
Jorge L. Díaz-Herrera, Ph.D.
Professor of Computer Science

B. Thomas Golisano College of Computing and Information Sciences

Rochester Institute of Technology
Tel: 585-475-4786 E-mail: jdiaz@gccis.rit.edu

Java: Just Another Version of Ada
— an overview of Ada 2005 —

2

Topics To Be Covered

!Introduction

• Ada design goals

• One-minute history

Core Language

Static Structure

Dynamic Structure

Ada vs. Real-time Java

Conclusions

Ada Design Goals

(1) Development as a human activity: Want
to write defect-free software?

• A complex language, but simpler than
C++ and even Java

• A self-contained deployment environment

(2) From building to “growing” software

• Highly portable (does not depend on target
platform)

• Component-based development

• Efficiency not an issue

3 4

A One-Minute History –1

International
competition

design phase (1977 .. 1979)

!Ada

requirements (1975 .. 1977)

S
tr

a
w

m
a
n

W
o

o
d

e
n

m
a
n

T
in

m
a
n

Ir
o

n
m

a
n

SRI

SofTech

Intermetrics

Honeywell

5

A One-Minute History –2

maturation phase

®

D
o
D

di

Preliminary
Ada

Reference
Manual

Revised
Ada

Reference
Manual

19821979 ..

ANSI

Ada

Reference

Manual

standardization phase

Ada 9X
Revision
Require-
ments

MIL-STD
1815A Ada 9X

Mapping

Ada 9X
ISO

Draft

1983.. 199519911987

ISO
8652
-95

ISO
865

!
Ada
2005

6

The Ada Standard

Three documents

• Ada Reference Manual

• Annotated Ada Reference Manual

- The language (13 chapters, ~550 pages)

- The Standard Libraries

- The 17 annexes (~500 pages)

• Ada Rationale

- Programming paradigms

- The core language

- The annexes

Topics To Be Covered

!Introduction

!Core Language

• what is an Ada program?

• strong typing

Static Structure

Dynamic Structure

Ada vs. Real-time Java

Conclusions

7
8

What is an Ada “Program”?
“An Ada program is a set of partitions, each
of which may execute in a separate address
space, possibly on a separate computer...

a partition is constructed from library units.”

• Composed of one or more program units

- physically nested and hierarchically
organized

• independently provided (program library)
“Program text can be submitted in one or
more compilations.”

Core Language

Lexical elements: Block-structured, Strong typing,
Exceptions, Typed signatures

Structural elements: Packages, Child units,
Subprograms, and Interfaces

Object-oriented programming: Inheritance,
encapsulation, dynamic binding, Identity, explicit overriding

Concurrent programming: Tasks, Synchronization,
Priorities

Real-time and fault tolerance: Clocks, Scheduling
control, Security, Hardware access

Distributed computing: Partitions (VN), RPC

9

[G. Booch, 1991, p.60]

Types

In Ada, every type is either

• specific (a node in a class hierarchy),

• class-wide (an entire class hierarchy), or

• Universal (scalar or composite)

Strong Typing:
Each type in a “class”
is identified by a tag,
held by each object
belonging to the type.

Access types

10

Topics To Be Covered

!Introduction

!Core Language

!Static structure

• design-by-composition • design-by-decomposition

• design-by-extension • design-by-adaptation

Dynamic structure

Ada vs. Real-time Java

Conclusions

11 12

Software Components

Context
(dependency)

Contents
(implementation)

Concept
(services)

Component specification (services)

Component body (implementation)

S

Component dependency (context)

A Directed Acyclic Graph

13

subunit
(body)

library unit
(spec)

with
(context)

C

A

B

D

subunit

child unit
(Spec)

(refinement)

B1

B12

B11

Static Structure Summary Design-by-Composition

Component (C) becomes client of another
server component (S) by importing services
offered by the latter.

S

package S is
-- exported (i.e., visible) specification
end S;
package body S is
-- implementation follows
end S;

with S;
-- component C
...
-- component C body

C

C

S

14

15

Any library package “P” may have child unit “P.Q”

Any component body
(i.e., secondary unit) “B”
may contain local units
implemented separately a.k.a. subunits “S.”

Results in a tree-like parent-child hierarchy of child
units and/or subunits built top-down and rooted
at root library unit “P”

Design-by-Decomposition

P

P.Q B

S

P

B

P.Q

A component becomes an extension of another
component by inheriting services offered by the
latter.

Results in a treelike class hierarchy built

strictly top down

16

Design-by-Extension
C

S

C

A component I is an instance of a “component
template” G by providing parametric values
specified by the latter.

• Instance specializes services

• Contract: If an actual parameter
satisfies the requirements of the
corresponding formal parameter, then a
“body” B that matches the formal
specification will work

17

Design-by-Adaptation
C

S

G

I

B

Object-Oriented Programming

Preserve Ada’s strengths for building safe systems

• Distinction between specific and class-wide types

• Static binding by default, dynamic binding only when
necessary

• Strong boundary around modules: A “class” is a package
exporting a “tagged” type

Enhance object-oriented features

• Multi-package cyclic type structures

• Multiple-inheritance type hierarchies

• Concurrent OOP

18

type T1 is new T; -- inherits from T
type T2 is new T; -- inherits from T
type T11 is new T1; -- inherits from T and T1
type T21 is new T2; -- inherits from T and T2

19

Static Polymorphism

T

T1 T2

T11 T21

A class rooted at a type T consists

of T and all of its derivatives

All types of a class rooted at T

have at least the same set of

operations as T

20

Dynamic Polymorphism

-- Class-wide operations

procedure Write (X: T’CLASS) is
begin ...
 Print (X);-- dispatches method at run-time
! ! ! -- (assuming Print is overloaded)
! ! ! -- based on “actual” type of X
end Write; T

T1 T2

T11 T21

procedure Output
(X: T1’Class) is
begin
... (X) ...

21

Late (run-time) Binding

-- Access-To-Subprogram Types: subprograms as data

type Button is private;
type Resp is access procedure (B: T);
procedure Set_Up
 (B:out Button;R: Resp);
procedure Default (B: T);
...
type Button is record
 R : Resp := Default’ACCESS;
 ...
end record;

22

Generic “Class” Parameters

It is the combination of generics and inheritance
that exploits the full potential of reuse

generic
 type T is new Rectangle;
 -- Rectangle operations imported implicitly
package Pk is ...;
package N_Pk is new Pk (Cuboid);
...

generic -- another example
 type B is new BOOLEAN;
 -- boolean operations imported implicitly
package Pk is ...;

Rectangle

Cuboid Rectangle
’CLASS ...

... ...

Interfaces

Similar to abstract types but with multiple
inheritance

• May be used as a secondary parent in type
derivations

• Have class-wide types

• Support for composition of interfaces

23

Interfaces: Example
type Model is interface;

type Observer is interface;

procedure Notify (O: access Observer; M: access Model’Class)

! ! ! ! is abstract;

type View is interface and Observer;

procedure Display (V: access View; M: access Model’Class)

! ! ! ! is abstract;

type Controller is interface and Observer;

procedure Start (C: access Controller; M: access Model’Class)

! ! ! ! is abstract;

procedure Associate (V: accessView’Class;

 C: access Controller’Class; M: accessModel’Class);

Pascal Leroy, IBM

24

Interfaces: Example (cont’d)

type Device is tagged private;

procedure Input (D: in outDevice);

type Mouse is new Device

! ! ! ! ! ! and Controller with private;

procedure Input (D: in out Mouse);

procedure Start (D: access Mouse;

! ! ! ! ! ! ! M: access Model’Class);

procedure Notify (D: access Mouse;

! ! ! ! ! ! ! M : access Model’Class);

25

Concurrent OOP

Unify concurrent programming and object-
oriented programming

• Tasks are types (hence objects)

• Interfaces may specify synchronization properties

• Procedures may be implemented by task entries

task type Counter is
entry Increase (By : POSITIVE);
entry Decrease (By : POSITIVE);
entry Get (Count : out NATURAL);

end Counter;

26

Ada supports explicit task communication in the
form of an essentially procedural interface
between exactly two tasks

Achieved by a task (client) making entry calls to
another task (server) accepting them

27

Task Interaction

data flow

entry call
Client

Server

28

Topics To Be Covered

!Introduction

!Core Language

!Static Structure

!Dynamic Structure
• partitions and processes

• systems and real-time programming

Ada vs. Real-time Java

Conclusions

29

Distributed Ada Execution

An executable “system” is a cooperating set of

• one or more “active partitions”

• zero or more “passive partitions”

Partition: “a partition is a program or part of a
program that can be invoked from outside the
Ada implementation” 10.2/2

30

A Distributed Ada “System”

passive
partition

1

passive
partition

m

... ...
RCI

package

active
partition

1

processor

active
partition

n

processor

Heavyweight Process

The execution of an Ada “program” does not
require an operating system

datadata

library
units

subunits

library
units

secondary
units

“main”
subprogram

Runtime System

E.T.

...

library
units

subunits

library
units

secondary
units

“main”
subprogram

partition partition

31
32

Topics To Be Covered

!Introduction

!Core Language

!Static Structure

!Dynamic Structure

!Ada vs. Real-time Java

Conclusions

33

Ada & Real-time Programming

Language features promoting safety/reliability and
deterministic language semantics (predictability)

Concurrency
• Well-defined semantics for scheduling

• Safe / efficient mutual exclusion, including “state notification”

• Safe / efficient coordination / communication

Hardware control
• Safe/predictable Memory management

• Asynchronous events / event handlers

• Asynchronous Transfer of Control (interrupts)

• Support for high-resolution time (millis and nanos), both
absolute and relative

• Support for various kinds of timers, clocks

• Access to hardware-specific features

Java Summary

“Pure” Object-Oriented language in the style of Smalltalk
• Single inheritance of classes, “multiple inheritance” of “interfaces”

Built-in support for exception handling, threads

Well-defined semantics, at least for sequential features
• Classes are run-time objects

• All non-primitive data go on the heap

Emphasis on safety, security (downloadable “applets”)

• Garbage collection required

• Portable, interpretable binary format for Java classes

“Core” libraries, and extensive set of “packages” for a
wide variety of application domains

34

Java for Real-time? –1*

Thread method is error prone (Effect not always clear
from source syntax)

• Requires cooperation by the accessing threads

- Even if all methods are synchronized, an errant
thread can access non-private fields without
synchronization

- A non-synchronized method may be safe to invoke
from multiple threads, but a synchronized method
might not be safe to invoke from multiple threads

- Not always clear when a method needs to be declared
as synchronized

• Complex interactions with other features (e.g. when are
locks released?)

• Locking is hard to get right (exacerbated by absence of
nested objects)

35(*) Adapted from Ben Brosgol, Aonix

Java for Real-time? –2*

Limited mechanisms for direct inter-thread communication

• wait()and notify()/notifyAll()are low-level
constructs that must be used very carefully

• Synchronized code that changes object’s state must explicitly
invoke notify()/notifyAll()

• No syntactic distinction between signatures of synchronized
method that may suspend a caller and one that does not

• Only one wait set per object (versus per associated “condition”)

Public thread interface issues

• The need to explicitly initiate a thread by invoking its start()
method allows several kinds of programming errors

• Although run()is part of a thread class’s public interface,
invoking it explicitly is generally an error

36(*) Adapted from Ben Brosgol, Aonix

Java for Real-time? –3*

Lack of some features useful for software engineering

• Operator overloading

• strongly typed primitive types, ...

Scheduling deficiencies

• Priority semantics are implementation dependent and fail to
prevent unbounded priority inversion

• Section 17.12 of the Java Language Specification: “Every
thread has a priority. ... threads with higher priority are
generally executed in preference to threads with lower
priority. Such preference is not, however, a guarantee
that the highest priority thread will always be
running, and thread priorities cannot be used to reliably
implement mutual exclusion.”

37(*) Adapted from Ben Brosgol, Aonix

Java for Real-time? –4*

Memory management unpredictability

• Predictable, efficient garbage collection appropriate
for real-time applications not (yet) in mainstream

• lacks stack-based objects

• Heap used for exceptions thrown implicitly as an
effect of other operations

Asynchrony deficiencies

• Event handling requires dedicated thread

• interrupt()not sufficient

• stop()and destroy()deprecated or dangerous or
both

38(*) Adapted from Ben Brosgol, Aonix

Java for Real-time? –5*

OOP has not been embraced by the real-time community
• Dynamic binding complicates analyzability

• Garbage Collection defeats predictability

• A class’s “interface” is more than its public and protected
members

No features for accessing underlying hardware

Performance questions

“Standard” API would need to be rewritten for
predictability
• In general it includes some implementation characteristics

E.g. does it allocate objects, can it block

• Some JVM opcodes require non-constant amount of time

39(*) Adapted from Ben Brosgol, Aonix

Real-time Java History*

40(*) Adapted from Ben Brosgol, Aonix

Scheduling-related classes (partial list)*

41(*) Adapted from Ben Brosgol, Aonix 42

Topics To Be Covered

!Introduction

!Core Language

!Static Structure

!Dynamic Structure

!Ada vs. Real-time Java

!Conclusions

Conclusions

Ada

• easier to “restrict” for building safety-critical systems
(the features that makes creating solid applications
possible)

• very successful in the safety-critical domain (high
reliability military and space applications)

Java

• many safety-critical issue are intrinsic (pure OOP)

• C-based syntax prone to errors (hybrid type system)

• has not be used in the safety-critical domain

43

In Summary

Ada is a much better technical solution for
implementing safety-critical distributed,
concurrent systems

• powerful, semantically complete, well-designed

• There are a number of compilers including
commercial development systems (AdaCore, Aonix,
Artisan Software, Green Hills Software, IBM, and
Polyspace technologies)

There are some deficiencies

• Availability of Ada programmers

Ada is worth another look!

44

45

The Future: Ada 2005 and beyond

The JTC1/SC22/WG9 ISO Working Group in
charge of maintaining the Ada Language
http://www.open-std.org/JTC1/SC22/WG9/

AdaRapporteur Group collecting Ada Issues
http://www.ada-auth.org/arg-minutes.html

Ada Conformity Assessment Authority

http://www.ada-auth.org/

Resources
GNAT Academic Program (Open source)
http://www.adacore.com/home/academia/
http://libre2.adacore.com

SIGAda WWW Server Home Page
http://www.acm.org/sigada/

Ada Home: The !Web!Site!for!Ada
http://www.adahome.com/

Ada CORBA Products
http://www.adapower.com/corba/

A#: Ada for .NET
http://www.usafa.af.mil/df/dfcs/bios/mcc_html/a_sharp.cfm

46

47

Resources–2

Aonix
http://www.aonix.com

Artisan Software
http;//www.artisansw.com

Green Hills Software
http://www.ghs.com

IBM
http://www.ibm.com

Polyspace Technologies
http://www.polyspace.com

Comparison Chart*

48(*) from Adacore technologies

Comparison Chart*

49(*) from Adacore technologies

