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ABSTRACT: We present data which, to the best of our knowledge,
includes all known nontrivial values and bounds for specific graph,
hypergraph and multicolor Ramsey numbers, where the avoided
graphs are complete or complete without one edge. Many results per-
taining to other more studied cases are also presented. We give refer-
ences to all cited bounds and values, as well as to previous similar
compilations. We do not attempt complete coverage of asymptotic
behavior of Ramsey numbers, but concentrate on their specific values.
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1. Scope and Notation

There is a vast literature on Ramsey type problems starting in 1930 with the original
paper of Ramsey [Ram]. Graham, Rothschild and Spencer in their book [GRS] present an
exciting development of Ramsey Theory. The subject has grown amazingly, in particular with
regard to asymptotic bounds for various types of Ramsey numbers (see the survey paper
[GrRö]), but the progress on evaluating the basic numbers themselves has been very unsatis-
factory for a long time. In the last decade, however, considerable progress has been obtained
in this area, mostly by employing computer algorithms. The few known exact values and
several bounds for different numbers are scattered among many technical papers. This compi-
lation is a fast source of references for the best results known for specific numbers. It is not
supposed to serve as a source of definitions or theorems, but these can be easily accessed via
the references gathered here.

Ramsey Theory studies conditions when a combinatorial object contains necessarily some
smaller given objects. The role of Ramsey numbers is to quantify some of the general existen-
tial theorems in Ramsey Theory.

Let G 1, G 2, . . . , G
m

be graphs or s -uniform hypergraphs (s is the number of vertices
in each edge). R ( G 1, G 2, . . . , G

m
; s ) denotes the m -color Ramsey number for s -uniform

graphs/hypergraphs, avoiding G
i

in color i for 1≤ i ≤ m . It is defined as the least integer n
such that, in any coloring with m colors of the s -subsets of a set of n elements, for some i
the s -subsets of color i contain a sub-(hyper)graph isomorphic to G

i
(not necessarily

induced). The value of R ( G 1, G 2, . . . , G
m

; s ) is fixed under permutations of the first m
arguments.

If s = 2 (standard graphs) then s can be omitted. If G
i

is a complete graph K
k
, then we

can write k instead of G
i
, and if G

i
= G for all i we can use the abbreviation R

m
(G ) (or

R
m

(G ; s ) ). For s = 2, K
k
− e denotes a K

k
without one edge, and for s = 3, K

k
− t denotes a

K
k

without one triangle (hyperedge). P
i

is a path on i vertices, C
i

is a cycle of length i , and
W

i
is a wheel with i −1 spokes, i.e. a graph formed by some vertex x , connected to all ver-

tices of some cycle C
i −1. K

n ,m is a complete n by m bipartite graph, in particular K 1,n is a
star graph. The book graph B

i
= K 2 + K

i
= K 1 + K 1,i has i +2 vertices, and can be seen as i

triangular pages attached to a single edge. The fan graph F
n

is defined by F
n

= K 1 + nK 2.
For a graph G , n (G ) and e (G ) denote the number of vertices and edges, respectively.
Finally, let χ(G ) be the chromatic number of G , and let nG denote n disjoint copies of G .

Section 2 contains the data for the classical two color Ramsey numbers R (k , l ) for com-
plete graphs, and section 3 for the two color case when the avoided graphs are complete or
have the form K

k
− e , but not both are complete. Section 4 lists the most studied two color

cases for other graphs. The multicolor and hypergraph cases are gathered in sections 5 and 6,
respectively. If some new bound has been not yet published, we also give a reference to the
best published previous result, if any. Finally, section 7 gives pointers to cumulative data and
to some previous surveys, especially those containing data not subsumed by this compilation.
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2. Classical Two Color Ramsey Numbers

l 3 4 5 6 7 8 9 10 11 12 13 14 15

k

40 46 52 59 66 73
3 6 9 14 18 23 28 36

43 51 59 69 78 88

35 49 55 69 80 96 128 131 136 145
4 18 25

41 61 84 115 149 191 238 291 349 417

43 58 80 95 121 141 153 181 193 221 242
5

49 87 143 216 316 442

102 109 122 153 167 203 230 242 284 374
6

165 298 495 780 1171

205 312
7

540 1031 1713 2826

282
8

1870 3583 6090

565
9

6588 12677

798
10

23581

Table I. Known nontrivial values and bounds for two color
Ramsey numbers R (k , l ) = R (k , l ; 2).

l 4 5 6 7 8 9 10 11 12 13 14 15

k

Ka2 GR Ka2 Ex5 Ka2 Ex12 Piw2 Ex8 WW
3 GG GG Kéry

GY MZ GR RK2 RK2 Les RK2 RK2 Les

Ka1 Ex9 Ex3 Ex12 RK1 Piw2 Piw2 SLL2 Ea3 Ea3 Ea3
4 GG

MR4 MR5 Mac Mac Mac Mac Spe Spe Spe Spe Spe

Ex4 Ex9 CET Piw2 Haa Ex12 Ex12 Ex12 Ex12 Ex12 SLL3
5

MR5 HZ1 Spe Spe Mac Mac

Ka1 Ex12 Ex12 Ex12 Ex12 Ea3 SLL3 SLZ2 SLL3 SLL3
6

Mac Mac Mac Mac Mac

She1 SLL4
7

Mac Mac HZ1 Mac

BR
8

Mac Ea1 HZ1

She1
9

ShZ1 Ea1

She1
10

ShZ1

References for Table I.

We split the data into the table of values and a table with corresponding references for
the Table I. Known exact values appear as centered entries, lower bounds as top entries, and
upper bounds as bottom entries.
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The task of proving R (3,3) ≤ 6 was the second problem in Part I of the William Lowell
Putnam Mathematical Competition held in March 1953 [Bush].

The construction by Mathon [Mat], using data obtained by Shearer [She1], gives the fol-
lowing lower bounds for higher diagonal numbers: R (11,11) ≥ 1597, R (13,13) ≥ 2557,
R (14,14) ≥ 2989, R (15,15) ≥ 5485, and R (16,16) ≥ 5605. The same approach does not improve
on a trivial bound R (12,12) ≥ 1597 + 11.

All the critical graphs for the numbers R (k , l ) (graphs on R (k , l ) − 1 vertices without K
k

and without K
l

in the complement) are known for k = 3 and l = 3, 4, 5 [Kéry], 6 [Ka2], 7
[RK3, MZ], and there are 1, 3, 1, 7 and 191 of them, respectively. All (3, k )-graphs, for
k ≤ 6, were enumerated in [RK3], and all (4,4)-graphs in [MR2]. There exists a unique critical
graph for R (4,4) [Ka2]. There are 4 such graphs known for R (3,8) [RK2], 1 for R (3,9) [Ka2]
and 350904 for R (4, 5) [MR4], but there might be more of them. In [MR5] evidence is given
for the conjecture that R (5,5) = 43 and that there exist 656 critical graphs on 42 vertices.

Most of the lower bounds for R (4,n ) presented by Bannani in [Ba], and two other results
R (3,13) ≥ 58 [Ka2] and R (5,8) ≥ 94 [RK1], were improved in [Piw1, Piw2] by Piwakowski.
The bound R (3,13) ≥ 60 [XZ] cited in the 1995 version of this survey was shown to be
incorrect in [Piw2]. The previously best published upper bound for (k , l ) = (5, 6) of 94 can be
found in [Wa2]. The graphs constructed by Exoo in [Ex12], and some others, are available
electronically from http://isu.indstate.edu/ge/RAMSEY.

By taking a disjoint union of two critical graphs one can easily see that R (k , p ) ≥ s and
R (k , q ) ≥ t imply R (k , p + q −1) ≥ s + t −1. For example, this gives trivially a lower bound
R (4,15) ≥ 145 with p = 4, q = 12. Higher lower bounds implied this way are not shown. Some
upper bounds implied by R (k , l ) ≤ R (k −1, l ) + R (k , l −1), or by its slight improvement with
strict inequality when both terms on the right hand side are even, are marked [Ea1]. There are
obvious generalizations of these inequalities for graphs other than complete.

The bound R (6, 6) ≤ 166 is an immediate consequence of theorem 1 in [Wa1] and
R (4, 6) ≤ 41, in this case the best published bound of 169 is due to Giraud [Gi4]. T. Spencer
[Spe], Mackey [Mac], and Huang and Zhang [HZ1], using the bounds for minimum and max-
imum number of edges in (4,5) Ramsey graphs listed in [MR3, MR5], were able to establish
new upper bounds for several higher Ramsey numbers, improving all the previous longstand-
ing results of Giraud [Gi2, Gi4, Gi5]. We have recomputed the bounds marked [HZ1] using
the method from the paper [HZ1], because the bounds there relied on an overly optimistic
personal communication from Spencer. Further refinements of this method are studied in
[HZ2, HY].

For a more in depth study of triangle-free graphs in relation to the case of R (3, k ), for
which considerable progress has been obtained in recent years, see also [AKS, Alon2, BBH1,
BBH2, CPR, FL, Fra1, Fra2, Gri, Loc, KM1, RK3, RK4, She2, Stat, Yu1]. In 1995, Kim
[Kim] obtained a breakthrough by proving that R (3, k ) has order of magnitude exactly
Θ(k

2
/ log k ). Good asymptotic bounds for R (k , k ) can be found, for example, in [Chu3, McS]

(lower bound) and [Tho] (upper bound), and for many other asymptotic bounds in the general
case of R (k , l ) consult [GRS, GrRö, AP].
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All the lower bounds for higher numbers listed in Table II were obtained by construction
of cyclic graphs.

l 15 16 17 18 19 20 21 22 23

k

73 79 92 98 106 109 122 125 136
3

WW WW WWY1 WWY1 WWY1 WWY1 WWY1 WWY1 WWY1

145 164 182 198 230 242 282
4

Ea3 SL SL LSZL SLZL SLZL SL

242 282 338 374 422 434
5

SLL3 SLZL SLZL SLZ1 LSZL LSZL

374 434 548 614 710 878
6

SLL3 SLL3 SLL3 SLL3 SLL3 SLL3

578 618 758
7

LSZL LSZL SLL3

618 678 740 860 948
8

LSZL LSZL SLL3 SLL3 LSZL

Table II. Known nontrivial lower bounds for higher two color
Ramsey numbers R (k , l ), with references.

R (3, 26) ≥ 150, R (3, 29) ≥ 174 and R (3, 32) ≥ 212 are established in [SLL1], [SLL4] and
[LSZL], respectively. Yu [Yu2] constructed a special class of triangle-free cyclic graphs
establishing several lower bounds for R (3, k ), for k ≥ 61. Only two of these bounds,
R (3, 61) ≥ 479 and R (3,103) ≥ 955, cannot be easily improved by the inequality
R (3, 4k + 1) ≥ 6R (3, k + 1) − 5 from [CCD] and data from tables I and II. Finally,
R (5, 24) ≥ 488 and R (9, 21) ≥ 1278 are given in [SLL4], and R (10, 16) ≥ 1052 in [LSZL].
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3. Two Colors - Dropping One Edge from Complete Graph

H K
3
−e K

4
−e K

5
−e K

6
−e K

7
−e K

8
−e K

9
−e K

10
−e K

11
−e

G

K
3
−e 3 5 7 9 11 13 15 17 19

37 42
K

3
5 7 11 17 21 25 31

38 47

29 34 41
K

4
−e 5 10 13 17 28

38

27 37
K

4
7 11 19

36 52

31 40
K

5
−e 7 13 22

39 66

30 43
K

5
9 16

34 67 112

31 45 59
K

6
−e 9 17

39 70 135

37
K

6
11 21

55 119 205

40 59
K

7
−e 11 28

66 135 251

28 51
K

7
13

34 88 204

Table III. Two types of Ramsey numbers R (G , H ),
includes all known nontrivial values.

The exact values in Table III above involving K 3 − e are trivial, since
R (K 3 − e , K

k
) = R (K 3 − e , K

k +1 − e ) = 2k − 1, for all k ≥ 2. Other not shown bounds can be
easily obtained by using Table I, an obvious generalization of inequality
R (k , l ) ≤ R (k −1, l ) + R (k , l −1), and by monotonicity of Ramsey numbers, in this case
R (K

k −1, G ) ≤ R (K
k

− e , G ) ≤ R (K
k
, G ).

For the following numbers it was established that the critical graphs are unique:
R (K 3, K

l
− e ) for l = 3 [Tr], 6 and 7 [Ra1], R (K 4 − e , K 4 − e ) [FRS2], R (K 5 − e , K 5 − e ) [Ra3]

and R (K 4 − e , K 7 − e ) [McR]. Wang, Wang and Yan in [WWY2] constructed cyclic graphs
establishing R (K 3, K 13 − e ) ≥ 54 and R (K 3, K 15 − e ) ≥ 69. The upper bounds in [HZ2] were
obtained by a reasoning generalizing the bounds for classical numbers in [HZ1].
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H K
4
−e K

5
−e K

6
−e K

7
−e K

8
−e K

9
−e K

10
−e K

11
−e

G

MR6 WWY2
K

3
CH2 Clan FRS1 GH Ra1 Ra1

MR6 MR6

Ea1 Ex14 Ex14
K

4
−e CH1 FRS2 McR McR

HZ2

Ex11 Ex14
K

4
CH2 EHM1

Ea1 HZ2

Ex14 Ex14
K

5
−e FRS2 CEHMS

Ea1 HZ2

Ex8 Ea1
K

5
BH

Ex8 HZ2 HZ2

Ex14 Ex14 Ex14
K

6
−e McR

Ea1 HZ2 HZ2

Ex14
K

6
McN

Ea1 ShZ2 ShZ2

Ex14 Ex14
K

7
−e McR

HZ2 HZ2 ShZ1

Ea1 Ex14
K

7 Ea1 ShZ2 ShZ2

References for Table III.
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4. General Graph Numbers in Two Colors

This section includes data with respect to general graph results. We tried to include all
nontrivial values and identities regarding exact results (or references to them), but only those
out of general bounds and other results which, in our opinion, have a direct connection to the
evaluation of specific numbers. If some small value cannot be found below, it may be covered
by the cumulative data gathered in section 7, or be a special case of a general result listed in
this section. Note that B 1 = F 1 = C 3 = W 3 = K 3, B 2 = K 4 − e , P 3 = K 3 − e , W 4 = K 4 and
C 4 = K 2,2 imply other identities not mentioned explicitly.

Paths:

R (P
n

, P
m

) = n +  m / 2  − 1 for all n ≥ m ≥ 2 [GeGy]

Cycles:

R (C 3, C 3) = 6 [GG]
R (C 4, C 4) = 6 [CH1]

Result obtained independently in [Ros] and [FS1], new simple proof in [KR]:

R (C
n

, C
m

) =





î max{n − 1 + m / 2, 2m − 1}

n − 1 + m / 2

2n − 1

for 4 ≤ m < n , m even and n odd

for 4 ≤ m ≤ n , m and n even, (n , m ) =/ (4,4)

for 3 ≤ m ≤ n , m odd, (n , m ) =/ (3,3)

Unions of cycles, R (nC
p

, mC
q

), [MS, Den]

R (nC 3, mC 3 ) = 3n + 2m for n ≥ m ≥ 1, n ≥ 2 [BES]

R (nC 4, mC 4 ) = 2n + 4m − 1 for m ≥ n ≥ 1, (n , m ) =/ (1,1) [LiWa]

Wheels:

R (W 3, W 5) = 11 [Clan]
R (W 3, W

n
) = 2n −1 for all n ≥ 6 [BE2]

All critical colorings for R (W 3, W
n

) for all n ≥ 3 [RaJi]
R (W 4, W 5) = 17 [He3]
R (W 5, W 5) = 15 [HM2, He2]

R (W 4, W 6) = 19, R (W 5, W 6) = 17 and R (W 6, W 6) = 17,
and all critical colorings (2, 1 and 2) for these numbers [FM]
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Books:

R (B 1, B
n

) = 2n + 3 for all n >1 [RS1]
R (B 3, B 3) = 14 [RS1, HM2]

R (B 2, B 5) = 16, R (B 3, B 5) = 17, R (B 5, B 5) = 21,
R (B 4, B 4) = 18, R (B 4, B 6) = 22, R (B 6, B 6) = 26,
in general R (B

n
, B

n
) = 4n + 2 for 4n + 1 a prime power,

and some other general equalities and bounds for R (B
n

, B
m

) [RS1].

Complete bipartite graphs:

R (K 2,3, K 2,3) = 10 [Bu4]
R (K 2,3, K 2,4) = 12 [ER]
R (K 2,3, K 1,7) = 13 [Par4]
R (K 2,3, K 3,3) = 13 and R (K 3,3, K 3,3) = 18 [HM3]
R (K 2,2, K 2,8) = 15 and R (K 2,2, K 2,11) = 18 [HM]
R (K 2,2, K 1,15) = 20 [La2]
R (nK 1,3, mK 1,3) = 4n + m − 1 for n ≥ m ≥ 1, n ≥ 2 [BES]

Asymptotics for K 2,m versus K
n

[CLRZ]

R (K 1,n , K 1,m ) = n + m −ε, where ε = 1 if both n and m are even and ε = 0 otherwise
[Har1]. It is also a special case of multicolor numbers for stars obtained in [BuRo1].

R (K 2,n , K 2,n ) ≤ 4n − 2 for all n ≥ 2, exact values 6, 10, 14, 18, 21, 26, 30, 33, 38, 42, 46,
50, 54, 57 and 62 of R (K 2,n , K 2,n ) for 2 ≤ n ≤ 16, respectively. The first open case is
65 ≤ R (K 2,17, K 2,17) ≤ 66 [EHM2].

Triangle versus other graphs:

R (3, k ) =Θ(k
2
/ log k ) [Kim]

Explicit construction for R (3, 4k + 1) ≥ 6R (3, k + 1) − 5, for all k ≥ 1 [CCD]

Explicit triangle-free graphs with independence k on Ω(k
3/2

) vertices [Alon2, CPR]

R (K 3, K 7 − 2P 2 ) = R (K 3, K 7 − 3P 2 ) = 18 [SchSch2]

R (K 3, K 3 + K
m

) = R (K 3, K 3 + C
m

) = 2m + 5 for m ≥ 212 [Zhou1]

R (K 3, G ) = 2n (G ) − 1 for any connected G on at least 4 vertices and with at most
(17n (G ) + 1)/15 edges, in particular for G = P

i
and G = C

i
, for all i ≥ 4 [BEFRS1]

R (K 3, G ) ≤ 2e (G ) + 1 for any graph G without isolated vertices [Sid3, GK]
R (K 3, G ) ≤ n (G ) + e (G ) for all G , a conjecture [Sid2]
R (K 3, K

n
), see section 2

R (K 3, K
n

− e ), see section 3
R (K 3, G ) for all connected G up to 9 vertices, see section 7
See [AKS, BBH1, BBH2, FL, Fra1, Fra2, Gri, Loc, KM1, RK3, RK4, She2, Stat, Yu1]
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Paths versus other graphs:

Paths versus stars [Par2, BEFRS2]
Paths versus trees [FS4]
Paths versus books [RS2]
Paths versus cycles [FLPS, BEFRS2]
Paths versus K

n
[Par1]

Paths versus K
n ,m [Häg]

Paths versus W 4 and W 5 [SuBa]
Paths and cycles versus trees [FSS1]
Sparse graphs versus paths and cycles [BEFRS2]
Graphs with long tails [Bu2, BG]

Cycles versus complete graphs:

R (C 4, K 3 ) = R (C 4, C 3 ) = 7 [CS]
R (C 4, K 4 ) = 10 [CH2]
R (C 4, K 5 ) = 14 [GG] [He2]
R (C 4, K 6 ) = 18 [Ex2] [RoJa1]
R (C 4, K 7 ) = 22 [RT] [JR1]
R (C 4, K 8 ) = 26 [RT]
30 ≤ R (C 4, K 9 ), 34 ≤ R (C 4, K 10 ) [RT]
C 4 versus K

n
[CLRZ]

R (C 5, K 3 ) = R (C 5, C 3 ) = 9 [CS]
R (C 5, K 4 ) = 13 [He2, JR2]
R (C 5, K 5 ) = 17 [He2, JR2]
R (C 5, K 6 ) = 21 [JR6]
R (C 5, K 7 ) = 25 [Schi2]

R (C 6, K 4 ) = 16 [JR4]
R (C 6, K 5 ) = 21 [JR4]
Cycles versus K

n
[BoEr, FS4, EFRS2, CLRZ]

R (C
n

, K
m

) = (n − 1)(m − 1) + 1, for n ≥ m
2
− 2 [BoEr], for n > 3 = m [FS1], for

n ≥ 4 = m [YHZ], for n ≥ 5 = m [BJYHRZ], for n ≥ 6 = m , and for n ≥ 7 = m with
n ≥ m (m − 2) [Schi1]. Since 1976, it was conjectured to be true for all n ≥ m ≥ 3, except
n = m = 3 [FS4, EFRS2].

Cycles versus other graphs:

C 4 versus stars [Par3, Chen]
C 4 versus trees [EFRS4, Bu6, Chen]
C 4 versus K

m , n
[HM]

C 4 versus all graphs on six vertices [JR3]
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R (C 4, B
n

) = 7, 9, 11, 12, 13 and 16, for 2 ≤ n ≤ 7, respectively [FRS6]
R (C 4, B 8 ) = 17 [Tse] (not 16 as claimed in [FRS6])
R (C 4, G ) ≤ 2q + 1 for any isolate-free graph G with q edges [RoJa2]
R (C 4, G ) ≤ p + q − 1 for any connected graph G on p vertices and q edges [RoJa2]

R (C 5, W 6 ) = 13 [ChvS]
R (C 5, K 6 − e ) = 17 [JR2]
C 5 versus all graphs on six vertices [JR2]
R (C 6, K 5 − e ) = 17 [JR4]
C 6 versus all graphs on five vertices [JR4]

R (C
n

, G ) ≤ 2q +  n / 2  − 1, for 3 ≤ n ≤ 6, for any isolate-free graph G with q > 3 edges.
It is conjectured that it also holds for other n [JR5, RoJa2].

Cycles versus paths [FLPS, BEFRS2]
Cycles versus stars [La1, Clark, see Par5]
Cycles versus trees [FSS1]
Cycles versus books [FRS6, FRS7, Zhou1]
Cycles versus wheels [Zhou2]
See also bipartite graphs for K 2,2 = C 4

Stars versus other graphs:

Stars versus C 4 [Chen]
Stars versus W 4 and W 5 [SuBa]
Stars versus paths [Par2, BEFRS2]
Stars versus cycles [La1, Clark, see Par5]
Stars versus books [CRSPS, RS2]
Stars versus trees [Bu1, GV, ZZ]
Stars versus stripes [CL, Lor]
Stars versus K 2,n [Par4]
Stars versus K

n ,m [Stev, Par3]
Stars versus K

n
− tK 2 [Hua1, Hua2]

Stars versus 2K 2 [MO]
Union of two stars [Gro2]

Books versus other graphs:

R (B 3, K 4 ) = 14 [He3]
20 ≤ R (B 3, K 5 ) ≤ 22 [He2]
Books versus paths [RS2]
Books versus trees [EFRS7]
Books versus stars [CRSPS, RS2]
Books versus cycles [FRS6, FRS7, Zhou1]
Books versus wheels [Zhou3]
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Books versus K 2 + C
n

[Zhou3]
Books and (K 1 + tree ) versus K

n
[LR1]

Wheels versus other graphs:

W 4 and W 5 versus stars and paths [SuBa]
R (W 5, K 5 − e ) = 17 [He2][YH]
27 ≤ R (W 5, K 5 ) ≤ 29 [He2]
R (W 6, C 5 ) = 13 [ChvS]
Wheels versus cycles [Zhou2]
Wheels versus books [Zhou3]

Trees and Forests:

Trees, forests [EG, GRS, FSS1, GV, CsKo]
Trees versus C 4 [EFRS4, Bu6, Chen]
Trees versus paths [FS4]
Trees versus paths and cycles [FSS1]
Trees versus books [EFRS7]
Trees versus stars [Bu1, GV, ZZ]
Trees versus K

n
[Chv]

Trees versus K
n

+ K
m

[RS2, FSR]
Trees versus bipartite graphs [EFRS6]
Trees versus almost complete graphs [GJ2]
Trees versus small (n (G ) ≤ 5) connected G [FRS4]
Linear forests, forests [BuRo2, FS3, CsKo]
Forests versus K

n
[Stahl]

Forests versus almost complete graphs [CGP]

Mixed special cases:

R (C 5 + e , K 5 ) = 17 [He5]
R (W 5, K 5 − e ) = 17 [He2][YH]
20 ≤ R (B 3, K 5 ) ≤ 22 [He2]
27 ≤ R (W 5, K 5 ) ≤ 29 [He2]
25 ≤ R (K 5 − P 3, K 5 ) ≤ 28 [He2]
26 ≤ R (K 2,2,2 , K 2,2,2 ) (K 2,2,2 is an octahedron) [Ex8]

Mixed general cases:

Unicyclic graphs [Gro1, Köh]
K 2,m and C 2m

versus K
n

[CLRZ]
K 2,n versus any graph [RoJa2]
nK 3 versus mK 3 [BES]
nK 3 versus mK 4 [LorMu]
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R (nK 4, nK 4) = 7n + 4 for large n [Bu7]
Stripes [CL, Lor]
Union of two stars [Gro2]
Double stars* [GHK]
Graphs with bridge versus K

n
[Li]

Fans F
n

= K 1 + nK 2 versus K
m

[LR2]
R (F 1, F

n
) = R (K 3, F

n
) = 4n + 1 and bounds for R (F

m
, F

n
) [GGS]

Multipartite complete graphs [BEFRS3, EFRS4, FRS3, Stev]
Multipartite complete graphs versus trees [EFRS8, BEFRSGJ]
Disconnected graphs versus any graph [GJ1]
Graphs with long tails [Bu2, BG]
Brooms+ [EFRS3]

Other general results:

[Wa1] R (k , k ) ≤ 4R (k , k − 2) + 2.

[Chv] R (K
n

, T
m

) = (n −1)(m −1) + 1 for any tree T on m vertices.

[CH2] R (G , H ) ≥ ( χ(G ) − 1)(c (H ) − 1) + 1, where χ(G ) is the chromatic number of
G , and c (H ) is the size of the largest connected component of H .

[AP] Constructive asymptotic lower bounds for R (k , l ).

[BE1] R (G ,G ) ≥  (4n (G ) − 1) / 3 for any connected G .

[BE2] Graphs yielding R (K
n

, G ) = (n −1)(n (G ) − 1) + 1 and related results (see also
[EFRS5]).

[BES] Study of Ramsey numbers for multiple copies of graphs. See also [Bu1,
LorMu].

[Zeng] R (nK 3, nG ) for all isolate-free graphs G on 4 vertices.

[Bu7] Study of Ramsey numbers for large disjoint unions of graphs, in particular
R (nK

k
, nK

l
) = n (k + l − 1) + R (K

k −1, K
l −1) − 2, for n large enough. See also

[Bu8].

[Bu2] Graphs H yielding R (G , H ) = (χ(G ) − 1)(n (H ) − 1) + s (G ), where s (G ) is a
chromatic surplus of G , defined as the minimum number of vertices in some
color class under all vertex colorings in χ(G ) colors (such H ’s are called G -
good). This idea, initiated in [Bu2], is a basis of a number of exact results for
R (G , H ) for large and sparse graphs H [BG, BEFRS2, BEFRS4, Bu5, FS,
EFRS4, FRS3, BEFSRGJ, BF, LR4]. A survey of this area appeared in
[FRS5].

* - A double star is a union of two stars with their centers joined by an edge.

+ - A broom is a star with a path attached to its center.
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[BEFS] Bounds for the difference between consecutive Ramsey numbers.

[Par3] Relations between some Ramsey graphs and block designs. See also [Par4].

[Bra3] R (G , H ) > h (G , d ) n (H ) for all nonbipartite G and almost every d -regular H ,
for some h unbounded in d .

[CSRT] R (G ,G ) ≤ c
d

n (G ) for all G , where constant c
d

depends only on the maximum
degree d in G . The constant was improved in [GRR].

[ChenS] R (G ,G ) ≤ c
d

n for all d -arrangeable graphs G on n vertices. The constant was
improved in [Eaton].

[EFRS9] Study of graphs G for which there exists a constant C such that for all H with
no isolates R (G , H ) ≤ Ce (H ).

[LRS] R (G ,G ) < 6n for all n -vertex graphs G , in which no two vertices of degree at
least 3 are adjacent. This improves the result R (G ,G ) ≤ 12n in [Alon1].

[RoJa2] R (K 2,k , G ) ≤ kq + 1, for k ≥ 2, for isolate-free graphs G with q ≥ 2 edges.

[FSS1] Discussion of the conjecture that R (T 1, T 2) ≤ n (T 1) + n (T 2) − 2 holds for all
trees T 1, T 2.

[FM] R (W 6, W 6 ) = 17 and χ(W 6 ) = 4. This gives a counterexample G = W 6 to the
Erdös conjecture (see [GRS]) R (G ,G ) ≥ R (K χ(G ), K χ(G ) ).

[LR3] Bounds on R (H + K
n

, K
n

) for general H .

[-] Special cases of multicolor results listed in section 5.

[-] See also surveys listed in section 7.

5. Multicolor Graph Numbers

The only known value of a multicolor classical Ramsey number:

R 3(3) = R (3,3,3) = R (3,3,3 ; 2) = 17 [GG]
2 critical colorings [KS, LayMa]

Bounds for multicolor classical numbers:

51 ≤ R 4(3) = R (3,3,3,3) ≤ 62 [Chu1] [FKR]
162 ≤ R 5(3) ≤ 307 [Ex10] [FKR, Ea1]
538 ≤ R 6(3) ≤ 1838 [FreSw] [Ea1]
1682 ≤ R 7(3) ≤ 12861 [FreSw] [Ea1]
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128 ≤ R (4,4,4) ≤ 236 [HI] [Ea2]
458 ≤ R (4,4,4,4) [Mat]
942 ≤ R (4,4,4,4,4) [Mat]

385 ≤ R (5,5,5) [Mat]
1833 ≤ R (5,5,5,5) [Mat]
4711 ≤ R (5,5,5,5,5) [Mat]

1070 ≤ R (6,6,6) [Mat]
3433 ≤ R (6,6,6,6) [Mat]
3211 ≤ R (7,7,7) [Mat]
12841 ≤ R (7,7,7,7) [Mat]

30 ≤ R (3,3,4) ≤ 31 [Ka2] [PR1, PR2]
45 ≤ R (3,3,5) ≤ 57 [Ex2, KLR] [Ea2]
60 ≤ R (3,3,6) [Rob3, Rob4]
74 ≤ R (3,3,7) [WSL]
110 ≤ R (3,3,9) [SLZL]
141 ≤ R (3,3,11) [Rob3]
174 ≤ R (3,3,12) [WSL]
194 ≤ R (3,3,13) [WSL]

55 ≤ R (3,4,4) ≤ 79 [KLR] [Ea2]
80 ≤ R (3,4,5) ≤ 161 [Ex12] [Ea2]
91 ≤ R (3,3,3,4) ≤ 153 [Rob2] [Ea2]
433 ≤ R (3,3,3,11) implicit in [Rob2]
144 ≤ R (3,3,4,4) [Gi1+Ka2+Ea1]

The best published upper bound R 4(3) ≤ 64 by Sánchez-Flores [San] improved a very old
bound R 4(3) ≤ 65 obtained by Folkman [Fo] in 1974. In [PR1] it is conjectured that
R (3,3,4) = 30, and the results in [PR2] eliminate some cases which could give R (3,3,4) = 31.
The upper bounds marked [Ea1] and [Ea2] are easy implications of basic inequalities. Lower
bounds for higher numbers of the form R (3, k , l ) and R (3, 3, 3, k 1, . . . , k

r
) can be computed

using inequalities from [Rob2, Rob3] (see the following subsections), for example
433 ≤ R (3,3,3,11).

Giraud [Gi1] presented a reasoning, which produces lower bounds for (k + 1)-color
numbers provided certain k -color cyclic graphs are given. As an example, by using this
method, one can obtain 144 ≤ R (3,3,4,4) from a cyclic (3,3,4)-coloring on 29 points.
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Multicolor special cases:

R 3(C 4 ) = 11 [BS, see also Clap]
R 3(C 5 ) = 17 [YR1]
R 3(C 6 ) = 12 [YR2]
R 3(C 7 ) = 25 [FSS2]
18 ≤ R 4(C 4 ) ≤ 21 [Ex2] [Ir]
27 ≤ R 5(C 4 ) ≤ 29 [LaWo1]

R (C 4, C 4, K 3 ) = 12 [Schu]
R (C 4, K 3, K 3 ) = 17 [ER]
13 ≤ R (C 3, C 4, C 5 ) [Rao]
R (K 1,3, C 4, K 4 ) = 16 [KM2]
R (K 4 − e , K 4 − e , P 3 ) = 11 [Ex7]
28 ≤ R 3(K 4 − e ) ≤ 30 [Ex7] [Piw3]
R (C 4, C 4, C 4, T ) = 16 for T = P 4 and T = K 1,3 [ER]
25 ≤ R (C 3, C 3, C 4, C 4 ) [Rao]

All colorings on at least 14 vertices for (K 3, K 3, K 3), and all colorings for
(K 4 − e , K 4 − e , P 3) were found in [Piw3].

Multicolor results for complete graphs and cycles:

- General bounds for R
k
(G ) [CH3].

- Bounds for R
k
(3) [Fre, Chu1, Chu2, ChGri, GrRö, Wan].

- R (3, 3, 3, k 1, . . . , k
r
) ≥ 3R (3, 3, k 1, . . . , k

r
) + R (k 1, . . . , k

r
) − 3 [Rob2].

- R (3, k , l ) ≥ 4R (k , l − 2) − 3 [Rob3].

- R
k
(4) ≥ 3.5

k −1
+ 1 and R

k
(5) ≥ 4.6.48

k −1
+ 1 for all k , and other general lower bounds

on R
k
(n ) [Song1].

- R (C
n

, C
n

, C
n

) ≤ (4 + o (1)) n , with equality for odd n [Łuc]. It was conjectured in
[BoEr] that for all odd n we have R (C

n
, C

n
, C

n
) = 4n − 3.

- Formulas for R (C
n

, C
m

, C
k
) and R (C

n
, C

m
, C

k
, C

l
) for n sufficiently large [EFRS1].

- R
k
(C 4 ) ≤ k

2
+ k + 1 for all k ≥ 1, R

k
(C 4 ) ≥ k

2
− k + 2 for all k − 1 which is a

prime power [Ir, Chu2, ChGra], and R
k
(C 4 ) ≥ k

2
+ 2 for odd prime power k

[LaWo1]. The latter was extended to all prime power k in [Ling, LaMu]. For small k
some specific constructions were published: R 3(C 4 ) = 11 [BS] and R 4(C 4 ) ≥ 18
[Ex2].
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Other general multicolor results:

- Formulas for R
k
(G ) for G being P 3, 2K 2 and K 1,3 for all k , and for P 4 if k is not

divisible by 3 [Ir]. Wallis [Wall] showed R 6(P 4 ) = 13, which already implied
R 3t

(P 4 ) = 6t + 1, for all t ≥ 2. Independently, the case R
k
(P 4 ) for k =/ 3

m
was com-

pleted by Lindström in [Lind], and later Bierbrauer proved R
3

m (P 4 ) = 2.3
m

+ 1 for all

m ≥ 1.

- Bounds for the bipartite graphs R
k
(K

s , t
), in particular for K 2,2 = C 4 and for K 2, t

[ChGra, AFM].

- tk
2
+ 1 ≤ R

k
(K 2, t +1) ≤ tk

2
+ k + 2, where upper bound is general, and lower bound

holds when both t and k are prime powers [LaMu].

- Monotone paths and cycles [Lef].

- Formulas for R (P
n 1

, . . . , P
nk

), except few cases [FS2].

- Formulas for R (S 1, . . . , S
k
), where S

i
’s are arbitrary stars [BuRo1].

- Formulas for R (S 1, . . . , S
k
, K

n
), where S

i
’s are arbitrary stars [Jac].

- Formulas for R (S 1, . . . , S
k
, nP 2), where S

i
’s are arbitrary stars [CL2].

- Formulas for R (S 1, . . . , S
k
, T ), where S

i
’s are stars and T is a tree [ZZ].

- Formulas for R (pP 3, qP 3, rP 3) and R (pP 4, qP 4, rP 4) [Scob].

- Cockayne and Lorimer [CL1] found the exact formula for R (n 1P 2, . . . , n
k
P 2), and

later Lorimer [Lor] extended it to a more general case of R (K
m

, n 1P 2, . . . , n
k
P 2).

Still more general cases of the latter, with multiple copies of the complete graph and
forests, were studied in [Stahl, LorSe, LorSo].

- If G is connected and R (K
k

, G ) = (k −1)(n (G ) − 1) + 1, in particular if G is any tree,
then R (K

n 1
, . . . , K

nk
, G ) = (R (K

n 1
, . . . , K

nk
) − 1)(n (G ) − 1) + 1 [BE2]. A generali-

zation for connected G 1, . . . , G
n

in place of G appeared in [Jac].

- Study of R (S , G 1, . . . , G
k
) for large sparse S [EFRS1, Bu3].

- Constructive bound R (G 1, ..., G
t

n −1 ) ≥ t
n
+ 1 for some families of decompositions of

K
t

n [LaWo1, LaWo2].

- Bounds for trees R
k
(T ) and forests R

k
(F ) [EG, GRS, BB, GT, Bra1, Bra2, SwPr].

- See also surveys listed in section 7.
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6. Hypergraph Numbers

The only known value of a classical Ramsey number for hypergraphs:

R (4,4 ; 3) = 13 [MR1]
more than 200000 critical colorings

Other hypergraph cases:

33 ≤ R (4, 5 ; 3) [Ex13]
63 ≤ R (5, 5 ; 3) [Ea1]
56 ≤ R (4,4,4 ; 3) [Ex8]
34 ≤ R (5, 5 ; 4) [Ex11]

R (K 4 − t , K 4 − t ; 3) = 7 [Ea4]
R (K 4 − t , K 4 ; 3) = 8 [Sob, Ex1, MR1]
14 ≤ R (K 4 − t , K 5 ; 3) [Ex1]
13 ≤ R (K 4 − t , K 4 − t , K 4 − t ; 3) ≤ 17 [Ex1] [Ea1]

The computer evaluation of R (4,4 ; 3) in [MR1] consisted of an improvement of the
upper bound from 15 to 13, which followed an extensive theoretical study of this number in
[Gi3, Is1, Sid1]. Exoo in [Ex1] announced the bounds R (4, 5 ; 3) ≥ 30 and R (5, 5 ; 4) ≥ 27
without presenting the constructions. The bound of R (4, 5 ; 3) ≥ 24 was obtained by Isbell
[Is2]. Shastri in [Sha] shows a weak bound R (5, 5 ; 4) ≥ 19 (now 34 in [Ex11]), nevertheless
his lemmas and those in [Ka3, Abb, GRS, HuSo] can be used to derive other lower bounds
for higher numbers. Study of lower bounds on R (p , q ;4) can be found in [SYL, Song2].

Let H
(r )

(s , t ) be the complete r -partite r -uniform hypergraph with r − 2 parts of size 1,
one part of size s , and one part of size t (for example for r = 2 it is the same as K

s , t
). For

the multicolor numbers, Lazebnik and Mubayi [LaMu] proved that

tk
2
− k + 1 ≤ R

k
(H

(r )
(2, t +1)) ≤ tk

2
+ k + r ,

where the lower bound holds when both t and k are prime powers. For H
(r )

(s , t ), more
bounds are presented in [LaMu].

Lower bounds on R
m

(k ; s ) are discussed in [DLR, AW]. In [AS], it is shown that for
some values of a , b the numbers R (m , a , b ;3) are at least exponential in m . Other theoreti-
cal results on hypergraph numbers are gathered in [GrRö, GRS].
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7. Cumulative Data and Surveys

Cumulative data for two colors:

[CH1] R (G ,G ) for all graphs G without isolates on at most 4 vertices.

[CH2] R (G , H ) for all graphs G and H without isolates on at most 4 vertices.

[Clan] R (G , H ) for all graphs G on at most 4 vertices and H on 5 vertices, except
five entries (now all solved).

[He4] All critical colorings for R (G , H ), for isolate-free graphs G and H as in
[Clan] above.

[Bu4] R (G ,G ) for all graphs G without isolates and with at most 6 edges.

[He1] R (G ,G ) for all graphs G without isolates and with at most 7 edges.

[HM2] R (G ,G ) for all graphs G on 5 vertices and with 7 or 8 edges.

[He2] R (G , H ) for all graphs G and H on 5 vertices without isolates, except 7
entries (5 still open).

[HoMe] R (G , H ) for G = K 1,3 + e and G = K 4 − e versus all connected graphs H on 6
vertices, except R (K 4 − e , K 6 ). The result R (K 4 − e , K 6 ) = 21 was claimed by
McNamara [McN, unpublished].

[FRS4] R (G , T ) for all connected graphs G on at most 5 vertices and all (except some
cases) trees T .

[FRS1] R (K 3, G ) for all connected graphs G on 6 vertices.

[Jin] R (K 3, G ) for all connected graphs G on 7 vertices. Some errors in [Jin] were
found by [SchSch1].

[Brin] R (K 3, G ) for all connected graphs G on at most 8 vertices. The numbers for
K 3 versus sets of graphs with fixed number of edges, on at most 8 vertices,
were presented in [KM1].

[BBH1] R (K 3, G ) for all connected graphs G on 9 vertices. See also [BBH2].

[JR3] R (C 4, G ) for all graphs G on at most 6 vertices.

[JR2] R (C 5, G ) for all graphs G on at most 6 vertices.

[JR4] R (C 6, G ) for all graphs G on at most 5 vertices.

Chvátal and Harary [CH1, CH2] formulated several simple but very useful observations
how to discover values of some numbers. All five missing entries in the tables of Clancy
[Clan] have been solved. Out of 7 open cases in [He2] 2 have been solved, the bounds for 2
were improved, and the status of the other 3 did not change. Section 4 of this survey under
"Mixed special cases" lists 4 of them (labeled [He2], 1 solved, 3 open).
R (4,5) = R (G 19, G 23 ) = 25 is the second solved case. The other 2 open entries are K 5 versus
K 5 (see section 2) and K 5 versus K 5 − e (see section 3).
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Cumulative data for three colors:

[YR3] R 3(G ) for all graphs G with at most 4 edges and no isolates.

[YR1] R 3(G ) for all graphs G with 5 edges and no isolates, except K 4 − e . The case
of R 3(K 4 − e ) remains open (see section 5).

[YY] R 3(G ) for all graphs G with 6 edges and no isolates, except 10 cases.

[AKM] R (F , G , H ) for most triples of isolate-free graphs with at most 4 vertices.
Some of the missing cases completed in [KM2].

Surveys:

[Bu1] A general survey of results in Ramsey graph theory by S.A. Burr (1974)

[Par5] A general survey of results in Ramsey graph theory by T.D. Parsons (1978)

[Har2] Summary of progress by Frank Harary (1981)

[ChGri] A general survey of bounds and values by F.R.K. Chung and C.M. Grinstead
(1983)

[JGT] Special volume of the Journal of Graph Theory (1983)

[Rob1] Nice textbook-type review of Ramsey graph theory for newcomers (1984)

[Bu6] What can we hope to accomplish in generalized Ramsey Theory ? (1987)

[GrRö] Survey of asymptotic problems by R.L. Graham and V. Rödl (1987)

[GRS] An excellent book by R.L. Graham, B.L. Rothschild and J.H. Spencer, second
edition (1990)

[FRS5] Survey of graph goodness results, i.e. conditions for the formula
R (G , H ) = ( χ(G ) − 1 ) ( n (H ) − 1 ) + s (G ) (1991)

[Nes̆] A chapter in Handbook of Combinatorics (1996)

[Caro] Survey of zero-sum Ramsey theory (1996)

The surveys by S.A. Burr [Bu1] and T.D. Parsons [Par5] contain extensive chapters on
general exact results in graph Ramsey theory. F. Harary presented the state of the theory in
1981 in [Har2], where he also gathered many references including seven to other survey
papers. A decade ago, Chung and Grinstead in their survey paper [ChGri] gave less data than
in this note, but included a broad discussion of different methods used in Ramsey computa-
tions in the classical case. S.A. Burr, one of the most experienced researchers in Ramsey
graph theory, formulated in [Bu6] seven conjectures on Ramsey numbers for sufficiently large
and sparse graphs, and reviewed the evidence for them found in the literature. Recently three
of them have been refuted in [Bra3].

For newer extensive presentations see [GRS, GrRö, FRS5, Nes̆], though these focus on
asymptotic theory not on the numbers themselves. Finally, this compilation could not pretend
to be complete without mentioning a special volume of the Journal of Graph Theory [JGT]
dedicated entirely to Ramsey theory. Besides a number of research papers, it includes histori-
cal notes and presents to us Frank P. Ramsey (1903-1930) as a person.
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8. Concluding Remarks

This compilation does not include information on numerous variations of Ramsey
numbers, nor related topics, like size Ramsey numbers, zero-sum Ramsey numbers, irredun-
dant Ramsey numbers, induced Ramsey numbers, local Ramsey numbers, connected Ramsey
numbers, chromatic Ramsey numbers, avoiding sets of graphs in some colors, coloring graphs
other than complete, or the so called Ramsey multiplicities. Interested reader can find such
information in the surveys listed in section 7 here.

The author apologizes for any omissions or other errors in reporting results belonging to
the scope of this work. Suggestions for any kind of corrections and/or additions will be
greatly appreciated.
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[Chv] V. Chvátal, Tree-Complete Graph Ramsey Numbers, Journal of Graph Theory, 1 (1977) 93.
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[Schu] C. -U. Schulte, Ramsey-Zahlen für Bäume und Kreise, Ph.D. thesis, Heinrich-Heine-Universität
Düsseldorf, (1992).

[-] S. Schuster, see[CS].

[-] A. Schwenk, see [ChvS].

[Scob] M.W. Scobee, On the Ramsey Number R (m 1P 3, m 2P 3, m 3P 3) and Related Results, ..., MA thesis,
University of Louisville (1993).

[-] R.J. Segedin, see [LorSe].

[Sha] A. Shastri, Lower Bounds for Bi-Colored Quaternary Ramsey Numbers, Discrete Mathematics, 84
(1990) 213-216.

[She1]* J.B. Shearer, Lower Bounds for Small Diagonal Ramsey Numbers, Journal of Combinatorial Theory,
Series A, 42 (1986) 302-304.

[She2] J.B. Shearer, A Note on the Independence Number of Triangle-free Graphs II, Journal of Combina-
torial Theory, Series B, 53 (1991) 300-307.

[-] J. Sheehan, see [CRSPS, CEHMS, FRS6, FRS7, RS1, RS2].

[ShZ1] Shi Ling Sheng and Zhang Ke Min, An Upper Bound Formula for Ramsey Numbers, preprint.

[ShZ2] Shi Ling Sheng and Zhang Ke Min, A Sequence of Formulas for Ramsey Numbers, preprint.

- 35 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2001), DS1.8

[Sid1] A.F. Sidorenko, On Turán Numbers T (n , 5,4) and Number of Monochromatic 4-cliques in 2-colored
3-graphs (in Russian), Voprosy Kibernetiki, 64 (1980) 117-124.

[Sid2] A.F. Sidorenko, An Upper Bound on the Ramsey Number R (K 3, G ) Depending Only on the Size of
the Graph G , Journal of Graph Theory, 15 (1991) 15-17.

[Sid3] A.F. Sidorenko, The Ramsey Number of an N -Edge Graph Versus Triangle Is at Most 2N + 1, Jour-
nal of Combinatorial Theory, Series B, 58 (1993) 185-196.

[-] M. Simonovits, see [FSS1, FS].

[-] M.J. Smuga-Otto, see [AS].

[Sob] A. Sobczyk, Euclidian Simplices and the Ramsey Number R (4,4 ; 3), Technical Report #10, Clemson
University (1967).

[-] W. Solomon, see [LorSo].

[-] L. Soltés, see [LRS].

[Song1] Song En Min, New Lower Bound Formulas for the Ramsey Numbers N (k ,k ,...,k ;2) (in Chinese),
Mathematica Applicata, 6 (1993) suppl., 113-116.

[Song2] Song En Min, Properties and New Lower Bounds of the Ramsey Numbers R (p , q ;4) (in Chinese),
Journal of Huazhong University of Science and Technology, 23 (1995) suppl. II, 1-4.

[SYL] Song En Min, Ye Weiguo and Liu Yanwu, New Lower Bounds for Ramsey Number R (p , q ;4),
Discrete Mathematics, 145 (1995) 343-346.

[-] Song En Min, see also [HuSo].

[-] J.H. Spencer, see [BES, GRS].

[Spe]* T. Spencer, University of Nebraska at Omaha, personal communication (1993), and, Upper Bounds
for Ramsey Numbers via Linear Programming, preprint.

[Stahl] S. Stahl, On the Ramsey Number R (F , Km ) where F is a Forest, Canadian Journal of Mathematics,
27 (1975) 585-589.

[-] R.G. Stanton, see [KS].

[Stat] W. Staton, Some Ramsey-type Numbers and the Independence Ratio, Transactions of the American
Mathematical Society, 256 (1979) 353-370.

[-] A. Steger, see [McS].

[Stev] S. Stevens, Ramsey Numbers for Stars Versus Complete Multipartite Graphs, Congressus Numeran-
tium, 73 (1990) 63-71.

[-] M.J. Stewart, see [CRSPS].

[SL]* Su Wenlong and Luo Haipeng, Prime Order Cyclic Graphs and New Lower Bounds for Three Classi-
cal Ramsey Numbers R (4, n ) (in Chinese), Journal of Mathematical Study, 31, 4 (1998) 442-446.

[SLL1]* Su Wenlong, Luo Haipeng and Li Guiqing, Two Lower Bounds of Classical 2-color Ramsey
Numbers R (3, q ) (in Chinese), Journal of Guangxi University for Nationalities, 5, 1 (1999) 1-4.

[SLL2]* Su Wenlong, Luo Haipeng and Li Qiao, New Lower Bounds of Classical Ramsey Numbers R (4,12),
R (5,11) and R (5,12), Chinese Science Bulletin, 43, 6 (1998) 528.

[SLL3]* Su Wenlong, Luo Haipeng and Li Qiao, A Method for Obtaining Lower Bounds for Some Ramsey
Numbers (in Chinese), Journal of Guangxi Academy of Sciences, 15, 4 (1999) 145-147.

[SLL4]* Su Wenlong, Luo Haipeng and Li Qiao, New Lower Bounds for Seven Classical Ramsey Numbers
R (k , l ) (in Chinese), Journal of Systems Science and Mathematical Sciences, 20, 1 (2000) 55-57.

[SLZ1]* Su Wenlong, Luo Haipeng and Zhang Zhengyou, New Lower Bounds of Some Classical Ramsey
Numbers R (5, q ) (in Chinese), Application Research of Computers, 14, 5 (1997) 11-12.

[SLZ2]* Su Wenlong, Luo Haipeng and Zhang Zhengyou, Five New Prime Order Cyclic Graphs (in Chinese),
Guangxi Sciences, 5, 1 (1998) 4-5.

[SLZL]* Su Wenlong, Luo Haipeng, Zhang Zhengyou and Li Guiqing, New Lower Bounds of Fifteen Classi-
cal Ramsey Numbers, Australasian Journal of Combinatorics, 19 (1999) 91-99.

- 36 -



THE ELECTRONIC JOURNAL OF COMBINATORICS (2001), DS1.8

[-] Su Wenlong, see also [LSZL, WSL].

[-] A. Sudan, see [GGS].

[SuBa] Surahmat and E.T. Baskoro, On the Ramsey Number of Path or Star versus W 4 or W 5, preprint.

[SwPr] C.J. Swanepoel and L.M. Pretorius, Upper Bounds for a Ramsey Theorem for Trees, Graphs and
Combinatorics, 10 (1994) 377-382.

[-] M.M. Sweet, see [FreSw].
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