
Neural Networks
(Reading: Kuncheva Section 2.5)



Introduction

Inspired by Biology

But as used in pattern recognition research, have 
little relation with real neural systems (studied in 
neurology and neuroscience)

Kuncheva: the literature ‘on NNs is excessive and 
continuously growing.’

Early Work

McCullough and Pitts (1943)
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Introduction, Continued
Black-Box View of a Neural Net

Represents function f :  Rn →Rc where n is the 
dimensionality of the input space, c the output space 

• Classification: map feature space to values for c 
discriminant functions: choose class with maximum 
discriminant value

• Regression: learn continuous outputs directly (e.g. learn to 
fit the sin function - see Bishop text)  

Training (for Classification)

Minimizes error on outputs (i.e. maximize function 
approximation) for a training set, most often the squared error:
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mation involved in the process. Moreover, a careless formulation of the categories
might “kill” an otherwise important variable.

The C4.5 algorithm avoids the discretization problem by using the continuous-
valued variables as in CART, and the nominal variables as in ID3. Duda et al.
[15] note that C4.5 is the currently most popular tree construction algorithm
among the machine learning researchers.

2.5 NEURAL NETWORKS

Artificial neural networks (ANNs or simply NNs) originated from the idea to model
mathematically human intellectual abilities by biologically plausible engineering
designs. Meant to be massively parallel computational schemes resembling a real
brain, NNs evolved to become a valuable classification tool with a significant influ-
ence on pattern recognition theory and practice. Neural networks are often used as
base classifiers in multiple classifier systems [79]. Similarly to tree classifiers, NNs
are instable, that is, small changes in the training data might lead to a large change in
the classifier, both in its structure and parameters.

Literature on NNs is excessive and continuously growing. Many publications
such as textbooks and monographs [27–29,80–88], paper collections [89], introduc-
tory readings [90–92], and so on, discuss NNs at various theoretical and algorithmic
depths. Modeling of the human brain, at either morphological or functional level,
and trying to understand NNs’ cognitive capacity are also important research topics
[93–95]. Below we give a brief layout of one of the most popular NN models, the
multilayer perceptron (MLP).

Consider an n-dimensional pattern recognition problem with c classes. A neural
network obtains a feature vector x ¼ ½x1, . . . , xn#T [ Rn at its input, and produces
values for the c discriminant functions g1(x), . . . , gc(x) at its output. Typically
NNs are trained to minimize the squared error on a labeled training set Z ¼
{z1, . . . , zN}, zj [ Rn, and l(zj) [ V

E ¼ 1

2

XN

j¼1

Xc

i¼1

{gi(zj)$ I ðvi, l(zj)Þ}2 (2:77)

where I ðvi, l(zj)Þ is an indicator function taking value 1 if the label of zj is vi, and 0
otherwise. It has been shown that the set of discriminant functions obtained by mini-
mizing Eq. (2.77) approach the posterior probabilities for the classes for data size
N ! 1 [96–98]; that is,

lim
N!1

gi(x) ¼ P(vijx), x [ Rn (2:78)

This result was brought to light in connection with NNs, but, in fact, it holds for any
classifier that can approximate an arbitrary discriminant function with a specified
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Introduction, Continued
Granular Representation

A set of interacting elements (‘neurons’ or 
nodes) map input values to output values using a 
structured series of interactions

Properties

• Instable: like decision trees, small changes in 
training data can alter NN behavior significantly

• Also like decision trees, prone to overfitting: 
validation set often used to stop training

• Expressive:  With proper design and training, can 
approximate any function to a specified precision
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Expressive Power of NNs

Using Squared Error for Learning Classification Functions:

For infinite data, the set of discriminant functions learned 
by a network approach the true posterior probabilities 
for each class (for multi-layer perceptrons (MLP), and 
radial basis function (RBF) networks):

Note:

This result applies to any classifier that can approximate 
an arbitrary discriminant function with a specified 
precision (not specific to NNs)
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A Single Neuron (Node)
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precision. This universal approximation property has been proven for the two
important NN models: the multi-layered perceptron (MLP) and the radial basis
function (RBF) networks (for summaries of the literature and proofs refer to Refs.
[27] and [29]). Various NN training protocols and algorithms have been developed,
and these have been the key to the success of NN classifiers.

2.5.1 Neurons

The processing units in the human brain are neurons of different specialization and
functioning. The earliest models of neurons including the model of McCulloch and
Pitts [99] and Fukushima’s cognitron [100], reprinted in the collection of Ref. [89],
were more similar to the biological neuron than later models. For example, they
incorporated both activating and veto-type inhibitory inputs. To avoid confusion,
artificial neurons are often given other names: “nodes” [101], “units” [27,29], “neu-
rodes” [28]. Simple models will need a large structure for the whole system to work
well (e.g., the weightless neural networks [93]), while for more complex models of
neurons a few units will suffice. In both cases proper algorithms are needed to train
the system (its structure and/or parameters). The basic scheme of a processing node
is shown in Figure 2.14.

Let u ¼ ½u0, . . . , uq#T [ Rqþ1 be the input vector to the node and v [ R be
its output. We call w ¼ ½w0, . . . , wq#T [ Rqþ1 a vector of synaptic weights. The
processing element implements the function

v ¼ f(j); j ¼
Xq

i¼0

wiui (2:79)

where f : R ! R is the activation function and j is the net sum. Typical choices for
f are

Fig. 2.14 The NN processing unit.
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. The threshold function

f(j) ¼ 1, if j " 0,
0, otherwise.

!
(2:80)

. The sigmoid function

f(j) ¼ 1

1þ exp ($j)
(2:81)

. The identity function

f(j) ¼ j (2:82)

The three activation functions are drawn in Figure 2.15.
The sigmoid is the most widely used one because of the following:

. It can model both linear and threshold functions to a desirable precision; f is
almost linear near the origin, whereas for large weights, f is practically the
threshold function.

. The sigmoid function is differentiable, which is important for the NN
training algorithms. Its derivative on j has the simple form f0(j) ¼
f(j)½1$ f(j)&.

The weight “$w0” is used as a bias, and the corresponding input value u0 is set
to 1. Equation (2.79) can be rewritten as

v ¼ f½z$ ($w0)& ¼ f
Xq

i¼1

wiui $ ($w0)

" #

(2:83)

Fig. 2.15 Threshold, sigmoid, and identity activation functions.
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Common Activation Functions
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(used for input nodes)
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Bias: Offset for Activation Functions
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where z is now the weighted sum of the weighted inputs from 1 to q. Geometrically,
the equation

Xq

i¼1

wiui " ("w0) ¼ 0 (2:84)

defines a hyperplane in Rq. A node with a threshold activation function (2.80)
responds with value þ1 to all inputs ½u1, . . . , uq%T on the one side of the hyperplane,
and value 0 to all inputs on the other side.

2.5.2 Rosenblatt’s Perceptron

Rosenblatt [8] defined the so called perceptron and its famous training algorithm.
The perceptron is implemented as Eq. (2.79) with a threshold activation function

f(j) ¼ 1, if j & 0,
"1, otherwise.

!
(2:85)

This one-neuron classifier separates two classes in Rn by the linear discriminant
function defined by j ¼ 0. The algorithm starts with random initial weights w and
modifies them as each sample from Z is subsequently submitted to the input of
the perceptron. The modification takes place only if the current vector zj is misclas-
sified (appears on the wrong side of the hyperplane). The weights are corrected by

w " w" vhzj (2:86)

where v is the output of the perceptron for zj and h is a parameter specifying the
learning rate. Beside its simplicity, perceptron training has the following interesting
properties:

. If the two classes are linearly separable in Rn, the algorithm always converges
in a finite number of steps to a linear discriminant function that gives no resub-
stitution errors on Z, for any h. (This is called “the perceptron convergence
theorem.”)

. If the two classes are not linearly separable in Rn, the algorithm will loop infi-
nitely through Z and never converge. Moreover, there is no guarantee that if
we terminate the procedure the resultant linear function is the best one
found throughout the training.

Appendix 2B contains the code perceptron for a perceptron training. To
ensure that the program returns an output for both separable and nonseparable
classes, a maximum number of 10,000 iterations is set. If this number is reached
and there are still misclassified objects in the training set, the program declares
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the classes nonseparable (setting the iteration counter “pass” to 0) and returns the
last values of the coefficients w.

Example: Perceptron Training. To illustrate the perceptron training algorithm, a
data set of 5000 points was generated, distributed uniformly within the unit square
½0, 1"2. Two classes were subsequently labeled, v1, containing all points for which
x . y and v2 with the remaining points. For visualization purposes, the points
around the diagonal x ¼ y were removed (all points for which jx$ yj , 0:012),
leaving a small gap between the classes. Figure 2.16a shows the data set and the dis-
criminant function found by the perceptron training code in Appendix 2B (the learn-
ing rate was h ¼ 0:1). Eleven passes through Z were made to achieve separability
for the particular random initialization of w.

Figure 2.16b depicts the evolution of the class boundary throughout the training.
Each time a misclassification occurred and the weight vector changed, we plotted
the resultant boundary. Thus even though only eleven passes through Z were com-
pleted, there are as many lines as the total number of misclassifications throughout
the training (in this example, 412). Gray lines indicate earlier boundaries whereas
black lines were used for the boundaries toward the end of training.

2.5.3 MultiLayer Perceptron

By connecting perceptrons we can design an NN structure called the multilayer per-
ceptron (MLP). This is a feedforward structure because the output of the input layer
and all intermediate layers is submitted only to the higher layer. The generic model
of a feedforward NN classifier is shown in Figure 2.17.

Fig. 2.16 (a) Uniformly distributed two-class data and the boundary found by the perceptron
training algorithm. (b) The “evolution” of the class boundary.
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The Perception (Rosenblatt, 1962)

Update Rule:

Learning Algorithm:

• Set all input weights (w) randomly (e.g. in [0,1])

• Apply the weight update rule when a misclassification is made

• Pass over training data (Z) until no errors are made. One pass = 
one epoch 9
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precision. This universal approximation property has been proven for the two
important NN models: the multi-layered perceptron (MLP) and the radial basis
function (RBF) networks (for summaries of the literature and proofs refer to Refs.
[27] and [29]). Various NN training protocols and algorithms have been developed,
and these have been the key to the success of NN classifiers.

2.5.1 Neurons

The processing units in the human brain are neurons of different specialization and
functioning. The earliest models of neurons including the model of McCulloch and
Pitts [99] and Fukushima’s cognitron [100], reprinted in the collection of Ref. [89],
were more similar to the biological neuron than later models. For example, they
incorporated both activating and veto-type inhibitory inputs. To avoid confusion,
artificial neurons are often given other names: “nodes” [101], “units” [27,29], “neu-
rodes” [28]. Simple models will need a large structure for the whole system to work
well (e.g., the weightless neural networks [93]), while for more complex models of
neurons a few units will suffice. In both cases proper algorithms are needed to train
the system (its structure and/or parameters). The basic scheme of a processing node
is shown in Figure 2.14.

Let u ¼ ½u0, . . . , uq#T [ Rqþ1 be the input vector to the node and v [ R be
its output. We call w ¼ ½w0, . . . , wq#T [ Rqþ1 a vector of synaptic weights. The
processing element implements the function
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where f : R ! R is the activation function and j is the net sum. Typical choices for
f are

Fig. 2.14 The NN processing unit.
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Properties of Perceptron Learning
Convergence and Zero Error!

If two classes are linearly separable in feature 
space, always converges to a function producing 
no error on the training set

Infinite Looping and No Guarantees!

If classes not linearly separable. If stopped early, 
no guarantee that last function learned is the best 
considered during training

10



Perceptron Learning

11

the classes nonseparable (setting the iteration counter “pass” to 0) and returns the
last values of the coefficients w.

Example: Perceptron Training. To illustrate the perceptron training algorithm, a
data set of 5000 points was generated, distributed uniformly within the unit square
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pleted, there are as many lines as the total number of misclassifications throughout
the training (in this example, 412). Gray lines indicate earlier boundaries whereas
black lines were used for the boundaries toward the end of training.

2.5.3 MultiLayer Perceptron

By connecting perceptrons we can design an NN structure called the multilayer per-
ceptron (MLP). This is a feedforward structure because the output of the input layer
and all intermediate layers is submitted only to the higher layer. The generic model
of a feedforward NN classifier is shown in Figure 2.17.

Fig. 2.16 (a) Uniformly distributed two-class data and the boundary found by the perceptron
training algorithm. (b) The “evolution” of the class boundary.
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Multi-Layer Perceptron
• Nodes: perceptrons

• Hidden, output layers 
have the same activation 
function (threshold or 
sigmoid)

• Classification is feed-
forward:  compute 
activations one layer at a 
time, input to ouput: 
decide ωi for max gi(X)

• Learning is through 
backpropagation (update 
input weights from output 
to input layer)

12

Here “layer” means a layer of perceptrons. The feature vector x is submitted to
an input layer, and at the output layer there are c discriminant functions
g1(x), . . . , gc(x). The number of hidden layers and the number of perceptrons at
each hidden layer are not limited. The most common default conventions are:

. The activation function at the input layer is the identity function (2.82).

. There are no lateral connections between the nodes at the same layer (feed-
forward structure).

. Nonadjacent layers are not connected directly.

. All nodes at all hidden layers have the same activation function f.

This model is not as constrained as it might look. In fact, most of the theoretical
results in NNs are developed exactly for this model:
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MLP Properties

Approximating Classification Regions

MLP shown in previous slide with threshold nodes can 
approximate any classification regions in Rn to a specified 
precision

Approximating Any Function

Later found that an MLP with one hidden layer and threshold 
nodes can approximate any function with a specified precision

In Practice...

These results tell us what is possible, but not how to achieve it 
(network structure and training algorithms)

20



. It was proven later that even an MLP with a single hidden layer and threshold
nodes can approximate any function with a specified precision [27,29,104].

The above findings do not tell us how to build and train the MLPs and therefore
have only theoretical significance. The resurfacing of NN in the 1980s was motiv-
ated by the development of the backpropagation training algorithm, which provides
the means to train a neural network.

2.5.4 Backpropagation Training of MultiLayer Perception

We assume that the structure of the NN is already chosen and fixed (the number of
hidden layers and the number of nodes at each hidden layer) and that the activation
function is differentiable. The problem is to determine the values of the parameters

Fig. 2.18 Possible classification regions for an MLP with one, two, and three layers of threshold
nodes. (Note that the “NN configuration” column only indicates the number of hidden layers and
not the number of nodes needed to produce the regions in column “An example”.)
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To update the weight wh
ik for the connection from the kth node at layer h! 1 to the

ith node at the last hidden layer, we use

wh
ik  ! wh

ik ! hdhi v
h!1
k , k ¼ 0, . . . , S, i ¼ 1, . . . , M (2:97)

where S is the number of nodes at layer h! 1 and vh!1
k , k ¼ 1, . . . , S are the outputs

at this layer.
Propagating the above formulas backwards through the NN, we calculate the

derivatives of E for a single input x. There are two ways to implement the training
procedure: batch and on-line. In the batch version, the updating (2.87) takes place
once after a pass through the whole Z, called an epoch. Therefore the derivatives

Fig. 2.19 Backpropagation MLP training.

Backpropagation MLP training

1. Choose an MLP structure: pick the number of hidden layers, the number
of nodes at each layer and the activation functions.

2. Initialize the training procedure: pick small random values for all
weights (including biases) of the NN. Pick the learning rate h . 0;
the maximal number of epochs T and the error goal e . 0:

3. Set E ¼ 1, the epoch counter t ¼ 1 and the object counter j ¼ 1.

4. While ðE . e and t $ T) do

(a) Submit zj as the next training example.

(b) Calculate the output of every node of the NN with the current
weights (forward propagation).

(c) Calculate the error term d at each node at the output layer by (2.91).

(d) Calculate recursively all error terms at the nodes of the hidden
layers using (2.95) (backward propagation).

(e) For each hidden and each output node update the weights by

wnew ¼ wold ! hdu; ð2:98Þ

using the respective d and u:

(f) Calculate E using the current weights and Eq. (2.77).

(g) If j ¼ N (a whole pass through Z (epoch) is completed), then set t ¼
t þ 1 and j ¼ 0. Else, set j ¼ jþ 1:

5. End % (While)
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Stopping Criterion:
Error less than epsilon OR
Exceed max # epochs, T

Output/Hidden Activation:
Sigmoid function

**Online training
(vs. batch or
stochastic)

(weights) for all nodes. Let u be a parameter of the NN and J(u) be some error func-
tion to be minimized. The gradient descent method updates u by

u ! u! h
@J

@u
(2:87)

where h . 0 is the learning rate. An obvious candidate for J(u) is the squared error
function E of Eq. (2.77). Calculating the derivatives of E on all the weights of the
MLP is not straightforward. Consider a node somewhere in the NN with net sum
j, inputs u0, . . . , uq and weights w0, . . . , wq. The derivative of E with respect to
wj is

@E

@wj
¼ @E

@j

@j

@wj
¼ @E

@j
uj (2:88)

We call d ¼ @E=@j the error. Let x [ Rn be a training input with known class label
l(x). To calculate the updated weight wj through Eq. (2.87), we need d and the inputs
uj of that node for the given x.

We start the training by assigning small random numbers to all weights and
selecting a value for the learning rate h. Using the current weights and starting
from the input layer, we can calculate subsequently all the uj in the network (forward
propagation). For the d, however, we proceed backwards, that is, from the output,
back to the input (backpropagation). The derivative of E (2.77) with respect to
the ith output gi(x) is

@E

@gi(x)
¼ gi(x)! I ðl(x), viÞ (2:89)

Let j o
i be the net sum at output node i and gi(x) ¼ f(joi ). Using the chain rule,

do
i ¼

@E

@joi
¼ @E

@gi(x)

@gi(x)

@joi
¼ ½gi(x)! I ðl(x),viÞ&

@f(joi )

@joi
(2:90)

For the sigmoid activation function f of Eq. (2.81),

do
i ¼

@E

@joi
¼ ½gi(x)! I (x, vi)&gi(x)½1! gi(x)& (2:91)

The do
i , i ¼ 1, . . . , c, are the errors of the c nodes at the output layer and are used to

update the weights from the last hidden to the output layer. The inputs to every node
at the output layer are the outputs of the nodes at the last hidden layer calculated
through the forward propagation. Suppose there are M nodes at the last hidden
layer with outputs vh1, . . . , v

h
M . Each output node will have vh1, . . . , v

h
M plus a bias

input vh0 ¼ 1 as its inputs u0, . . . , uM in Eq. (2.88). Having calculated doi through
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Eq. (2.90) or Eq. (2.91), we have now all the necessary components to calculate Eq.
(2.88) and update the weights from the last hidden layer to the output layer. Denote
by wo

ik the weight of the connection between kth node at the last hidden layer and the
ith output. From Eqs. (2.87) and (2.88)

wo
ik  wo

ik ! hdo
i v

h
k , k ¼ 0, . . . , M, i ¼ 1, . . . , c (2:92)

Consider now the kth node at the last hidden layer. Let wh
jk denote the weight of

the connection coming from the jth node at the previous (hidden or input) layer. We
shall refer to the penultimate hidden layer (or input layer) as “h! 1”. Let j h

k be the
net sum and vhk ¼ f(jhk) be the output of the kth node at the last hidden layer. The
error term for the kth node, dh

k ¼ @E=@jhk , needed for updating all incoming weights
from the previous layer, is obtained as

dhk ¼
@E

@j h
k

¼ @E

@vhk

@vhk
@j h

k

¼ @E

@vhk

@f(j h
k)

@j h
k

(2:93)

The first multiplier can be obtained via the chain rule again. Noticing that E depends
on vhk through the net sums at the output nodes, j1, . . . , jc, and each net sum partici-
pates in a separate summation term of E,

@E

@vhk
¼
Xc

i¼1

@E

@ji

@ji
@vhk

¼
Xc

i¼1

do
i w

o
ki (2:94)

The errors do
i ¼ @E=@j o

i are already calculated. Using Eq. (2.93), the error at the kth
node becomes

dh
k ¼

@E

@jhk
¼

Xc

i¼1

do
i w

o
ik

 !
@f(j h

k )

@jhk
(2:95)

The above equation illustrates the backpropagation of the error: to calculate the
error term for a node at a certain hidden layer we need the errors calculated already
at the higher adjacent layer. For a sigmoid f, Eq. (2.95) becomes

dhk ¼
@E

@j h
k

¼
Xc

i¼1

doi w
o
ik

 !

vhk(1! vhk) (2:96)
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mation involved in the process. Moreover, a careless formulation of the categories
might “kill” an otherwise important variable.

The C4.5 algorithm avoids the discretization problem by using the continuous-
valued variables as in CART, and the nominal variables as in ID3. Duda et al.
[15] note that C4.5 is the currently most popular tree construction algorithm
among the machine learning researchers.

2.5 NEURAL NETWORKS

Artificial neural networks (ANNs or simply NNs) originated from the idea to model
mathematically human intellectual abilities by biologically plausible engineering
designs. Meant to be massively parallel computational schemes resembling a real
brain, NNs evolved to become a valuable classification tool with a significant influ-
ence on pattern recognition theory and practice. Neural networks are often used as
base classifiers in multiple classifier systems [79]. Similarly to tree classifiers, NNs
are instable, that is, small changes in the training data might lead to a large change in
the classifier, both in its structure and parameters.

Literature on NNs is excessive and continuously growing. Many publications
such as textbooks and monographs [27–29,80–88], paper collections [89], introduc-
tory readings [90–92], and so on, discuss NNs at various theoretical and algorithmic
depths. Modeling of the human brain, at either morphological or functional level,
and trying to understand NNs’ cognitive capacity are also important research topics
[93–95]. Below we give a brief layout of one of the most popular NN models, the
multilayer perceptron (MLP).

Consider an n-dimensional pattern recognition problem with c classes. A neural
network obtains a feature vector x ¼ ½x1, . . . , xn#T [ Rn at its input, and produces
values for the c discriminant functions g1(x), . . . , gc(x) at its output. Typically
NNs are trained to minimize the squared error on a labeled training set Z ¼
{z1, . . . , zN}, zj [ Rn, and l(zj) [ V

E ¼ 1

2

XN

j¼1

Xc

i¼1

{gi(zj)$ I ðvi, l(zj)Þ}2 (2:77)

where I ðvi, l(zj)Þ is an indicator function taking value 1 if the label of zj is vi, and 0
otherwise. It has been shown that the set of discriminant functions obtained by mini-
mizing Eq. (2.77) approach the posterior probabilities for the classes for data size
N ! 1 [96–98]; that is,

lim
N!1

gi(x) ¼ P(vijx), x [ Rn (2:78)

This result was brought to light in connection with NNs, but, in fact, it holds for any
classifier that can approximate an arbitrary discriminant function with a specified
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(2.91): Output Node Error 

(2.96): Hidden Node Error

(2.77) (Squared Error):



Propagating the error to the hidden layer as in Eq. (2.96), we calculate

d4 ¼ (d1 " w41 þ d2 " w42)" v4 " (1$ v4)

¼ (0:1089" 0:05$ 0:0050" 0:57)" 0:7738" (1$ 0:7738)

% 0:0005 (2:101)

In the same way we obtain d5 ¼ 0:0104 and d6 ¼ 0:0068. We can now calculate
the new values of all the weights through Eq. (2.98). For example,

w42 ¼ w42 $ h" d2 " v4

¼ 0:57$ 0:1" ($0:0050)" 0:7738 (2:102)

¼ 0:5704 (2:103)

Fig. 2.20 A 2 : 3 : 2 MLP configuration. Bias nodes are depicted outside the layers and are not
counted as separate nodes.

TABLE 2.5 (a) Random Set of Weights for a 2 : 3 : 2 MLP NN; (b) Updated Weights
Through Backpropagation for a Single Training Example.

Neuron Incoming Weights

(a) 1 w31 ¼ 0.4300 w41 ¼ 0.0500 w51 ¼ 0.7000 w61 ¼ 0.7500
2 w32 ¼ 0.6300 w42 ¼ 0.5700 w52 ¼ 0.9600 w62 ¼ 0.7400
4 w74 ¼ 0.5500 w84 ¼ 0.8200 w94 ¼ 0.9600
5 w75 ¼ 0.2600 w85 ¼ 0.6700 w95 ¼ 0.0600
6 w76 ¼ 0.6000 w86 ¼ 1.0000 w96 ¼ 0.3600

(b) 1 w31 ¼ 0.4191 w41 ¼ 0.0416 w51 ¼ 0.6910 w61 ¼ 0.7402
2 w32 ¼ 0.6305 w42 ¼ 0.5704 w52 ¼ 0.9604 w62 ¼ 0.7404
4 w74 ¼ 0.5500 w84 ¼ 0.8199 w94 ¼ 0.9600
5 w75 ¼ 0.2590 w85 ¼ 0.6679 w95 ¼ 0.0610
6 w76 ¼ 0.5993 w86 ¼ 0.9986 w96 ¼ 0.3607
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nodes 3, 7 are bias 
nodes: always output 1

activation:
input: identity

hidden/output: sigmoid



For input-to-hidden layer weights we use again Eq. (2.98); for example,

w95 ¼ w95 " h# d5 # v9 ¼ w95 " h# d5 # x2 (2:104)

¼ 0:06" 0:1# 0:0104# ("1) ¼ 0:0610 (2:105)

The new values of the weights, updated after the presentation of the single
example x are given in Table 2.5b.

Example: 2 : 3 : 2 MLP for the Banana Data. This example illustrates the back-
propagation training for the banana data set. We chose the NN configuration
depicted in Figure 2.20 and used in the example above. The training protocol was
as follows:

. version of backpropagation: batch;

. maximum number of epochs: T ¼ 1000;

. learning rate: h ¼ 0:1;

. error goal: 0;

. initialization of the weights and biases: random numbers in the interval [0, 1].

The function backprop given in Appendix 2B was used to train the NN. We
measured the squared error at each epoch (the criterion function) and also the appar-

Fig. 2.21 Squared error and the apparent error rate versus the number of epochs for the
backpropagation training of a 2 : 3 : 2 MLP on the banana data.
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2:3:2 MLP (see previous slide)
Batch training (updates at end of epoch)
Max Epochs: 1000, η = 0.1, error goal: 0

Initial weights: random, in [0,1]

ent error rate. Although generally corresponding, the two are not identical.
Figure 2.21 plots the two errors calculated on the training set versus the iteration
count.

As expected, both errors decline, and towards the end of the training process
oscillate along some small residual value. Since the squared error was not brought
down to the target value, 1000 iterations (epochs) were carried out. Figure 2.22
shows the classification regions, shaded with different gray intensity depending
on the value of the NN output. The training error at the 1000th epoch was 4 percent
and the testing error was 9 percent.

There are a number of interesting modifications of backpropagation training aim-
ing at higher effectiveness (e.g., faster convergence, stability, and so on) [28].

APPENDIX 2A MATLAB CODE FOR TREE CLASSIFIERS

The below collection of functions produces a tree classifier for a given data set
Z with numerical labels in “labZ.” The labels should be consecutive integers
starting with 1. The number of classes c is also needed as an input parameter.
The tree is stored in the output array T, as explained in the text. The function
tree_construct uses a threshold which was assigned to 3 in the calculations
for the examples given in the text.

function T=tree_construct(Z,labZ,c,chi2_threshold);
if size(Z,1)>1,

if min(labZ)==max(labZ),
% one class -->
% do not split and make a leaf labeled labZ(1)
T=[labZ(1),0,0,0];

else
[j,s]=tree_select_feature(Z,labZ,c);

Fig. 2.22 The classification regions for the banana data produced by the trained 2 : 3 : 2 MLP.
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Final train error: 4%
Final test error: 9%



Final Note

Backpropogation Algorithms

Are numerous: many designed for faster 
convergence, increased stability, etc.
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