-e) \leq 30 \quad [Ex7] [Piw2]
R(P_3, K_4-e, K_4-e) = 11 \quad [Ex7], all colorings [Piw2]

472 \leq R_3(K_6-e) \quad [HeDL]
1102 \leq R_3(K_7-e) \quad [HeDL]

21 \leq R(K_3, K_4-e, K_4-e) \leq 27 \quad [ShWR]
33 \leq R(K_4, K_4-e, K_4-e) \leq 60 \quad [ShWR]
55 \leq R(K_4, K_4, K_4-e) \leq 113 \quad [Ea1][BoDD]

R(C_4, P_4, K_4-e) = 11 \quad [ArKM]
R(C_4, P_4, K_4) = 14 \quad [BoDD]
R(C_4, C_4, K_4-e) = 16 \quad [DyDz1]
R(C_4, K_3, K_4-e) = 17 \quad [BoDD]
R(C_4, K_4-e, K_4-e) = 19 \quad [BoDD]

28 \leq R(C_4, K_4, K_4-e) \leq 36 \quad [BoDD]
30 \leq R(K_3, K_4, K_4-e) \leq 41 \quad [Ea1][BoDD]
33 \leq R(K_4, K_4-e, K_4-e) \leq 59 \quad [Ea1][BoDD]

See also section 8.2 for pointers to cumulative data for three colors.

6.6. General results for special graphs

(a) Formulas for $R_k(G)$, where G is one of the graphs P_3, $2K_2$ and $K_{1,3}$, for all k, and for P_4 if k is not divisible by 3 [Ir]. For some details see section 6.4.2b.

(b) $tk^2 + 1 \leq R_k(K_{2,t+1}) \leq tk^2 + k + 2$, where the upper bound is general, and the lower bound holds when both t and k are prime powers [ChGra1, LaMu].

(c) $(m-1)[(k+1)/2] < R_k(T_m) \leq 2km + 1$ for any tree T_m with m edges [EG], see also [GRS]. The lower bound can be improved for special large k [EG, GRS]. The upper bound was improved to $R_k(T_m) < (m-1)(k + \sqrt{k(k-1)} + 2)$ in [GyTu].

(d) $k(\sqrt{m-1})/2 < R_k(F_m) < 4km$ for any forest F_m with m edges [EG], see [GRS]. See also pointers in items (p) and (r) below.

(e) $R(S_1, ..., S_k) = n + e$, where S_i’s are arbitrary stars, $n = n(S_1) + ... + n(S_k) - 2k$, and we set $e = 1$ if n is even and some $n(S_i)$ is odd, and $e = 2$ otherwise [BuRo1]. See also [GauST, Par6].

(f) Formula for $R(S_1, ..., S_k, K_n)$, where S_i’s are arbitrary stars [Jac]. It was generalized to a formula for $R(S_1, ..., S_k, K_{k_1}, ..., K_{k_r})$ expressed in terms of $R(k_1, ..., k_r)$ and star orders [BoCGR]. A much shorter proof of the latter was presented in [OmRa2].

(g) Formula for $R(S_1, ..., S_k, nK_2)$, where S_i’s are arbitrary stars [CocL2], and a formula for $R(n_1K_2, ..., n_kK_2)$ [CocL1]. See also cases involving P_2 in section 6.4.2.
(h) Formula for \(R(S_1, \ldots , S_k, T) \), where \(S_i \)'s are stars and \(T \) is a tree [ZZ1].

(i) Formulas for \(R(S_1, \ldots , S_k) \), where each \(S_i \)'s is a star or \(m_i K_2 \) [ZZ2, EG], formula for the case \(R(S, mK_2, nK_2) \) [GySá2].

(j) Bounds on \(R_k(G) \) for unicyclic graphs \(G \) of odd girth.

Some exact values for special graphs \(G \), for \(k = 3 \) and \(k = 4 \) [KrRod].

(k) For prime \(p = 3q + 1 \), if the cubic residues Paley graph \(Q_p \) contains no \(K_{k-e} \), then \(R_3(K_{k+1-e}) > 3p \) [HeDL]. The cases \(k = 5, 6 \) give two bounds listed in section 6.5.

(l) \(R_k(K_{3,3}) = (1 + o(1))k^3 \) [AlRoôS].

(m) Bounds on \(R_k(K_{s,t}) \), in particular for \(K_{2,2} = C_4 \) and \(K_{2,t} \) [ChGra1, AxFM]. Asymptotics of \(R_k(K_{s,t}) \) for fixed \(k \) and \(s \) [DoLi, LiTZ]. Upper bounds on \(R_k(K_{s,t}) \) [SunLi].

(n) Exact asymptotics \(R(K_{t,s}, K_{t,s}, K_{t,s}, K_m) = \Theta(m^t/\log^t m) \), for any fixed \(t > 1 \) and large \(s \geq (t-1)! + 1 \) [AlRô].

(o) Bounds on \(R_k(G) \) for trees, forests, stars and cycles [Bu1].

(p) Bounds for trees \(R_k(T) \) and forests \(R_k(F) \) [EG, GRS, BierB, GyTu, Bra1, Bra2, SwPr].

(q) \(R_3(G_{a,b}) = (2 + o(1))ab \), where \(G_{a,b} \) is the rectangular \(a \times b \) grid graph. Lower and upper bounds on \(R_3(G) \) for graphs \(G \) with small bandwidth and bounded \(\Delta(G) \) [MoSST].

(r) Study of the case \(R(K_m, n_1 P_{2, \ldots , n_k P_{2}}) \) [Lor]. Other similar results include \(R(P_3, mK_2, nK_2) = 2m + n - 1 \) for \(m \geq n \geq 3 \) [MaORS2] and \(R(S_n, nK_2, nK_2) = 3n - 1 \) [GySá2]. More general cases, with multiple copies of the complete graph, stars and forests, were investigated in [Stahl, LorSe, LorSo, GyRSS]. See also section 6.4.2.

(s) See section 8.2, especially [ArKM, BoDD], for a number of cases for other small graphs, similar to those listed in sections 6.3 and 6.4.

6.7. General results

(a) Szemerédi’s Regularity Lemma [Szem] states that the vertices of every large graph can be partitioned into similar size parts so that the edges between these parts behave almost randomly. This lemma has been used extensively in various forms to prove the upper bounds, including those studied in [BenSk, GyRSS, GySS1, HaŁP1+, HaŁP2+, KoSS1, KoSS2].

(b) \(R(m_1 G_1, \ldots , m_k G_k) \leq R(G_1, \ldots , G_k) + \sum_{i=1}^{k} n(G_i)(m_i - 1) \), exercise 8.3.28 in [West].

(c) If \(G \) is connected and \(R(K_k, G) = (k-1)(n(G)-1)+1 \), in particular if \(G \) is any \(n \)-vertex tree, then \(R(K_k, \ldots , K_k, G) = (R(k_1, \ldots , k_r) - 1)(n - 1) + 1 \) [BE3]. A generalization for connected \(G_1, \ldots , G_n \) in place of \(G \) appeared in [Jac].

(d) If \(F, G, H \) are connected graphs then \(R(F, G, H) \geq (R(F, G) - 1)(\chi(H) - 1) + \min\{ R(F, G), s(H) \} \), where \(s(G) \) is the chromatic surplus of \(G \) (see item [Bu2] in section 5.16). This leads to several formulas and bounds for \(F \) and \(G \) being stars and/or
trees when $H = K_n$ [ShiuLL].

(e) $R(K_{k_1}, \ldots, K_{k_r}, G_1, \ldots, G_s) \geq (R(k_1, \ldots, k_r) - 1)(R(G_1, \ldots, G_s) - 1) + 1$ for arbitrary graphs G_1, \ldots, G_s [Bev]. This generalizes 6.2.q.

(f) Constructive bound $R(G_1, \ldots, G_{t^n + 1}) \geq t^n + 1$ for decompositions of K_{tn} [LaWo1, LaWo2].

(g) $R(G_1, \ldots, G_k) \leq 32\Delta k^\Delta n$, where $n \geq n(G_i)$ and $\Delta \geq \Delta(G_i)$ for all $1 \leq i \leq k$, $R(G_1, \ldots, G_k) \leq k^{2^\Delta} q n$, where $q \geq \chi(G_i)$ for all $1 \leq i \leq k$ [FoxSu1].

(h) $R_k(G) \leq k^{6e(G) \Delta k}$ for all isolate-free graphs G and $k \geq 3$ [JoPe].

(i) For the original two-color conjecture, now a theorem, see item [Erd4] in section 5.16.

(k) Study of $R(G_1, \ldots, G_k, G)$ for large sparse G [EFRS1, Bu3].

(l) Relations between the Shannon capacity of noisy communication channels and graph Ramsey numbers. A lower bound construction for $R_k(m)$ implying that supremum of the Shannon capacity over all graphs with bounded independence cannot be achieved by any finite graph power [XuR3]. For some other links between Shannon capacity and Ramsey numbers see section 6 in [Ros2], and [Li2].
7. Hypergraph Numbers

7.1. Values and bounds for numbers

The only known value of a classical Ramsey number for hypergraphs:
\[R(4,4;3) = 13, \]
more than 200000 critical colorings \[\text{[MR1]} \]
The computer evaluation of \(R(4,4;3) \) in 1991 consisted of an improvement of the upper bound from 15 to 13. This result followed an extensive theoretical study of this number by several authors \[\text{[Gi4, Isb1, Sid1]} \].

(a) \[33 \leq R(4,5;3) \text{ [Ex13]} \]
\[58 \leq R(4,6;3) \text{ [Ex18]} \]
\[82 \leq R(4,4,4;3) \text{ [Ex8]} \]
\[56 \leq R(4,4;4) \text{ [Ex11]} \]

(b) \[R(K_4-t, K_4-t;3) = 7 \text{ [Ea2]} \]
\[R(K_4-t, K_4;3) = 8 \text{ [Sob, Ex1, MR1]} \]
\[14 \leq R(K_4-t, K_5;3) \text{ [Ex1]} \]
\[13 \leq R(K_4-t, K_4-t, K_4-t;3) \leq 16 \text{ [Ex1] [Ea3]} \]

(c) The first bound on \(R(4,5;3) \geq 24 \) was obtained by Isbell \[\text{[Isb2]} \]. Shastri \[\text{[Shas]} \] gave a weak bound \(R(5,5;4) \geq 19 \) (now 34 in \[\text{[Ex11]} \]), nevertheless his lemmas, the stepping-up lemmas by Erdős and Hajnal (see \[\text{[GRS, GrRo È]} \], also 7.4.a below), and others in \[\text{[Ka3, Abb2, GRS, GrRo È, HuSo, SonYL]} \] can be used to derive better lower bounds for higher numbers.

(d) Several lower bound constructions for 3-uniform hypergraphs were presented in \[\text{[HuSo]} \]. Study of lower bounds on \(R(p,q;4) \) can be found in \[\text{[Song3] and [SonYL, Song4]} \] (the latter two papers are almost the same in contents). Most of the concrete lower bounds in these papers can be easily improved by using the same techniques, but starting with better constructions for small parameters as listed above.

(e) \[R(p,q;4) \geq 2R(p-1,q;4) - 1 \text{ for } p,q > 4, \text{ and } \]
\[R(p,q;4) \geq (p-1)R(p-1,q;4) - p + 2 \text{ for } p \geq 5, q \geq 7 \text{ [SonYL]} \]
Lower bound asymptotics for \(R(p,q;4) \) \[\text{[SonLi]} \].

(f) \[R(K_{1,1,c}, K_{1,1,c};3) = c + 2 \text{ for } 2 \leq c \leq 4, \text{ and } \]
\[\text{a conjecture that this equality also holds for all } c \geq 5 \text{ [MiPal]} \].

7.2. Cycles and paths

Definitions. \(P_n^{r,s} \) is called an \(s \)-path in an \(r \)-uniform hypergraph \(H \), if it consists of \(n \) hyperedges \(\{e_1,...,e_n\} \) in \(E(H) \), such that \(|e_i \cap e_{i+1}| = s \) for all \(1 \leq i < n \), and all other vertices in \(e_j \)'s are distinct \[\text{[Peng]} \]. An \(s \)-cycle \(C_n^{r,s} \) is defined analogously. Several authors use the terms of loose paths and loose cycles, which are 1-path and 1-cycles, and tight paths and
tight cycles, the latter most often for 3-uniform hypergraphs when they are 2-paths and 2-cycles, respectively. A 3-uniform Berge cycle is formed by \(n \) distinct vertices, such that all consecutive pairs of vertices are in an edge of the cycle, and all of the cycle edges are distinct. Berge cycles are not determined uniquely.

In the following items (b) to (i), when \(r = 3 \) or \(r \) is implied by the context, we write \(C_n \) and \(P_n \) for the \(r \)-uniform loose cycles and paths, \(C_n^{r,1} \) and \(P_n^{r,1} \), respectively. In other cases special comments are added.

(a) Tetrahedron is formed by four triples on the set of four points. The Ramsey number of tetrahedron is \(R(4,4;3) = 13 \) [MR1].

(b) For loose cycles and paths, \(R(C_3, C_3; 3) = 7 \), \(R(C_4, C_4; 3) = 9 \), and for the \(r \)-uniform case we have in general \(R(P_m, P_3; r) = R(P_3, C_3; r) = R(C_3, C_3; r) + 1 = 3r - 1 \) and \(R(P_m, P_4; r) = R(P_4, C_4; r) = R(C_4, C_4; r) + 1 = 4r - 2 \), for \(r \geq 3 \). These results and discussion of several related cases were presented in [GyRa].

(c) \(R(P_m, P_n; 3) = R(C_m, C_n; 3) + 1 = R(P_m, C_n; 3) = 2m + \lceil (n+1)/2 \rceil \), for all \(m \geq n \), and \(R(C_m, P_n; 3) = 2m + \lfloor (n-1)/2 \rfloor \), for \(m > n \) [MaORS1, OmSh].

(d) For loose cycles, \(R(C_{2n}, C_{2n}; 3) > 5n - 2 \) and \(R(C_{2n+1}, C_{2n+1}; 3) > 5n + 1 \), and asymptotically these lower bounds are tight [HaèP1+]. Generalizations to \(r \)-uniform hypergraphs and graphs other than cycles appeared in [GySS1].

(e) For tight cycles, \(R(C_{3n}, C_{3n}; 3) \approx 4n \) and \(R(C_{3n+i}, C_{3n+i}; 3) \approx 6n \) for \(i = 1 \) or \(2 \), and for tight paths \(R(P_n, P_n; 3) \approx 4n/3 \) [HaèP2+]. Some related results are discussed in [PoRRS].

(f) Exact results for Ramsey numbers involving \(s \)-paths for even \(r \) and \(s = r/2 \), in particular for \(P_n^{r,s} \) versus \(P_3^{r,s} \) and \(P_4^{r,s} \), when this value is \((n+1)s + 1 \) [Peng].

(g) For 3-uniform Berge cycles and two colors, \(R(C_n, C_n; 3) = n \) for \(n \geq 5 \) [GyLSS].

(h) For loose cycles, \(R(C_3, C_3, C_3; 3) = 8 \), and in general for \(k \geq 4 \) colors Gyárfás and Raeisi established the bounds \(k + 5 \leq R_k(C_3; 3) \leq 3k \) [GyRa].

(i) For 3-uniform Berge cycles, \(R_3(C_n; 3) = (1 + o(1))5n/4 \) [GySá1].

(j) Lower and upper asymptotic bounds for \(R(C_3^{3,1}, K_m; 3) \) and \(R(C_3^{5,1}, K_m; r) \) [KosMV2].

(k) Gyárfás, Sárközy and Szemerédi proved that, for sufficiently large \(n \), every 2-coloring of the edges of the complete 4-uniform hypergraph \(K_n \) contains a monochromatic 3-tight Berge cycle \(C_n \) [GySS2]. Special multicolor cases for \(r \)-uniform hypergraphs were studied in [GyLSS].

(l) Study of \(R(G, nH; r) \) and \(R(mG, nH; r) \) for loose/tight path, cycles and stars, including several exact results for large \(m \) or \(n \) [OmRa3].
7.3. General results for 3-uniform hypergraphs

(a) $2^{cn^2} < R(n, n; 3) < 2^{2n}$ is credited to Erdős, Hajnal and Rado (see [ChGra2] p. 30).
(b) For some a, b the numbers $R(m, a, b; 3)$ are at least exponential in m [AbbS].
(c) Improved lower and upper asymptotics for $R(s, n; 3)$ for fixed s and large n, proof of related Erdős and Hajnal conjecture on the growth of $R(4, n; 3)$, and the lower bound $2^{n^{2+\epsilon}} < R(n, n, n; 3)$ [ConFS2].
(d) $R(G, G; 3) \leq cn(H)$ for some constant c depending only on the maximum degree of a 3-uniform hypergraph H [CooFKO1, NaORS]. Similar results were proved for r-uniform hypergraphs in [KüCFO, Ishi, CooFKO2, ConFS1], see also item 7.4.g.
(e) Asymptotic lower bounds for $R(K_{a, b, c}, K_{a, b, c}; 3)$, where $K_{a, b, c}$ is formed by all abc triples on sets of orders a, b, c [MiPal].
(f) If G is a 3-uniform H-free hypergraph, then G contains a complete or empty tripartite subgraph with parts of order $(\log n(H))^{c+1/2}$, where $c > 0$ depends only on H. Furthermore, for $k \geq 4$ no analogue of it can hold for k-uniform hypergraphs [ConFS5].
(g) Asymptotic or exact values of $R_k(H; 3)$ when H is a bow $\{abc, ade\}$, kite $\{abc, abd\}$, tight path $P_3^{3,2} = \{abc, bcd, cde\}$, or windmill $\{abc, bde, cef, bce\}$, and, among others, a special case $R_6(kite; 3) = 8$ [AxGLM].
(h) $R_k(K_3) \leq R_{4k}(K_4 - t; 3) \leq R_{4k}(K_3) + 1$ [AxGLM].
(i) Upper bounds on $R_k(H; 3)$ for complete multipartite 3-uniform hypergraphs H, a 4-color case, and some other general and special cases [ConFS1, ConFS2, ConFS3]. $R_k(H; 3)$ ranges from $\sqrt{6k}(1 + o(1))$ to double exponential in k [AxGLM].

7.4. General results

(a) If $R(n, n; r) > m$ then $R(2n + r - 4, 2n + r - 4; r + 1) > 2^m$, for $n > r \geq 3$ (see [GRS] p. 106). This is the so-called stepping-up lemma, usually credited to Erdős and Hajnal. An improvement of the stepping-up lemma implying better lower bounds for a few types of hypergraph Ramsey numbers were obtained by Conlon, Fox and Sudakov [ConFS6].
(b) Lower bounds on $R_k(n; r)$ are discussed in [AbbW, DLR].
(c) General lower bounds for large number of colors were given in an early paper by Hirschfeld [Hir], and some of them were later improved in [AbbL].
(d) Lower and upper asymptotics of $R(s, n; k)$ for fixed s [ConFS2].
(e) Exact and asymptotic results generalizing 7.2.d to r-uniform case for cycles, and 2- and 3-color cases for all r-uniform diamond matchings [GySS1].
(f) Study of $R(G, nH; r)$ and $R(mG, nH; r)$ for loose/tight path and cycles (possibly with some additions), stars, r-partite hypergraphs, including several exact results for large m or n [OmRa3].
(g) $R(H, H; r) \leq cn(H)^{1+\epsilon}$, for some constant $c = c(\Delta, r, \epsilon)$ depending only on the maximum degree of H, r and $\epsilon > 0$ [KoRô3]. The proofs of the linear bound $cn(H)$ were
obtained independently in [KüCFO] and [Ishi], the latter including the multicolor case, and then without regularity lemma in [ConFS1]. More discussion of lower and upper bounds for various cases can be found in [ConFS1, ConFS2, ConFS3, CooFKO2].

(h) Let T_r be an r-uniform hypergraph with r edges containing a fixed $(r-1)$-vertex set S and the $(r+1)$-st edge intersecting all former edges in one vertex outside S. Then $R(T_r, K_r; r) = O(r^r/\log r)$ [KosMV1].

(i) Let $H_r(s, t)$ be the complete r-partite r-uniform hypergraph with $r-2$ parts of size 1, one part of size s, and one part of size t (for example, for $r=2$ it is the same as $K_{s,t}$). For the multicolor numbers, Lazebnik and Mubayi [LaMu] proved that $tk^2 - k + 1 \leq R_k(H_r(2,t+1); r) \leq tk^2 + k + r$, where the lower bound holds when both t and k are prime powers. For the general case of $H_r(s,t)$, more bounds are presented in [LaMu].

(j) $R_k(H; r)$ is polynomial in k when a fixed r-uniform H is r-partite, otherwise it is at least exponential in k [AxGLM].

(k) Grolmusz [Grol1] generalized the classical constructive lower bound by Frankl and Wilson [FraWi] (item 2.3.6) to more colors and to hypergraphs [Grol3].

(l) Lower and upper asymptotics, and other theoretical results on hypergraph numbers, are gathered in [GrRö, GRS, ConFS1, ConFS2, ConFS3, Song8].

8. Cumulative Data and Surveys

8.1. Cumulative data for two colors

[CH1] $R(G, G)$ for all graphs G without isolates on at most 4 vertices.

[CH2] $R(G, H)$ for all graphs G and H without isolates on at most 4 vertices.

[Clan] $R(G, H)$ for all graphs G on at most 4 vertices and H on 5 vertices, except five entries (now all solved, see section 5.11). All critical colorings for the isolate-free graphs G and H studied in [Clan] were found in [He4].

[Bu4] $R(G, G)$ for all graphs G without isolates and with at most 6 edges.

[He1] $R(G, G)$ for all graphs G without isolates and with at most 7 edges.

[HaMe2] $R(G, G)$ for all graphs G on 5 vertices and with 7 or 8 edges.

[He2] $R(G, H)$ for all graphs G and H on 5 vertices without isolates, except 7 entries (2 still open, see 5.11 and the paragraph at the end of this section).

[LoM5] $R(G, H)$ for all disconnected isolate-free graphs H on at most 6 vertices versus all G on at most 5 vertices, except 3 cases. Missing cases were completed in [KroMe].

[HoMe] $R(G, H)$ for $G=K_{1,3}+e$ and $G=K_4-e$ versus all connected graphs H on 6 vertices, except $R(K_4-e, K_6)$. The result $R(K_4-e, K_6)=21$ was claimed by McNamara [McN, unpublished], now confirmed in [ShWR].
Some errors in [Jin] were found [SchSch1].

Some formulas for \(R(nK_3, mG) \) for all \(G \) of order 4 without isolates.

[R(G, T)] for all connected graphs \(G \) with \(n(G) \leq 5 \), and almost all trees \(T \).

[FRS1] \(R(K_3, G) \) for all connected graphs \(G \) on 6 vertices.

[Jin] \(R(K_3, G) \) for all connected graphs \(G \) on 7 vertices.

Some errors in [Jin] were found [SchSch1].

[Brin] \(R(K_3, G) \) for all connected graphs \(G \) on at most 8 vertices. The numbers for \(K_3 \) versus sets of graphs with fixed number of edges, on at most 8 vertices, were presented in [KlaM1].

[BBH1] \(R(K_3, G) \) for all connected graphs \(G \) on 9 vertices. See also [BBH2].

[BrGS] \(R(K_3, G) \) for all graphs \(G \) on 10 vertices, except 10 cases (three of which, including \(G = K_{10} - e \), were solved [GoR2]).

[JR3] \(R(C_4, G) \) for all graphs \(G \) on at most 6 vertices.

[JR4] \(R(C_5, G) \) for all graphs \(G \) on at most 6 vertices.

[JR2] \(R(C_6, G) \) for all graphs \(G \) on at most 5 vertices.

[LoM3] \(R(K_{2,n}, K_{2,m}) \) for all \(2 \leq n, m \leq 10 \) except 8 cases, for which lower and upper bounds are given. Further data for other complete bipartite graphs are gathered in section 3.3 and [LoMe4].

[HaKr1] All best lower bounds up to 102 from cyclic graphs. Formulas for best cyclic lower bounds for paths and cycles, and values for small complete graphs and for graphs with up to five vertices.

Chvátal and Harary [CH1, CH2] formulated several simple but very useful observations on how to discover values of some numbers. All five missing entries in the tables of Clancy [Clan] have been solved (section 5.11). Out of 7 open cases in [He2] 5 have been solved, including \(R(4, 5) = R(G_{19}, G_{23}) = 25 \) and other cases listed in section 5.11. The 2 cases still open are for \(K_5 \) versus \(K_5 \) (section 2.1) and \(K_5 \) versus \(K_5 - e \) (section 3.1). Many extremal and other Ramsey graphs for various parameters are available at [BrCGM, McK, Ex18, Fid2, Fuj1], see section 8.3 below.

8.2. Cumulative data for three colors

[ArKM] \(R(F, G, H) \) for many triples of isolate-free graphs with at most 4 vertices. Some of the missing cases completed in [KlaM2].

[Boza4] \(R(G, H) \) for some graphs \(G \) with 4 vertices versus all graphs \(H \) with 7 vertices.

[FRS4] \(R(G, T) \) for all connected graphs \(G \) with \(n(G) \leq 5 \), and almost all trees \(T \).

[FRS1] \(R(K_3, G) \) for all connected graphs \(G \) on 6 vertices.

[Boza4] \(R(G, H) \) for some graphs \(G \) with 4 vertices versus all graphs \(H \) with 7 vertices.

[FRS4] \(R(G, T) \) for all connected graphs \(G \) with \(n(G) \leq 5 \), and almost all trees \(T \).

[FRS1] \(R(K_3, G) \) for all connected graphs \(G \) on 6 vertices.

[Boza4] \(R(G, H) \) for some graphs \(G \) with 4 vertices versus all graphs \(H \) with 7 vertices.

[FRS4] \(R(G, T) \) for all connected graphs \(G \) with \(n(G) \leq 5 \), and almost all trees \(T \).

[FRS1] \(R(K_3, G) \) for all connected graphs \(G \) on 6 vertices.

[Boza4] \(R(G, H) \) for some graphs \(G \) with 4 vertices versus all graphs \(H \) with 7 vertices.

[FRS4] \(R(G, T) \) for all connected graphs \(G \) with \(n(G) \leq 5 \), and almost all trees \(T \).

[FRS1] \(R(K_3, G) \) for all connected graphs \(G \) on 6 vertices.

[Boza4] \(R(G, H) \) for some graphs \(G \) with 4 vertices versus all graphs \(H \) with 7 vertices.

[FRS4] \(R(G, T) \) for all connected graphs \(G \) with \(n(G) \leq 5 \), and almost all trees \(T \).

[FRS1] \(R(K_3, G) \) for all connected graphs \(G \) on 6 vertices.
[BoDD] Extension of [ArKM] to most triples of graphs with at most 4 vertices.

[DzFi2] $R(P_3, P_k, C_m)$ for all $3 \leq k \leq 8$ and $3 \leq m \leq 9$.

8.3. Electronic Resources

(b) Many of the Ramsey graph constructions found by G. Exoo [Ex1-Ex20] are posted at http://ginger.indstate.edu/ge/RAMSEY.

(e) R. Fidytek, presents some Ramsey graphs of type $(K_n, K_m - e)$ [Fid2], see also 3.1.f, http://fidytek.inf.ug.edu.pl/ramsey.

(f) H. Fujita, some Ramsey graphs [Fuj1], http://opal.inf.kyushu-u.ac.jp/~fujita/ramsey.html.

(g) Ramsey@Home [RaHo] is a distributed computing project at the University of Wisconsin-Oshkosh designed to find new lower bounds for various Ramsey numbers. Join and help! http://www.ramseyathome.com/ramsey.

8.4. Surveys

(1980) Survey of results and new problems on multiplicities and Ramsey multiplicities by S.A. Burr and V. Rosta [BuRo3]

(1981) Summary of progress by Frank Harary [Har2]

(1983) Special volume of the *Journal of Graph Theory* [JGT]

(1991) Survey by R.J. Faudree, C.C. Rousseau and R.H. Schelp of graph goodness results, i.e. conditions for the formula $R(G, H) = (\chi(G) - 1) (n(H) - 1) + s(G)$ [FRS5]
The surveys by S.A. Burr [Bu1] and T.D. Parsons [Par6] contain extensive chapters on general exact results in graph Ramsey theory. F. Harary presented the state of the theory in 1981 in [Har2], where he also gathered many references including seven to other early surveys of this area. More than two decades ago, Chung and Grinstead in their survey paper [ChGri] gave less data than in this work, but included a broad discussion of different methods used in Ramsey computations in the classical case. S. A. Burr, one of the most experienced researchers in Ramsey graph theory, formulated in [Bu7] seven conjectures on Ramsey numbers for sufficiently large and sparse graphs, and reviewed the evidence for them found in the literature. Three of them have been refuted in [Bra3].

For newer extensive presentations see [GRS, GrRö, FRS5, Neš, Chu4, ChGra2], though these focus on asymptotic theory not on the numbers themselves. A very welcome addition is the 2004 compilation of applications of Ramsey theory by V. Rosta [Ros2]. This survey could not be complete without recommending special volumes of the Journal of Graph Theory [JGT, 1983] and Combinatorics, Probability and Computing [CoPC, 2003], which, besides a number of research papers, include historical notes and present to us Frank P. Ramsey (1903-1930) as a person. Finally, read a colorful book by A. Soifer [Soi1, 2009] on history and results in Ramsey theory, followed by a collection of essays and technical papers based on presentations from the 2009 Ramsey theory workshop at DIMACS [Soi2, 2011].
The historical perspective and, in particular, the timeline of progress on prior best bounds, can be obtained by checking all the previous versions of this survey since 1994 at http://www.cs.rit.edu/~spr/ElJC/eline.html.

9. Concluding Remarks

This compilation does not include information on numerous variations of Ramsey numbers, nor related topics, like size Ramsey numbers, zero-sum Ramsey numbers, irredun- dant Ramsey numbers, induced Ramsey numbers, planar Ramsey numbers, bipartite Ramsey numbers, on-line Ramsey numbers, mixed Ramsey numbers, local Ramsey numbers, rainbow Ramsey numbers, connected Ramsey numbers, chromatic Ramsey numbers, avoiding sets of graphs in some colors, coloring graphs other than complete, or the so called Ramsey multiplici- ties. Interested readers can find such information in some of the surveys listed in section 8 here.

Readers may be interested in knowing that the US patent 6965854 B2 issued on November 15, 2005 claims a method of using Ramsey numbers in "Methods, Systems and Computer Program Products for Screening Simulated Traffic for Randomness." Check the original document at http://www.uspto.gov/patft if you wish to find out whether your usage of Ram- sey numbers is covered by this patent.

Acknowledgements

In addition to the many individuals who helped to improve consecutive versions of this survey, the author would like to specially thank Brendan McKay, Geoffrey Exoo and Heiko Harborth for their help in gathering data for the first versions. Thanks to many other individu- als who over the years have helped me in the development and improvement of new revi- sions.

The author apologizes for any omissions or other errors in reporting results belonging to the scope of this work. Suggestions for any kind of corrections or additions will be greatly appreciated and considered for inclusion in the next revision of this survey.