T

atomas A Lad gl al il
GOLISANO COLLEGE QF COMPUTING'AND' INFORMATIONSCIENCES

| mm— — —

Java: Just Another Version of Ada
— an overview of Ada 2005 —

Jorge L. Diaz-Herrera, Ph.D.
Professor of Computer Science
B. Thomas Golisano College of Computing and Information Sciences

Rochester Institute of Technology
Tel: 585-475-4786 E-mail: jdiaz@gccis.rit.edu

Ada Design Goals

(1) Development as a human activity: Want
to write defect-free software?

® A complex language, but simpler than
C++ and even Java
® A self-contained deployment environment

(2) From building to “growing” software

® Highly portable (does not depend on target
platform)

® Component-based development

e Efficiency not an issue

Topics To Be Covered

= [ntroduction

® Ada design goals

® One-minute history
Core Language
Static Structure

Dynamic Structure

Ada vs. Real-time Java

Conclusions

International
competition

L SofTech
< Cintermetrics>

s
il 2
T ~ -

ST >

requirements (1975 .. 1977) design phase (1977 .. 1979)

One-Minute History —2 The Ada Standard
. Three documents
. - ® Ada Reference Manual
Preliminary Ada-9X : :
Re égeance ® Annotated Ada Reference Manual
Manual - The language (13 chapters, ~550 pages)
- The Standard Libraries
- The 17 annexes (7500 pages)
maturation phase . standardization phase :.'_Ada e Ad: Rationale
1979 .. 1982 1987 1991 1995 2005 - Programming paradigms
. - The core language
Ri’ésed Ada 9X - The annexes
a Mappin
Reference pping
Manual

~ Topics To Be Covered

hat is an Ada “Program

“An Ada program is a set of partitions, each
= Core Language of which may execute in a separate address
e what is an Ada program? space, possibly on a separate computer...

® strong typing - : .
a partition is constructed from library units.

® Composed of one or more program units

- physically nested and hierarchically
organized

® independently provided (program library)
“Program text can be submitted in one or
more compilations.”

Core Language

Lexical elements: Block-structured, Strong typing,
Exceptions, Typed signatures

Structural elements: Packages, Child units,
Subprograms, and Interfaces

Object-oriented programming: Inheritance,
encapsulation, dynamic binding, Identity, explicit overriding

Concurrent programming:Tasks, Synchronization,
Priorities

Real-time and fault tolerance: Clocks, Scheduling
control, Security, Hardware access

Distributed computing: Partitions (VN), RPC

Topics To Be Covered

= Static structure
® design-by-composition ® design-by-decomposition

® design-by-extension ® design-by-adaptation
Dynamic structure

Ada vs. Real-time Java

Conclusions

- Types

In Ada, every type is either
® specific (a node in a class hierarchy),

® class-wide (an entire class hierarchy), or

) <
® Universal (scalar or composite) m) X

Strong Typing:

Each type in a “class”
is identified by a tag,
held by each object
belonging to the type.

Access types

g >
AIBBS ¢ [G. Booch, 1991, p.60]

Software Components

Context
(dependency)
Contents
(si?\'/,if;zg; (implementation)

Component dependency (context)
Component specification (services)

Component body (implementation)

library unit
(spec)

T with

(context)

child unit
(Spec) () T——_ subunit

(body)

K\\\\ subunit

(refinement)

-'DeSign'bY'ComPOSition'}

Component (C) becomes client of another
server component (S) by importing services
offered by the latter.

package S is
-- exported (i.e., visible) specification
end S;
package body S is
-- implementation follows

end S; ‘g’.

with S;
-- component C

-- component C body

y Design-by-Decompositiol

Any library package “P” may have child unit “p.Q”
Any component body
(i.e., secondary unit) “B”

may contain local units

implemented separately a.k.a. Subunits “S.”

Results in a tree-like parent-child hierarchy of child
units and/or subunits built top-down and rooted
at root library unit “P”

A component becomes an extension of another

component by inheriting services offered by the
latter.

Results in a treelike class hierarchy built
strictly top down

Design-by-Adaptation

templat

@
o

A component | is an instance of a “component

e” G by providing parametric values

specified by the latter.

* Instance specializes services

e Contract: If an actual parameter
satisfies the requirements of the
corresponding formal parameter, then a
“body” B that matches the formal
specification will work

ject-Oriented Programm

Preserve Ada’s strengths for building safe systems
e Distinction between specific and class-wide types

® Static binding by default, dynamic binding only when
necessary

® Strong boundary around modules: A “class” is a package
exporting a “tagged” type

Enhance object-oriented features

® Multi-package cyclic type structures

® Multiple-inheritance type hierarchies

® Concurrent OOP

Static Polymorphism

type T

type T

1 is new T; --inherits from T

type T2 is new T; --inherits from T
11 is new T1; --inherits from T and T1
type T21 is new T2; -- inherits from T and T2 |

Aclass

All types

rooted at a type T consists

of T and all of its derivatives

of a class rooted at T

have at least the same set of
operations as T

-- Class-wide operations

procedure Write (X: T’/CLASS) is
begin
Print (X) ;--dispatches method at run-time
-- (assuming Print is overloaded)

end Write; - Bl

procedure Output /\

(X TACl ass) is :

begin
(X)

Late (run-time) Binding

-- Access-To-Subprogram Types: subprograms as data

type Button is private;

type Resp is access procedure (B: T);

procedure Set Up
(B:out Button;R: Resp) ;
procedure Default (B: T);

type Button is record
R : Resp := Default’ACCESS;

end record;

Interfaces

Similar to abstract types but with multiple
inheritance

® May be used as a secondary parent in type
derivations

® Have class-wide types

® Support for composition of interfaces

Generic “Class” Parameters

It is the combination of generics and inheritance
that exploits the full potential of reuse

generic

type T is new Rectangle;

-- Rectangle operations imported implicitly
package Pk is ...;

package N Pk is new Pk (Cuboid); Rectangle

generic -- another example
type B is new BOOLEAN; "
-- boolean operations imported implicitly

package Pk is ...;

~ Interfaces: Example

type Model is interface;

type Observer is interface;
procedure Notify (O: access Observer; M: access Model’Class)
is abstract;

type View is interface and Observer;
procedure Display (V: access View; M: access Model’Class)
is abstract;

type Controller is interface and Observer;
procedure Start (C: access Controller; M: access Model’Class)
is abstract;

procedure Associate (V: accessView’Class;
C: access Controller’Class; M: accessModel’Class);

Pascal Leroy, IBM

es: Example (cont'd)

type Device is tagged private;
procedure Input (D: in outDevice);

type Mouse is new Device
and Controller with private;
procedure Input (D: in out Mouse);
procedure Start (D: access Mouse;
M: access Model’Class);
procedure Notify (D: access Mouse;
M : access Model’Class);

Task Interaction

Ada supports explicit task communication in the
form of an essentially procedural interface
between exactly two tasks

Achieved by a task (client) making entry calls to
another task (server) accepting them

Client
entry call

Ay
data flow

_ Concurrrrentr OOP

Unify concurrent programming and object-
oriented programming

® Tasks are types (hence objects)
® |Interfaces may specify synchronization properties

® Procedures may be implemented by task entries

task type Counter is
entry Increase (By : POSITIVE);
entry Decrease (By : POSITIVE);
entry Get (Count : out NATURAL) ;
end Counter;

Topics To Be Covered

v'Introduction

v'Core Language

v'Static Structure

= Dynamic Structure

® partitions and processes

® systems and real-time programming

Ada vs. Real-time Java

Conclusions

:Distributed Ada Execution

An executable “system” is a cooperating set of
® one or more “active partitions”

® zero or more “passive partitions”

Partition:“a partition is a program or part of a

program that can be invoked from outside the
Ada implementation” 10.2/2

- Heavyweight Process

The execution of an Ada “program” does not
require an operating system

librar librar
subprogram 5 subprogram ' =
secondary secondary
units units

Distributed Ada “System

active
partition
1

processor

passive

partition
1

RCI
package

active
partition .
n passive
partition

processor m

Topics To Be Covered

v'Introduction
v'Core Language
v'Static Structure
v'Dynamic Structure

= Ada vs. Real-time Java

\da & Real-time Programming

Language features promoting safety/reliability and
deterministic language semantics (predictability)

Concurrency

® Well-defined semantics for scheduling

® Safe / efficient mutual exclusion, including “state notification’
® Safe / efficient coordination / communication

’

Hardware control

® Safe/predictable Memory management

® Asynchronous events / event handlers

® Asynchronous Transfer of Control (interrupts)

® Support for high-resolution time (millis and nanos), both
absolute and relative

Support for various kinds of timers, clocks

® Access to hardware-specific features

Java for Real-time? —1*

Thread method is error prone (Effect not always clear
from source syntax)
® Requires cooperation by the accessing threads
- Even if all methods are synchronized, an errant
thread can access non-private fields without
synchronization

- A non-synchronized method may be safe to invoke
from multiple threads, but a synchronized method
might not be safe to invoke from multiple threads

- Not always clear when a method needs to be declared
as synchronized
® Complex interactions with other features (e.g. when are
locks released?)
® |ocking is hard to get right (exacerbated by absence of
nested obiects)

(*) Adapted from Ben Brosgol,Aonix

Java Summary

“Pure” Object-Oriented language in the style of Smalltalk
® Single inheritance of classes,“multiple inheritance” of “interfaces”

Built-in support for exception handling, threads

Well-defined semantics, at least for sequential features
® Classes are run-time objects
® All non-primitive data go on the heap

Emphasis on safety, security (downloadable “applets”)
® Garbage collection required
® Portable, interpretable binary format for Java classes

“Core” libraries, and extensive set of “packages” for a
wide variety of application domains

Java for Real-time? —2*

Limited mechanisms for direct inter-thread communication

® wait()and notify()/notifyAll ()are low-level
constructs that must be used very carefully

® Synchronized code that changes object’s state must explicitly
invoke notify () /notifyAll ()

® No syntactic distinction between signatures of synchronized
method that may suspend a caller and one that does not

® Only one wait set per object (versus per associated “condition”)

Public thread interface issues

® The need to explicitly initiate a thread by invoking its start ()
method allows several kinds of programming errors

e Although run () is part of a thread class’s public interface,
invoking it explicitly is generally an error

(*) Adapted from Ben Brosgol,Aonix

Lack of some features useful for software engineering
® Operator overloading
® strongly typed primitive types, ...

Scheduling deficiencies

® Priority semantics are implementation dependent and fail to
prevent unbounded priority inversion

® Section |7.12 of the Java Language Specification:“Every
thread has a priority. ... threads with higher priority are
generally executed in preference to threads with lower
priority. Such preference is not, however, a guarantee
that the highest priority thread will always be
running, and thread priorities cannot be used to reliably
implement mutual exclusion.”

(*) Adapted from Ben Brosgol,Aonix

Java for Real-time? —5*

OOP has not been embraced by the real-time community

® Dynamic binding complicates analyzability

® Garbage Collection defeats predictability

® A class’s “interface” is more than its public and protected
members

No features for accessing underlying hardware
Performance questions

“Standard” APl would need to be rewritten for

predictability

® In general it includes some implementation characteristics
E.g. does it allocate objects, can it block

® Some JVM opcodes require non-constant amount of time

(*) Adapted from Ben Brosgol,Aonix

Java for Real-time? —4*

Memory management unpredictability

® Predictable, efficient garbage collection appropriate
for real-time applications not (yet) in mainstream

® |acks stack-based objects

® Heap used for exceptions thrown implicitly as an
effect of other operations

Asynchrony deficiencies
® Event handling requires dedicated thread
® interrupt()not sufficient

® stop()and destroy()deprecated or dangerous or
both

(*) Adapted from Ben Brosgol,Aonix

'Real-time Java History™

NIST Workshops

1998 Lisa Carnahan, NIST
_-—/
—
Sun JCP: JSR-001 J-Consortium
Jan 1999 Real-Time for Java Expert Group Real-Time Java WG
Greg Bollella (IBM/Sun) Kelvin Nilsen (NewMonics / Aonix)
4 . N
Jun 2000 Real-Time Specification for Java J
l Real-Time Core Extensions
RTSJ V1.0: RI, TCK)
Nov 2001 Doug Locke, Peter Dibble .
(Timesys) x
— JEFF Standard
July 2003 [Merge into common spec?
The Open Group
Mid 2004 RTS] \111.0.1
V1.0.1(b) Safety-Critical Profile

Mid 2005
Focus here will be on the Real-Time Specification for Java

(*) Adapted from Ben Brosgol,Aonix

""""""" : . Schedu‘ler‘u
Threa :
java.langreseesegeeeensd
PriorityScheduler

i — ‘ BoundAsyncEventHandler .

SchedulingP ReleaseParameters
&L AL TS cost overrunHandier

deadline missHandler
PriorityParameters NoHeapRealtimeThread /\
priority :

PeriodicParameters ‘ AperiodicParameters |
start period

ImportanceParameters

mpertance SporadicParameters

minInterarrival Time

package javax.realtime

extends imple L H
‘ Subclass ._E.ﬂ—_{ Eli;:rry' mpremens = Interface H
Key:) extends

Abstract Class.

(*) Adapted from Ben Brosgol,Aonix

” Topics To Be Covered

v'Introduction

v'Core Language
v'Static Structure
v'Dynamic Structure
v'Ada vs. Real-time Java

= Conclusions

Conclusions

Ada

® casier to “restrict” for building safety-critical systems
(the features that makes creating solid applications
possible)

® very successful in the safety-critical domain (high
reliability military and space applications)

Java

® many safety-critical issue are intrinsic (pure OOP)

® C-based syntax prone to errors (hybrid type system)

® has not be used in the safety-critical domain

In Summary

Ada is a much better technical solution for

implementing safety-critical distributed,

concurrent systems

® powerful, semantically complete, well-designed

® There are a number of compilers including
commercial development systems (AdaCore, Aonix,
Artisan Software, Green Hills Software, IBM, and
Polyspace technologies)

There are some deficiencies
® Availability of Ada programmers

Ada is worth another look!

Future: Ada 2005 and beyc

The JTCI/SC22/WG9 ISO Working Group in
charge of maintaining the Ada Language
http://www.open-std.org/|TC1/SC22/WG9/

AdaRapporteur Group collecting Ada Issues
http://www.ada-auth.org/arg-minutes.html

Ada Conformity Assessment Authority
http://www.ada-auth.org/

Resources—2

Aonix
http://www.aonix.com

Artisan Software
http;//www.artisansw.com

Green Hills Software
http://www.ghs.com

IBM
http://www.ibm.com

Polyspace Technologies
http://www.polyspace.com

Resources

GNAT Academic Program (Open source)
http://www.adacore.com/home/academia/
http://libre2.adacore.com

SIGAda WWWV Server Home Page
http://www.acm.org/sigada/

Ada Home:The Web Site for Ada
http://www.adahome.com/

Ada CORBA Products
http://www.adapower.com/corba/

A#:Ada for NET
http://www.usafa.af. mil/df/dfcs/bios/mcc_html/a_sharp.cfm

‘Comparison Chart*

Forganmm oy fareyes, Haddeery By B e
P et

bl iy 1wl e o ally ke ipm

s wmily
bl o g

P T G el el

]
B Ve

i rea e o

T Ty

N L e
B ey m e

A wgim

[

s warin A k- Oed I

LTl bl il W o

g e R

AR A R Tk T

(*) from Adacore technologies

P i ma ey, P il e
g o e

Cinirges. T sl
Bl

B i oo ey e

e Ldrusy

Lagedmd gl
sy P Ly

Cird

Ermarmsine Rt

(B tal
ek i

WAL b [l b |

(*) from Adacore technologies

]

T H)

b P

