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Defn: Agroup (G, +)is a set G along with a
binary operation « such that the following
axioms are satisfied:

1) The binary operation « is associative,

2) There is an element e in G such that
eeX=Xee=xforallx e G.

This element e is an identity element for »
on G.

3} For each x e G there is an element x’ e G
with the property that x’ « x = x » x¥'= 6.
The element x’ is an inverse of x with
respect to the operation ».

Defn: A group G is abelian if its binary operation . is
commutative. That is if x ey =y « x for every x, y e G.

exampies:

1) The integers 2, the rational numbers Q, the real numbers
R and the complex numbers C are aii abelian groups under
addition.

2) Z,={0,1, 2, .., n-1} under addition modulo n is an

abelian group.

3) Z,={1, 2, .., p-1} is an abelian group under
multiplication modulo p.



Defn:

Afield (F, +,- )isasetF along with

two binary operations + and - (called addtion
and multiplication) defined on F such that the
following axioms hold:

( F, + ) is an abelian group.

a)
b)
C)

d)

The binary operation + is associative.
There is an identity element for +,
Each element in F has an additive
inverse.

The binary operation + is commutative.

(F*, - ) is an abelian group.

h)

The binary operation - is associative.
There is an identity element for -
Each element in F has a muliplicative
inverse.

The binary operation - is commutative.

Multiplication distributes over addition:

i) Foralla,b,ce F

a-(b+c)=(a-b)+(a-c)

and

(a+b)-c=(a-c)+(b-c)



The finite field Z,,:

2)7={0,1,2,3,4,56,7,8,9,10, 11, 12, 13, 14, 15, 16 }

under addition modulo 17 and multiplication modulo 17 is a
field. Here is the multiplication table:

;0102 03 04 05 06 07 08 09 10 11 12 13 14 15 16
WO'I’ 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
02102 04 06 08 10 12 14 16 01 03 05 07 09 11 13 15
03/03 06 09 12 15 01 04 07 10 13 16 02 05 08 11 14
04/04 08 12 16 03 07 11 15 02 08 10 14 01 05 09 13
03(05 10 15 03 08 13 0t 06 11 16 04 09 14 02 07 12
06|06 12 Ot 07 13 02 08 14 03 09 15 04 10 16 05 11
07107 14 04 11 01 08 15 05 12 02 Q9 16 06 13 03 10
08108 16 07 15 06 14 05 13 04 12 03 11 02 10 0t 09
0909 01 10 02 11 03 12 04 13 05 14 06 15 07 16 08
1010 03 13 06 16 09 02 12 05 15 08 01 11 04 14 o7
11711 05 16 10 04 15 09 03 14 08 0z 13 07 01 12 06
12112 07 02 14 09 04 16 11 06 0t 13 08 03 15 10 05
1313 09 05 01 14 10 06 02 15 t1 07 03 16 12 08 04
14114 11 08 05 02 16 13 10 07 04 01 15 12 09 06 03
1515 13 11 09 07 05 03 01 16 14 12 10 08 06 04 02
16116 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01

Notice the table is symmetric since multiplication modulo
17 is a commutative operation.

We can find inverses: eg. 11 = 14.
Notice 3 is a primitive element: 3! = 3, 32= g 33 10,

3*= 13, 35= 5, 36 = 15, 37= 11,3%=16,3%= 14,303
3'1=7,32-4 31313 314 2,396,316 -1



L.vision Algorithm for F[x]: Let

fx) = a,x™ + a, x™" + .+ a,x + a
and

9(x) = bX™ + b x™ & 4 by + b,
be elements in F[x] such that a,, b, are nonzero
elements in F and m>0. Then, there are unique
polynomials q(x), r(x) e F[x] such that f(x) =
g(x)a{x) + r(x), with the degree of r(x) less than
m.

Defn: A nonconstant polynomial f(x) e F[x] is
call an jrreducible polynomial over F if f(x)
cannot be expressed as a product of two
polynomials in F[x] both having lower degree
than the degree of f(x).

Theorem: Letp be a prime. There is a unique
finite field of order p" for every ne Z*. This
field is usually denote GF(p") and is called the
Galois field of order p".
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Construction of a field of order 8:

Consider Z, = { 0, 1} which is a field with just two elements.
Form Z,[x], the set of all polynomials in the indeterminate
X. Define addition and multiplication of polynomials in the
usual way. Look at f(x) = x3 + x + 1 in Z,[x]. Any element in
Z,[x] can be divided by f(x) yielding a remainder of degree
2 or less. These possible remainders are (0,1, %, x+1, x2,

241, x2 4%, %2 + x + 1} On this set of remainders define
addition as usual and define multiplication “modulo f(x)".
That is, to multiply two elements together, do so in the
usual way and then divide by f(x) and take the remainder.

A miracle occurst This set, denoted ZIxJ/(x3 + x + 1), is a
field with 8 elements.

Associate a2x2 + a84X + a, with the ordered tuple a,a

18,

The multiplication table is:

001 010 011 100 101 110 111
001 001 010 o011 100 101 110 111
010 010 100 110 011 001 111 101
011 011 110 101 111 100 001 010
100 100 01t 111 110 010 101 001
101 101 001 100 010 111 011 110
110 110 111 001 101 011 010 100
111 111 101 010 001 110 100 011



GF (9) = GF(3?)
§6) = x|
| F:l)fi-r&.‘ +’1¥3) Q}SZ

E&: (2+0) +(2424) = |
(2ta)#(2¢2) = 2






.

2

lat2

BN NN LWNN—=

~| 4 ®
N



Galois fields

1 Fields ‘

A field is an algebraic structure in which the operations of addition, subtraction,
multiplication, and division (except by zero) can be performed, and satisfy the
usual rules.

More precisely, a field is a set F° with two binary operations + (addition) and
- (multiplication) are defined, in which the following laws hold:

(Al) a+ (b +c) = (a+ b) +c (associative law for addition)
(A2) a+ b = b-a (commutative law for addition)
{A3) There is 2n element 0 (zero) such that a+ 0 =g for all a.
(A4) For any a, there is an element —a such that a + (—a) = 0.
(Ml)a-(b-¢)=(a-b)-c (associative law for multiplication)
(M2) a-b = b-a (commutative law for multiplication)
(M3) There is an element 1 (not equal to 0) such thata-1 =a forall a.
(M4) For any a # 0, there is an element ¢! such thatg.a~! = 1.
(D) a-(b+c) = (a-b)+(a-c) (distributive law)
Using the notion of a group, we can condense these nine axioms into just three:

¢ The elements of F form an Abelian group with the operation + (called the
additive group of F).

¢ The non-zero elements of F form an Abelian group under the operation -
(called the multiplicative group of F).

+ Multiplication by any non-zero element is an automorphism of the additive
group.
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We usually write x -y simply as xy. Many other familiar arithmetic properties
can be proved from the axioms: for example, 0x = 0 for any x.

Familiar examples of fields are found among the number systems (the rational
numbers, the real numbers, and the complex numbers are all fields). There are
many others. For example, if p is a prime number, then the integers mod p form
a field: its elements are the congruence classes of integers mod p, with addition
and multiplication induced from the usual integer operations.

For example, here are the addition and multiplication tables for the integers
mod 3. (We use 0, 1,2 as representatives of the congruence classes.)

+o12 -0t 2
cjor2 00070
ilt20 tlo12
21201 2(021

2 TFinite fields: existence

Galois (in one of the few papers published in his lifetime) answered completely
the question of which finite fields exist.

First, the number of elements in a finite field must be a prime power, say
g = p’, where p is prime.

Then, for each prime power g = p’, there exists a field of order g, and it is
unique (up to isomorphism).

The construction is as follows. First, let Ffy be the field of integers mod p.
Now choose an irreducible polynomia! f(X) of degree r over Fp. (It can be shown
that such polynomials always exist; indeed, it is possible to count them.) We can
assume that the leading coefficient of f is equal to 1; say

fX) =X+ X+ aX +co
We take the elements of F to be all expressions of the form
X +xiatxa@ 4 +xa
where a is required to satisfy f{a) =0, and xg,..., %1 € Fy. (This is very similar

to the construction of the complex numbers as of the form x + yi, where i24+1=0,
and x and y are real numbers.)
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Now the number of expressions of the above form is p’, since there are P
choices for each of the r coefficients xg,....x,_;. Adding these expressions is
straightforward. To multiply them, observe that

d=—c, 1@ —...—¢cia—cy,

s0 a” (and similarly any higher power of a) can be reduced to the required form.

It can be shown, using the irreducibility of the polynomial £, that this con-
struction produces a field. Moreover, even though there are different choices for
the ireducible polynomials, the fields constructed are all isomorphic.

For an example, we construct a field of order 9 = 32, using the polynomial
X? + 1, which is irreducible over the field of integers mod 3. The elements of the
field are all expressions of the form x + ya, where a® = 2, and x, y=0,1,2. As
examples of addition and multiplication, we have

(24a)+(242a) = 443a=1,
(2+4a)(2+2a) = 4+6a+2a°=4+0+4=8=2,

3 Finite fields: properties

In this section, we describe some properties of the Galois field F = GF(q), where
g = p” with p prime. As noted in the last section, the elements 0,1,2,....p—1
of F form a subfield £/ which is isomorphic to the integers mod p; for obvious
reasons, it is known as the prime subfield of F.

Additive group. The additive group of GF(g) is an elementary Abelian p-group.
This is because
x+-tx=(1+--+1x=0x=0,
where there are p terms in the sum. Thus, it is the direct sum of r cyclic groups of
order p.
Another way of saying this is that F is a vector space of dimension r over F;;

that is, there is a basis (ay,...,a,) such that every element x of F can be written
uniquely in the form

x=x1ay+---+x-ar

forsomeay,...,x, e 5 ={0,1,...,p~1}.

The Encyclopedia of Design Theory Galois fields/3



Multiplicative group. The most important result is that the multiplicative group
of GF(q) is cyclic; that is, there exists an element g called a primitive root) such

that every non-zero element of F can be written uniquely in the form g' for some
i with 0 < i < g —2. Moreover, we have g7~ =g'=1L

Squares. Suppose that q is odd. Then the cyclic group of order g — 1 has the
property that exactly half its elements are squares (those which are even posers of
a primitive element). The squares are sometimes called quadratic residues, and
the non-squares are quadratic non-residues. (These terms are used especially in
the case where g is prime, so that GF(q) is the field of integers mod g.

Automorphism group. An automorphism of F is a one-to-one mapping x - x*
from F onto F, such that

(k+y)F =+, () =xY"

for all x, y.

The map ¢ : x — xP is an automorphism of F, known as the Frobenius auto-
morphism. The elements of F fixed by the Frobenius automorphism are precisely
those lying in the prime subfield Fo. Moreover, the group of automorphisms of F
is cyclic of order r, generated by ©. (This means that every automorphism has the
form x — xP for some value of i with0 < i <r— l.

Special bases. Wesaw that F has bases of size r as a vector space over Fy. These
bases can be chosen to have various additional properties.

The easiest type of basis to find is one of the form {l,a,az,. ..,a"" 1}, where a
is the root of an irreducible polynomial of degree r over Fp. The existence of such
basis is guaranteed by the construction.

A basis of the form {a,a",a"z, e ,a""_I }, where G is the Frobenius automor-
phism, is called a normal basis. Such a basis always exists. Note that the auto-
morphism group of F has a particularly simple form relative to a normal basis,
since the basis elements are just permuted cyclically by the automorphisms.

Subfields. Ifthe field GF(p") has a subfield GF(py}), where p and p) are primes,
then p = p and s divides r. Conversely, if s divides r then GF(p") has a unique
subfield of order p°. The necessity of the condition is proved by applying La-
grange’s Theorem to the additive and multiplicative groups. The sufficiency is
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proved by observing that, if g is the Frobenius automorphism of GF(p’), and s
divides r, then the fixed elements of the automorphism ¢ (that is, the elements g
satisfying a” = a) form the unique subfield of order p*.

Calculation in finite fields. Addition in GF(g) is easy if we have chosen a basis:
we have

(180t -+ xea) + (@) + -+ yra,) = (x1 +31)ay + -+ (5 +31)ar,

in other words, we add “coordinate-wise”.
On the other hand, multiplication is easy if we have chosen a primitive root g

we have . . o
(&)-(e)=¢",
where the exponent is reduced mod g — 1 if necessary.

In order to be able to perform both operations, we need a table telling us how to
translate between the two representations. This is essentially a table of logarithms
(for those who remember such things), since if g’ = x, we can think of  as the
“logarithm” of x.

For the field GF(9) which we constructed earlier, using an element a satisfying
a? = 2 (over the integers mod 3), we find that g =1 +a is a primitive element,
and the table of logarithms is as follows:

[ =]

1

a+1
2a

2a41

2

2a+42
a

a+2

0y oy

99,99, %,9%. 9.5,

Forexample, (a+2)(2a+2) =g’ - g =gl =g'=2.
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