Neural Networks

(Reading: Kuncheva Section 2.5)

Introduction

Inspired by Biology

But as used in pattern recognition research, have
little relation with real neural systems (studied in
neurology and neuroscience)

Kuncheva: the literature ‘on NNs is excessive and
continuously growing.

Early Work
McCullough and Pitts (1943)

R-I-T s

ro
p—
.

|

Introduction, Continued

Black-Box View of a Neural Net

Represents function f: R" =R where n is the
dimensionality of the input space, c the output space

® C(lassification: map feature space to values for ¢
discriminant functions: choose class with maximum
discriminant value

® Regression:learn continuous outputs directly (e.g.learn to
fit the sin function - see Bishop text)

Training (for Classification)

Minimizes error on outputs (i.e. maximize function
approximation) for a training set, most often the squared error:

1 N c
E=2)) lg@) — I(e (z))) A277)

j=1 i=1

b}

ro
p—
.

|

Introduction, Continued

Granular Representation

A set of interacting elements (‘neurons’ or
nodes) map input values to output values using a
structured series of interactions

Properties

® |[nstable: like decision trees, small changes in
training data can alter NN behavior significantly

® Also like decision trees, prone to overfitting:
validation set often used to stop training

® [Expressive: With proper design and training, can

approximate any function to a specified precision)
Ed

3
'ﬂ

Expressive Power of NNs

Using Squared Error for Learning Classification Functions:

For infinite data, the set of discriminant functions learned
by a network approach the true posterior probabilities
for each class (for multi-layer perceptrons (MLP), and
radial basis function (RBF) networks):

A}im gi(x) = P(w;|x), X € R" (2.78)
Note:

This result applies to any classifier that can approximate
an arbitrary discriminant function with a specified
precision (not specific to NNs)

A Single Neuron (Node)

Let u = [u,...,

uq]T € R7"! be the input vector to the node and v € R be

its output. We call w = [wy, ..., wq]T e R a vector of synaptic weights. The
processing element implements the function

q
v = ¢(8); &= E Wil (2.79)
i=0
where ¢ : R — R is the activation function and & is the net sum.
Ul _
Iy H\x . pe
I . Y I
ue R — 2| ¢ |
'... _." . i |:_r . .'\.
i, /;x 4 v (3w
|I.|I|'.|l .__,.-'.-'.-'
s

Fig. 2.14 The NN processing unit.

Common Activation Functions

e The threshold function g . (n et su m)

] 1 if £€>0,
¢(8) = { 0, otherwise.

e The sigmoid function

HH = $& = HO[— HO)]

I +exp(—§)
e The identity function
HE = ¢ (used for input nodes)
= Threshold Bz Sigmoid B(E) Identity

e | b 2

o) — ; of

10

lyo
/7
—
- |
..,
—_
]
=
—
=
|
—
|
—
=
|
=]
ha

RJ

I

T

Bias: Offset for Activation Functions

The weight “—wy” 1s used as a bias, and the corresponding input value u is set
to 1. Equation (2.79) can be rewritten as

q
v=a¢[{—(—wp)] = ¢|:Z Willi — (—Wo):| (2.83)
i=1

where { is now the weighted sum of the weighted inputs from 1 to g. Geometrically,
the equation

q
> wini — (—w) =0 (2.84)
i=1

defines a hyperplane in R?. A node with a threshold activation function (2.80)

responds with value +1 to all inputs [uy, ..., uq]T on the one side of the hyperplane,
and value O to all inputs on the other side.

The Perception (Rosenblatt, 1962)

Rosenblatt [8] defined the so called perceptron and its famous training algorithm.
The perceptron is implemented as Eq. (2.79) with a threshold activation function

1, if £>0,

HE) = { —1, otherwise. (2.85)
q
v=g@: E=) wu (2.79)
i=0
Update Rule: W< w-vnz | (2.86)

where v is the output of the perceptron for z; and 7 is a parameter specifying the
learning rate.

Learning Algorithm:
® Set all input weights (W) randomly (e.g.in [0,1])
® Apply the weight update rule when a misclassification is made

® Pass over training data (Z) until no errors are made. One pass =
- one epoch

"
~
e
—~

Properties of Perceptron Learning

Convergence and Zero Error!

If two classes are linearly separable in feature
space, always converges to a function producing
no error on the training set

Infinite Looping and No Guarantees!

If classes not linearly separable. If stopped early,
no guarantee that last function learned is the best
considered during training

Perceptron Learning

Z
1 12
i L 1:_
LY 3 B [V LR
i TR
-y LRl
s L
. 4 L D
& " ffl i T
‘ ot
s =
i Fme
- LI
Tt
i R g
i
e AP
1 b 4

h i
e

ozl
i
'5"-lrlll_r
Tale
-0z
=-i.2 |8 h= [R = 1z

o v .'[f;}'

Fig. 2.16 (a) Uniformly distributed two-class data and the boundary found by the perceptron
training algorithm. (b) The “evolution” of the class boundary.

~

e

Multi-Layer Perceptron

g1(x) galx) go(x)
&

output layer

hidden lavers

mput laver
A I I N ; (activation:
identity fn)

Nodes: perceptrons

Hidden, output layers
have the same activation
function (threshold or
sigmoid)

Classification is feed-
forward: compute
activations one layer at a
time, input to ouput:
decide w; for max gi(X)

Learning is through
backpropagation (update
input weights from output

to input layer)
, 12

~

e

Multi-Layer Perceptron

g1(x) galx) go(x)
&

output layer

hidden lavers

mput laver
A I I N ; (activation:
identity fn)

Nodes: perceptrons

Hidden, output layers
have the same activation
function (threshold or
sigmoid)

Classification is feed-
forward: compute
activations one layer at a
time, input to ouput:
decide w; for max gi(X)

Learning is through
backpropagation (update
input weights from output

to input layer)
, I3

~

e

Multi-Layer Perceptron

g1(x) galx) go(x)
&

output layer

hidden lavers

mput laver
A I I N ; (activation:
identity fn)

Nodes: perceptrons

Hidden, output layers
have the same activation
function (threshold or
sigmoid)

Classification is feed-
forward: compute
activations one layer at a
time, input to ouput
decide w; for max gi(X)

Learning is through
backpropagation (update
input weights from output

to input layer)
, 14

~

e

Multi-Layer Perceptron

g1(x) galx) go(x)
&

output layer

hidden lavers

mput laver
A I I N ; (activation:
identity fn)

Nodes: perceptrons

Hidden, output layers
have the same activation
function (threshold or
sigmoid)

Classification is feed-
forward: compute
activations one layer at a
time, input to ouput
decide w; for max gi(X)

Learning is through
backpropagation (update
input weights from output

to input layer)
D I5

Multi-Layer Perceptron

ga(x) (CorreCt) ¢ Nodes: perceptrons

i e e il 1 ® Hidden, output layers

output layer have the same activation
function (threshold or
sigmoid)

® (lassification is feed-
hidden layers forward: compute
activations one layer at a
time, input to ouput
decide w; for max gi(X)

mput laver

N 1 ! (activation: ® Learningis through
identity fn) backpropagation (update
input weights from output

to input layer)
:t\{. :[) Fig. 2.17 A generic model of an MLP classifier. pZ ,16

~

e

Multi-Layer Perceptron

ga(x) (CorreCt) ¢ Nodes: perceptrons

--------------------- 1 ® Hidden, output layers

output layer have the same activation
function (threshold or
sigmoid)

® (lassification is feed-
hidden layers forward: compute
activations one layer at a
time, input to ouput
decide w; for max gi(X)

: mput layer o

________ _____________Jl (activation: * Learnlng IS through

identity fn) backpropagation (update
input weights from output

to input layer)
" Fig. 2.17 A generic model of an MLP classifier. yZ , 17

~

e

Multi-Layer Perceptron

ga(x) (CorreCt) ¢ Nodes: perceptrons

--------------------- 1 ® Hidden, output layers

output layer have the same activation
function (threshold or
sigmoid)

® (lassification is feed-
hidden layers forward: compute
activations one layer at a
time, input to ouput
decide w; for max gi(X)

: mput layer o

________ _____________Jl (activation: * Learnlng IS through

identity fn) backpropagation (update
input weights from output

to input layer)
" Fig. 2.17 A generic model of an MLP classifier. yZ , 18

~

e

Multi-Layer Perceptron

ga(x) (CorreCt) ¢ Nodes: perceptrons

--------------------- 1 ® Hidden, output layers

output layer have the same activation
function (threshold or
sigmoid)

® (lassification is feed-
hidden layers forward: compute
activations one layer at a
time, input to ouput
decide w; for max gi(X)

: mput layer o

________ _____________Jl (activation: * Learnlng IS through

identity fn) backpropagation (update
input weights from output

to input layer)
" Fig. 2.17 A generic model of an MLP classifier. yZ , 19

MLP Properties

Approximating Classification Regions

MLP shown in previous slide with threshold nodes can
approximate any classification regions in R" to a specified
precision

Approximating Any Function

Later found that an MLP with one hidden layer and threshold
nodes can approximate any function with a specified precision

In Practice...

These results tell us what is possible, but not how to achieve it
(network structure and training algorithms)

R-1-T V2D

NN configuration Type of region An example

& R el
Input o
Half space af do
bounded by i
a hyperplane 2j
Output @,
0
0 5
Input
Convex
regions
(open or closed)
Output @,
% 5
Input
Any
regions
Output

Fig. 2.18 Possible classification regions for an MLP with one, two, and three layers of threshold
nodes. (Note that the “NN configuration” column only indicates the number of hidden layers and
not the number of nodes needed to produce the regions in column “An example”.)

(2.91): Output Node Error 5 =

(2.96): Hidden Node Error
e LA)

Cag \ 4o

(2.77) (Squared Error):

N

1 C
E=5) > {8i(z) — L(w: (z))’

j=1 i=1

Stopping Criterion:
Error less than epsilon OR
Exceed max # epochs, T

Output/Hidden Activation:
Sigmoid function

**Online training
(vs. batch or
stochastic)

oE

&7

= [gi(X) — (X, w;)]gi(X)[1 — gi(x)]

Backpropagation MLP training

1.

3.

Choose an MLP structure: pick the number of hidden layers, the number
of nodes at each layer and the activation functions.

Initialize the training procedure: pick small random values for all
weights (including biases) of the NN. Pick the learning rate n > 0,
the maximal number of epochs T and the error goal € > 0.

Set E = oo, the epoch counter t = 1 and the object counter j = 1.

4. While (E > eandt <T) do

(a) Submit z; as the next training example.

(b) Calculate the output of every node of the NN with the current
weights (forward propagation).

(c) Calculate the error term 6 at each node at the output layer by (2.91).

(d) Calculate recursively all error terms at the nodes of the hidden
layers using [(2.95)| (backward propagation).

(e) For each hidden and each output node update the weights by

Wnew = Wold — 776”, (298)

using the respective 8 and u.
(f) Calculate E using the current weights and Eq. (2.77).

(g) Ifj = N (a whole pass through Z (epoch) is completed), then set t =
t+1andj=0. Else, setj =j + 1.

5. End % (While)

Fig. 2.19 Backpropagation MLP training.

nodes 3, 7 are bias

nodes: always output |

activation:
input: identity

hidden/output: sigmoid

bias ” o output
neurons _ ' layer
T iy
Alie _.,»}:\
. A *\\ T _{"'\
. N ~
- L T / - A
) . o .-;/‘ ---._____.-' _\‘ /.-" "‘--\._____q- \'\ ;
ff‘z’;,'r i .fi‘,l{--*"'f \‘f‘;'\ilf -'"'“:-?‘.ff. hidden
. -""-\-..:__:_. - /.z'{ S - . - ’
- x\ - '\-\._1__\-‘-:!"_ - '\.‘_‘ — {/
- L I 7
- L -_F - \\\ /f - ‘:H;‘w-.q_.q_ \\'\. /’/ , t
AP N et inpu
(7 (55 T o
LT | ‘ layer
r o]

Fig. 2.20 A 2:3:2 MLP configuration. Bias nodes are depicted outside the layers and are not
counted as separate nodes.

TABLE 2.5 (a) Random Set of Weights for a 2:3:2 MLP NN; (b) Updated Weights
Through Backpropagation for a Single Training Example.

Neuron

Incoming Weights

(a)

oAM= OOAN=

Wz = 0.4300
W3o = 0.6300
W74 = 0.5500
W75 = 0.2600
Wz = 0.6000
ws1 = 0.4191
W3 = 0.6305
W74 = 0.5500
wys = 0.2590
W7 = 0.5993

Wy = 0.0500 W51 = 0.7000 Weq1 = 0.7500
wyo = 0.5700 wso = 0.9600 Weo = 0.7400
wgq = 0.8200 Wos = 0.9600
wgs = 0.6700 wos = 0.0600
wgs = 1.0000 Wos = 0.3600
w4 = 0.0416 ws¢ = 0.6910 weq = 0.7402
wyo = 0.5704 wso = 0.9604 Weo = 0.7404
wgq = 0.8199 Wos = 0.9600
wgs = 0.6679 Wgs = 0.0610
Wgs — 0.9986 Wog = 0.3607

2:3:2 MLP (see previous slide)
Batch training (updates at end of epoch)

Max Epochs: 1000, n = 0.1, error goal: 0
Initial weights: random, in [0, 1]

Squared efror

&0 . .
40} .
II
20 '\..___h.__‘ ||I | | | N . | |
il U
wl | || JJ |
L Hﬂ“mﬁl "-L..-"Ll-.LIJJL 'ﬂalJ.l. e JJJJ.L.J.I.I NI ISR
E] 1 1
0 200 400 G00 800 1000
Epochs
Apparent error rate
0.5 L i .
0.4f : 1
0.3
0.2 lL
"_"_!h g
R W 8 B T N O ST SO ST
I:I y II'||I'] '.‘I“JII{:‘Hﬁrﬂr‘l"rllﬁll' I;.*IJ'.llll.'u'ljl'l'l'.'||IllJ||I|I.-Il|||_4lq_1l-'|lh|'||.lj,1 J'ngr'u" ..J".'.-JIW‘L.'“ n JJ.‘J..-.'..'I',!I'M
(0 200 400 a0 a0 1000
Epochs

Fig. 2.21 Squared error and the apparent error rate versus the number of epochs for the
backpropagation training of a 2:3: 2 MLP on the banana data.

-10

-5 0 5

Final train error: 4%
Final test error: 9%

Final Note

Backpropogation Algorithms

Are numerous: many designed for faster
convergence, increased stability, etc.

'4
=
p—
—

25

