Functional Programming Applied to Web Development Templates

MS Project Report
Justin Cady
Rochester Institute of Technology
Chair: Professor Matthew Fluet

Reader: Professor James Heliotis
Observer: Professor Dan Bogaard

May 31, 2011

1 Project Description

In most web applications, the model-view-controller (MVC) design pattern is used to separate
concerns of a system. However, the view layer, also referred to as the template layer, can often
become tightly coupled to the controller. This lack of separation makes templates less flexible and
reusable, and puts more responsibility in the controller’s hands than what is ideal.

In fact, templates are often completely powerless, giving developers no option but to tailor them
more and more directly to their respective controllers. A better solution is to give the template
layer more control over the data it presents and limit the controller’s influence on presentation.
This document presents the jtc template engine, which uses elements of functional programming
to empower templates by treating templates as functions. The background, process, and results
regarding the development of jtc are discussed below.

2 Background

2.1 Web Development

As the web application field continues to grow, more developers are creating products delivered
through the browser. But, web development is a discipline that involves a multitude of different
technologies. A typical application involves:

e A content server, such as IIS, Apache or Nginx.

e A database, such as MySQL, PostgreSQL or Microsoft SQL Server.

A server-side language, commonly Java, ASP.NET, Perl, PHP, Python, or Ruby.

A client-side language, almost exclusively JavaScript.

A client-server communication layer, typically AJAX (Asynchronous JavaScript and XML).

A markup language, such as HTML, XHTML, or XML.

e A markup styling document written in CSS.

Among these pieces of an application, development is divided across upwards of five program-
ming languages. There have been frameworks that attempted to unify this process into a single
language, such as the Links framework [1]. But, these projects have not seen mainstream adoption,
in part due to their intimidating learning curve.

2.2 Web Frameworks

Web frameworks are toolsets that expedite the development process of web applications across all
of the aforementioned pieces of a web application. Common tasks such as user authentication, data
model definition, database object-relational mapping, and HTML templating are built into most
web frameworks. By using frameworks, developers can focus on building their unique functionality
rather than once again coding the same tasks common across a majority of web applications.

Frameworks can also provide stability. Any problems or major bugs with a framework are
likely to be discovered by the community before individual developers would run into them. The
communities built around popular web frameworks can be an essential reference as well, lending
advice to newcomers and providing a large knowledge base for advanced support.

2.2.1 Example Web Frameworks

Ruby on Rails Ruby on Rails (RoR) is a web framework written in Ruby [2]. The RoR ideology
is “convention over configuration.” This is evident as much of the code for RoR applications
is automatically generated. As mentioned, a large portion of web application structure is often
repeatable, therefore providing some boilerplate to developers is helpful. Once developers fully
learn and understand the conventions, projects can be up and running extremely quickly. This
philosophy is partly what has made RoR so heavily used.

Django Django is a web framework written in Python [3]. The philosophy of Django is to
start from the bottom by defining the data model, then build the rest of the application on top
of that foundation. Whereas Ruby on Rails favors automatically generating much of the code,
Django either provides functionality with includable modules, or asks the developer to connect the
application layers manually.

Snap Snap [4] is a recently created Haskell web framework that applies heavy FP thought to web
development. Snap uses monads to control the state of the application on the server and deliver
that data to the user through templates. In its current state, Snap is extremely limited. It does
not support database connectivity or model definitions. But, it is an example of a purely functional
perspective on web applications.

Codelgniter There are quite literally hundreds of web frameworks written in PHP. The language
was designed for the web, so this number is expected. One of the prominent PHP web frameworks
is Codelgniter [5]. Codelgniter, like the other frameworks mentioned, uses the MVC design pattern.
It is designed for performance, even on servers with limited resources.

The main benefit that Codelgniter and frameworks of its kind hold over competitors is ease of
deployment. Because of PHP’s long history with the web, nearly every server available supports
some form of PHP. Because of that fact, PHP-based frameworks typically require minimal con-
figuration to run on a live server. Other languages, such as Ruby or Python, require much more
meticulous deployment strategies for them to run in a server environment.

2.3 Functional Programming

Functional programming (FP) is a paradigm based on the lambda calculus in which programs
compute results through the application of functions rather than the state of the system. Functional
programming languages lack mutable data structures and common iteration structures such as
for or while—iteration is done through recursion. This structure provides many features that
are typically unavailable outside of FP, though some elements of FP have made their way into
imperative languages.

2.3.1 Selected FP Concepts

Functional programming is an enormous discipline that cannot be fully covered within this docu-
ment. But some selected concepts are now explained as they are leveraged by the jtc framework.

First-class functions
Functions themselves can be stored in variables, passed as arguments to other functions, and
returned as results from functions.

Currying
Using first-class functions, an n-parameter function can be broken down into a series of 1-
parameter functions.

Closures
Rather than returning a function as simply a function pointer to a subroutine, a function is
closed over its free variables, retaining access to its original scope for its lifetime.

2.3.2 Functional Programming and Web Development

For most developers, FP is more difficult to learn than imperative programming. However, it
gives developers the benefits of terse code, precise expressiveness, and it adapts well to concurrent
programming. FP is gaining popularity in some web applications, but is still relatively uncommon
in the area.

However, FP is an ideal paradigm for web development. HTTP is a stateless protocol; state
is instead simulated through the use of cookies or HTML5 localStorage on the client and sessions
on the server. As a user interacts with a web application, each action on the user’s part could be
thought of as executing a function from HTTP request to HT'TP response. And with an application
developed using FP, the code could exactly match that natural thought process.

2.3.3 Related Functional Programming Frameworks

Though FP frameworks are not as commonly used in web development, many do exist in addition
to the aforementioned Snap framework. Links [1], Ocsigen [6], and Lift [7] are examples of existing
frameworks, and even PLT Scheme [8] has been used to create a complete web application. These
frameworks contain various functional ideas that are highly beneficial to web frameworks:

Static Typing A problem exists within web development concerning data validity. Data transfer
between the client and the server is done through HTTP requests [9], typically GET or POST
requests. This data is transferred in raw string form, which makes the process of validating data
types more cumbersome. The problem is exacerbated by the fact that most web server environments
are built with dynamically typed languages. Couple all of that with another set of data types defined
in the database schema, and the difficulty exists across all three layers of the application.

There are a variety of solutions to this problem. Data can be transferred using either JSON
or XML formats to more clearly describe what is being passed to and from the server. And as
always in web development, server-side validation is absolutely essential to provide feedback about
mistaken input to the user and protect against attacks.

Some functional web frameworks use their language’s static type system to accomplish typing
of web applications. Ocsigen [6] uses the type system of its language, OCaml, as a method to
verify the types of HTML form submissions and HTML output validity. The authors of Ocsigen
cite static typing as a major benefit of their system because HT'ML forms can be statically checked
against the server-side code accepting them.

The Links [1] framework is built upon the Links language that was developed for the project.
Since each layer of the application is written in the same language and compiled into the necessary
HTML, JavaScript, and SQL, a static check similar to Ocsigen can be performed. More approaches
akin to this design have been used by Lift [7] and SMLServer [10].

Continuation-based Sessions Another FP element that has demonstrated usefulness in web
development is the continuation. Balat states the following two ways to think about functional web
development [6]:

e “ ..viewing the sending of a Web page by the server as a function call, (a question asked of
the user) that will return for example the values of a form or a link pressed.”

e “...viewing the click on a link or form by the user as a remote function call. Each link or
form of the page corresponds to a continuation, and the user chooses the continuation he
wants by clicking on the page.”

With the second opinion in mind, the Ocisgen framework uses continuations on the server for
user interaction. Balat gives the following example which illustrates how continuations are useful:

As an example, consider a web page that asks for a number from the user. The number
is sent to the server, and then a second page is generated, proposing to enter a second
number to be added to the first one. Then a third page is displayed, showing the result
of the calculus. A first way of implementing this site consists in putting the first number
in the second page, as a hidden form field or in the URL of the third page. Thus, both
numbers will be transmitted to the third page. But what if the result depends on much
more complicated data, that you cant put easily in a hidden field or in the URL? With
continuations, the solution is very clear. When receiving the first parameter, the server
creates dynamically a continuation corresponding to adding this number. Sending the
second number will activate this continuation.

Both the PLT Scheme web framework [8] and the Links framework [1] also leverage continua-
tions, albeit slightly differently, for their user interactions.

2.4 Problems Addressed by this Project

Both the fields of web development and functional programming are vast, and the problems of web
development frameworks are too numerous to address in one single project. The scope of the jic
project is building a template engine that aims to solve the following problems using FP concepts:

2.4.1 Multitude of Technologies

As discussed in Section 2.1, the development of web applications involves a large amount of tech-
nologies and different programming languages. A goal of the jtc project is keeping as much of the
framework as possible in the same language—JavaScript. The reason for the selection of JavaScript
is discussed in Section 4.2.1.

2.4.2 Simple, Flat Data Presentation

Many web frameworks are limited when transferring data between the layers of the application.
If the controller of an application is only able to pass a hash table of string values, it inevitably
becomes tightly coupled to the view. In this case, the controller must know explicitly what data
the view needs, and both sides need to have knowledge of the key for the data in question.

A goal of jtc is reducing the coupling between the controller and the view as much as possible.
This is done by placing some of the controller’s common responsibilities on the view, and by passing
rich data structures between the layers instead of a table of strings.

2.4.3 Simplistic Templates

Templates that simply spit out tags wrapped around specified data from the controller are extremely
limited. With a system that gives the view no power, the design and presentation of the website
becomes reliant on the controller. A better separation sets up the controller as the provider of a
general dataset, with the view then free to choose which specific pieces of the dataset it needs and
how to display them. The jtc template engine was built with this philosophy in mind.

3 Related Work in Template Engines
A typical interaction with a web application flows as follows:

e A user clicks on a link or submits a form, causing the browser to send an HTTP request to
the server

e The server receives the request, and performs some server-side computations based on the
data received in the request

e The server sends an HT'TP response back to the user, commonly containing a body of HT'ML,
XML, or JSON

The template engine, or view layer, is the piece of the application stack that assembles the
HTML result to be delivered via the HT'TP response to the user. The template engine is executed
server-side. It gathers data that was sent from the user (request URL, cookie, form entries) along
with any necessary data from a database, and uses that data in forming some response in memory.
The response is returned to the user in one of the formats mentioned above, most commonly
HTML. The browser receives the HT' ML response and processes its contents, rendering the viewable
webpage to the user.

Many web frameworks include template engines that each present a slightly different take in
designing the HTML result. Some splice HTML with source code, while others are purely code or
purely HTML. A select few are briefly demonstrated below as examples of what has already been
done in this space.

3.1 Ruby on Rails

Following the “convention over configuration” philosophy of RoR, the template file to be used for
a certain URL is selected by naming schemes. Filenames must match the names of the controller
set to render them back to the user (this default behavior can be overridden) [11].

RoR templates themselves are .erb files, which stands for “embedded ruby.” As the name
suggests, template files allow the insertion of pure Ruby code inside HTML, for example:

<hl>Ruby Template</hl>

<!-- A Ruby statement —-—>
<% number = 42 %>
<!-— An expression to be inserted into the HTML (note the equals sign) —-—>

<p>The number is <%= number $></p>

The .erb files live on the server within the RoR directory structure. When the user requests
a URL, RoR loads the .erb file that corresponds to that URL. It then processes the embedded

Ruby within that file, and returns the HTML result to the user. As mentioned, formats other than
HTML can be returned, such as JSON or XML. For all formats, the result is sent to the user within
an HTTP response.

To aid in the writing of templates, RoR provides helper functions to supply stylesheet and
JavaScript includes [11]. For example:

<html>
<head>
<title>Page Title</title>
<!--
The line below loads the necessary <link> tags to
references the stylesheets provided.
-
<%= stylesheet_link_tag 'layout', 'typography' %>
<!--
The line below loads all of the JavaScript files 1in
public/javascripts/ in the project directory.
-
<%= javascript_include_tag :all %>
</head>

Templates in RoR can use the yield statement to allow a template to identify where content
should be inserted into the HTML. For example, consider the following two files [11]:

Yielding Template

<html>
<head>
<%= yield :head %>
</head>
<body>
<%= yield %>
</body>

</html>

Template Used by Yield

<% content_for :head do %>
<title>A simple page</title>
<% end %>

<p>Hello, Rails!</p>

Through convention of RoR file structure in the project, the first file could be set to yield to
the second file for its content where specified by the yield statements. The resulting output of
the above example [11]:

<html>
<head>
<title>A simple page</title>
</head>
<body>
<p>Hello, Rails!</p>
</body>
</html>

Data is provided to the templates by prepending an @ to the beginning of variables inside con-
trollers [12]. Doing this makes those instance variables available inside the corresponding templates.
This behavior is one example of Rails performing what it calls “magic” for developers.

3.2 Django

The Django framework [3] refers to its separation of concerns differently than MVC, though the
design is nearly identical. Instead of the traditional terminology, Django applications are built
using a model-template-view design. This translates directly to MVC, with templates being the
traditional views and views being the traditional controllers. The remainder of this section will use
the model-template-view terminology for clarity.

3.2.1 Basic Structure

Specifying which template to use for a given URL in Django is done within the URL configuration
file. Each URL is explicitly assigned to a certain view. The view receives data from the URL
router, performs any necessary computations, then renders a template with any data the template
needs to an HTTP response. An example URL configuration:

A URL route table with a single entry
This maps a regular expression to a Django view
urlpatterns = patterns(''

('/factory/widgets/', 'factory.assembly line.get_widgets')
)

And the view that it corresponds to, which renders a template by passing it a Python dictionary
of the data to be displayed in the template:

def get_widgets (request) :

if request.user.is_authenticated():
widgets = Widget.objects.all()
render_to_response ('widgets_template.html', {

my_widgets : widgets

})

else:
return HttpResponseRedirect ('/index/")

Lastly, the corresponding template:

<html>
<head>
<title>My Widgets</title>
</head>
<body>
<dl>
{% for widget in my_widgets %}
<div class="widget">
<dt>{{ widget.name }}</dt>
<dd>{{ widget.function }}</dd>

</div>
{% endfor %}
</d1>
</body>
</html>

The simple template example above introduces the Django template language, which is a sep-
arate entity from Python. Statements such as iteration structures or conditionals are contained
within {% %} blocks. Expressions to be directly substituted into the HT'ML are contained within
{{ 1} blocks.

3.2.2 Template Inheritance

Templates have the ability to extend other templates through inheritance. A parent template
creates blocks that can be used or overridden by its template children. For example, the following
could be a parent template:

<html>
<head>
<title>A simple page</title>
</head>
<body>
% block body %}
<hl>Default content</hl>
{% endblock body %}
</body>
</html>

And a child template could implement it as so:

[

% extends "parent.html" %}

{% block body %}
<h2>New content</h2>
{% endblock body %}

The body block defined in the parent can be optionally overridden in the child template. All the
other HTML content from the parent template would remain exactly as originally written. Only
the body block would be altered for the output of the child template.

3.3 Heist

Heist is the template engine bundled with Snap (Section 2.2.1), created by the same developers of
the Snap framework [4]. Heist provides a functional take on template languages. XML tags in a
template file can be bound to data values or bound to Haskell functions on the server (this process
is called splicing). For example [4]:

<bind tag="longname">
Einstein, Feynman, Heisenberg, and Newton
Research Corporation Ltd.TM

</bind>
<!—-— The following will render with the above text substituted into it -—>
<p>

We at <longname/> have research expertise in many areas of physics.

Employment at <longname/> carries significant prestige. The rigorous

hiring process developed by <longname/> is leading the industry.
</p>

Above, the 1ongname tag is bound to the string contained within it. Within a template, there
could also exist a tag such as the following:

<factorial>5</factorial> <!-- renders as 120 —-—>
And the following Haskell function would exist on the server:

factorial O 1
factorial n = n x factorial (n - 1)

The factorial tagis bound to the factorial function on the server, and its content is treated as
input to that function. The function result will be substituted in place of the template’s factorial
tag.

In addition to substitution and splicing, Heist templates can be applied within each other across
files. For example, imagine the following code for a navigation menu within the file nav.tpl [4]:

Home

FAQ</1li>

Contact</1li>

This code is going to repeated on many pages across the site. Within one of the templates for
a page, the navigation menu above can be included as follows [4]:

<html>
<head>
<title>Home Page</title>
</head>
<body>
<hl>Home Page</hl>
<!—-- The navigation menu is inserted here ——>
<apply template="nav"/>
<p>Welcome to our home page</p>
</body>
</html>

The difference between the simple substitution is that in this case, the common HTML is stored
in an external file, and referenced by all files that need to include it. This eliminates the need to
duplicate code across a number of template files.

3.4 Ocsigen

The Ocsigen framework provides two different approaches to generating XHTML documents. The
first is an implementation using a set of OCaml functions corresponding to XHTML tags. An
example as presented by Balat [6]:

(html
(head (title (pcdata "™)) [1)
(body [hl [pcdata "Hello"]11))

An advantage of this approach over others presented in this document is that the nesting of
functions can ensure document validity. Ocsigen does include another option for templates which
looks more like the examples given for other template engines. This example, also as presented by
Balat [6]:

(fun s —>
<< <html>
<head><title></title></head>
<body><hl1>$str:s$</hl></body>
</html> >>)

Much like the other template syntaxes, this alternate Ocsigen functionality intermixes its lan-
guage code (OCaml in this case) with familiar HTML code. Of course, the benefits of the previous
approach are lost here, therefore Balat recommends the first method unless converting previously
used templates into Ocsigen templates is a concern [6].

3.4.1 Quasiquote

This approach is reminiscent of the Scheme construct, quasiquote [13]. Quasiquote allows the
mixing of literal statements with statements that need to be evaluated, just as the above Ocisgen
syntax allows the splicing of OCaml code with HTML tags. An example of quasiquote:

10

; Standard syntax
(quasiquote (apple (unquote banana) orange))

; Equivalent compressed syntax
" (apple ,banana orange)

Both the above statements are equivalent. In each case, the result will be a list containing the
literal expression apple, followed by the value of the expression banana, followed by the literal
expression orange.

3.5 Links

Because Links is a web programming language that merges the layers of MV into one piece, it
behaves quite differently than the other examples presented. The functionality of the application
is intermixed with the template code. Functions can contain program logic, HTML, or both. The
following is an example of a function containing interspersed HTML [1]:

fun format (defs) client {
<#>
<h3>Click a definition to edit it</h3>
for (var def <- defs)
 (formatDef (def))
</#>

The above function takes a list of definitions as its argument, and outputs an HTML fragment
with the h3 tag and a collection of span tags. (It is of note that the code given in this example
executes on the client side.) This is just one example of the power of the Links language. Being
that Links is a language and does not explicitly hold a separate template engine, it is difficult to
draw further parallels between Links and other framework template layers.

3.6 Mustache

The Mustache template engine is a simplified take on generating HTML from templates [14].
Being a template engine only, Mustache is closely related to jtc in scope. Mustache is available
in a variety of languages; the JavaScript variant is the one being specifically referenced here. The
author refers to Mustache templates as “logic-less” templates because the system does not provide
any for, while, or if statements. Instead, Mustache templates provide looping and conditionals
in different ways. An example Mustache template [15]:

Hello {{name}}

You have just won ${{value}}!
{{#in_ca}}

Well, ${{taxed_value}}, after taxes.
{{/in_ca}}

To render their results, Mustache templates are given a hash of values. Continuing the example,
a hash given to the above template [15]:

11

"name": "Justin",

"value": 10000,

"taxed_value": 10000 - (10000 * 0.4),
"in_ca": true

The above hash is a JavaScript object with key-value pairs. When the Mustache engine renders
the template with the above data, the following is the resulting output [15]:

Hello Justin
You have just won $10000!
Well, $6000.0, after taxes.

3.6.1 Sections

As previously mentioned, Mustache is capable of provided the desired results of loops and condi-
tionals using a different syntax. Sections are a Mustache construct that render a block repeatedly
for each element in a list structure. Consider the following template which contains a section,
denoted by the # [15]:

{{#repo}}
{{name}}
{{/repo}}

A data hash corresponding to the template [15]:

"repo": [
{ "name": "Michelle" },
{ "name": "Monica" },
{ "name": "Melanie" 1},

And the resulting output [15]:

Michelle
Monica
Melanie

At its heart, this feature is the FP concatMap function, taking a list of values and returning an
accumulated string of the values with the template applied to them. Additionally, since functions
are first-class in JavaScript, they can be passed to templates in Mustache. Functions can then
receive the text of the template block, as shown in the following example [15]:

12

// Section
{ {#wrapped}}
{{name}} is awesome.

{{/wrapped}}

// Object

{
"name": "Kris",
"wrapped": function () {

return function (text) {
return "" + render (text) + ""

}

}

<!-- Output -—>
Kris 1is awesome.

4 Design

The research conducted for the background information and related work was essential in the design
of the jtc template engine. The ideas and decisions regarding the development and refinement of
the template engine are discussed in this section.

4.1 Initial Designs

The development process began with the idea of applying FP ideas to the template engine space.
To that end, the concept of higher-order templates was developed. The goal was to create a
template engine in which templates could take other templates as parameters, much like higher-
order functions are passed as parameters in FP. Two examples that came out of the design process
are presented below.

4.1.1 XML Templates

The earliest design of jic was an XMI-based template engine. The idea was that template files
would be written in a custom XML document that also contained the HTML to be given back
to the user. A special templates tag would exist at the top of a given document, defining the
reusable “template functions” that could be called within the document. The following example
shows an early idea of what this could look like.

13

<!doctype html>
<html lang="en">
<templates>
<template name="showName" args="showFirst, showLast, firstName, lastName">
<apply template="showFirst">firstName</apply>
<apply template="showLast">lastName</apply>
</template>

<template name="showBold" args="data">
data
</template>

<!--
This template will return the first and last names surrounded by bold tags.
It takes templates as arguments, illustrating the concept
of higher order templates.
——>
<template name="showBoldName" args="firstName , lastName">
<apply template="showName">showBold, showBold, firstName, lastName</apply>
</template>
</templates>

<head>
<meta charset="utf 8" />
<link rel="stylesheet" href="styles.css"/>
<script type="text/javascript" sre="scripts.js"></script>
<title>Test Page</title>
</head>
<body>
<hl>Pittsburgh Sports Page</hl>
<div id="about">A Pittsburgh sports blog</div>
<div id="athletes">

<!—— Will be rendered as: Sidney Crosby —->
<showBoldName args="Sidney, Crosby"/>
</div>
<div id="footer">Copyright 2011</div>
</body>
</html>

The example above illustrates the first iteration of designing higher-order templates. The tem-

plate function showName takes as its arguments two other templates and two string values. The
template showBoldName passes a template function to put its argument in bold to showName,
where the final result would return a first and last name surrounded by bold tags.

Implementation was tentatively planned to use the XSLT transformation language. The syntax

has some issues, and was not developed beyond this stage. Readability and the density of the
syntax were two primary concerns.

4.1.2 Pure JavaScript Templates

The second design for jtc was similar in spirit to Ocsigen templates (Section 3.4), in which each
HTML tag would be mapped to a corresponding function. The language JavaScript was chosen
for its close relationship to web development. In this design, templates would be created through

14

a series of nested functions, as demonstrated in the following example. The example, analogous to
the XML-based example above, is commented to explain each piece of this design:

function showBold (data) {
return "" + data + ""

function showName (showFirst, showLast, firstName, lastName) {
// showFirst and showLast are function parameters
// in this example, both are given the showBold function
showFirst (firstName)
showLast (lastName)

function showBoldName (firstName, lastName) {
return showName (showBold, showBold, firstName, lastName)

doctype ()

// an empty call to html () would include these attributes,
// but attributes can be explicitly set using hashes, as so:
html ({

'xmlns': 'http://www.w3.0rg/1999/xhtml"',

'lang':'en'
})
// also note that html just got closed, but we see that nesting
// tags by nesting function is the later convention. however,
// the html node never has anything except for head and body.
// with that in mind, the three "essential" tags have been separated,
// though they technically are nested within <html>

head (
meta ({'charset':'utf-8"'})
style('styles.css')
script ('scripts.js')
title ("Test Page")

body (
hl ('Pittsburgh Sports Page')
// div can take a normal hash as other functions, but for
// single attributes the (key, value) syntax is allowed
div('id', 'about'). ("A Pittsburgh sports blog")

div('id', "athletes') . (
showBoldName ("Sidney", "Crosby")

div('id', "footer') . (
p('Copyright 2011")

15

Ultimately it was decided that this template style was undesirable for a number of reasons.
While the function application approach does provide benefits such as the ability to check document
validity, it does obscure from the developer what the HTML looks like during development. One
advantage of the XML or HTML approach provided in Section 4.1.1 is that the template code can
be easily scanned to see what exactly the HTML result will look like. The pure JavaScript design
as given above was not developed any further.

4.2 Final Design and Rationale

The final template design chosen combined elements of the early designs, as well as some ideas put
forth by the related work in the space. Further design decisions were made with respect to the
project goals (Section 2.4):

Multitude of technologies
JavaScript is used across the entire project. This unifies the technologies as much as possible,
and provides the FP capabilities necessary for jtc.

Simple, Flat Data Presentation
With JavaScript functioning as both controller and view, its first-class functions and closures
enable the passing of rich data structures to jtc.

Simplistic Templates
The empowerment of jtc through the data it is given and jic’s concept of higher-order tem-
plates make jtc templates much more capable that simple HTML “fill-in-the-blank” struc-
tures. It also decouples the view from the controller to better separate concerns.

It should naturally follow that jtc was named for its composition: Javascript Templates and
Closures.

4.2.1 Chosen Technologies

JavaScript As stated, the chosen language to be used with jtc is JavaScript. JavaScript is the
lingua franca among web developers, always in use regardless of the choice of server-side platform.
Though the language is primarily used for dynamic HTML, it has been utilized for many more
programming tasks.

JavaScript provides first-class functions and closures, both FP necessities for jtc. JavaScript
is also an ideal choice for the target audience. The use of the aforementioned FP elements is
common enough that many developers write code leveraging these traits without even realizing it.
JavaScript’s event-driven architecture built around callback functions requires the use of first-class
functions, creating a large group of programmers who could learn FP concepts through knowledge
indirectly instilled via the language. JavaScript also provides the opportunity to unify the frame-
work by writing both client and server-side code in the same language, using the tools outlined
later in this document.

There are some complete web frameworks available in JavaScript, including Geddy [16]. But
Geddy is designed to be similar to Ruby on Rails or Django, not an FP-inspired template engine.

Node.js Node.js (Node) [17, 18] is asynchronous, event-driven, server-side JavaScript framework
that runs on Google’s V8 JavaScript engine. It uses callbacks to achieve a completely non-blocking
system of 10, letting it scale for high-performance servers on a single thread.

16

Node is used for the server of the project framework. Its event-driven architecture uses JavaScript’s
functional capabilities (anonymous functions, closures) for its implementation. The concept of the
event-driven server was also used in the Ocsigen [6, 19] and Lift [7] frameworks.

Node provides very little “out-of-the-box” beyond its basic server scripting ability, which was
desirable for this project. For more features, Node integrates with “modules” which can extend the
functionality of Node.

Database A new object-relational mapper was not a goal of this project, but a database is
desirable to illustrate some capabilities of the framework and template engine. Two database
systems were used during this project:

MySQL and Sequelize The relational database MySQL was chosen to serve as the model
layer of the project. The Node module Sequelize [22] was used to integrate MySQL into the project.
Sequelize was far enough along in development to allow the relation tables and querying of related
objects. Sequelize provides an object-relational mapper for MySQL, allowing JavaScript objects to
represent objects stored in the database. For example, a definition of an object [22]:

var Project = sequelize.define('Project', {
title: Sequelize.STRING,
description: Sequelize.TEXT

})

The above code defines a new model, Project. This model has two attributes, with title
mapping to a VARCHAR in MySQL, and the description mapping to MySQL TExT [22]. Upon
each restart of the Node server, Sequelize will connect to the database and attempt to create the
necessary tables for defined objects (should those tables not already exist). Objects can be created
and updated within JavaScript using this object mapping. Additionally, relations can be defined
between objects, with Sequelize creating the necessary join tables in the MySQL database.

Querying an object or group of objects and retrieving them in JavaScript form was a great
benefit of the Sequelize module. Just like Node, Sequelize uses asynchronous code with callback
functions to query the database, as shown below:

Project.find(
{title: 'My First Project'},
{fetchAssociations:true},
function (project) {
//the project retrieved from the database
//is available as a JavaScript object here

}

By giving the find function the object containing the fetchAssociations setting, the re-
turned JavaScript object includes references to the model’s related objects from the database.

Note: Some of the functionality of Sequelize changed during the development of this project,
as Sequelize is in active development. For reference, the project uses version 0.4.3 of the module,
and the examples in this document represent the capabilities of that version.

17

4.3 Architecture

The following explains the architecture of the project framework:

e A user sends an HTTP request to Node

e Node receives the request, and gathers relevant data from the database

Node passes data and closures to the jtc template engine, specifying a template to render

The jtc template engine processes the specified template with the given data, returned the
rendered HTML result to Node

Node returns the HTML result to the user in an HTTP response

4.4 Functional Templates

The idea and use of functional templates is the core of this project. Writing templates in the
jtc template language is built around four major components: at-blocks, h-blocks, lookups, and
includes. Each plays a role in allowing developers to write templates in this style. Each component
is conceptually expanded upon from a user’s perspective below. Technical implementation of each
component is discussed in Section 5.

4.4.1 At-blocks and H-blocks

At a basic level, at-blocks are blocks of code within a template file that allow JavaScript code
within their bounds. This JavaScript is not executed client-side, instead the code within an at-
block is executed server-side by the template engine before the HTML result is delivered to the
user. At-blocks are denoted using the following syntax, giving them their name:

@{
//code within an at-block
j@

Code within an at-block must be either valid JavaScript code, an h-block, a lookup, or an
include (the latter three are discussed below). The implementation dictates that the last JavaScript
expression of an at-block will be returned in string form as HTML to the user. Thus, by convention,
two at-blocks appear in each template file: one for declarations and definitions, and one for output.
The definition block executes statements, including variable assignment and function declaration.
The output block contains a JavaScript expression (as opposed to a statement) which will be
returned to the user as HI'ML. A primitive example:

18

@{
function hello_world() {
return #{

<html>
<hl>Hello world</hl>
</html>
H;
}
1@
@
hello_world()
1@

The above example introduces the basic concept of an h-block, denoted by #{ }#. H-blocks are
HTML fragments in jtc that live within the JavaScript code of at-blocks. The idea is analogous to
Ocsigen’s embedded HTML syntax (Section 3.4) and Scheme’s quasiquote (Section 3.4.1). Their
power comes from the fact that they are a treatment of HTML as a first-class value. The syntax of
these HTML blocks is similar to Links (Section 3.5). They can be assigned to variables, returned
from functions—for all intents and purposes they can be treated as JavaScript strings. H-blocks
can contain at-blocks as well, which allows them to hold more dynamic content, as demonstrated
below:

@{
function hello(name) {
return #{

<html>
<hl>Hello, @{ name }@!</hl>
</html>
H;
}
1@
@{
hello("Jon")
je

However, it should be noted that at-blocks within h-blocks are restricted to JavaScript expres-
sions, and not statements. This is not viewed as a limitation—the primary use case for nested
at-blocks is inserting dynamic content in place of the at-block. And for the case of conditionals, the
expression form is available through JavaScript’s ternary operator. For example,

#{

<hl>User Profile</hl>

@{ (user.logged_in) ? showControls() : #{ <p>Logged out</p> }# }@
M

More information about why expressions are used is detailed in Section 5.3.1.

19

4.4.2 Lookups

Data that can be used in both at-blocks and h-blocks can be delivered to jtc from Node. Any
relevant data is passed in as a JavaScript object, which effectively functions as a hash. The object
contains string values that map to either other strings, objects returned from Sequelize queries, or
even JavaScript functions. This object is made available globally within the template.

Accessing the data provided to jtc by Node is done via lookups. Lookups occur when the @ ! name
syntax is read. The example below demonstrates lookup syntax:

@{
function hello () {
return #/{
<html>
<hl>Hello, @{ Q@!name }@!</hl>
</html>
P
}
je
@{
hello ()
je

In this instance of the hello function, the h-block will query the object passed in from Node
and retrieve the name field. The @ !name syntax is valid both inside at-blocks and h-blocks.

4.4.3 Includes

With the ability to declare template functions within jtc comes the natural desire to include these
functions on different pages of a web application. Files can be included across an entire site using
the include function:

@{

@include ("common. js") ;

// template specific functions...

1@

The include function as seen above would insert all of the declarations in “common.js” located
in the template directory exactly as if they appeared at the line of the include call. The “com-
mon.js” file should be a single at-block, containing any common variables or functions needed for
inclusion. Using this technique, any common functions or data that are useful to more than one
page can be shared across several templates.

Note that the last defined function will be the one that is executed. When a function is defined
and a file that defines a function with the same name is imported later, the imported function will
be used. Between local and imported functions, whichever is defined last will be used.

4.4.4 FP Concepts Now Available

With the major tools of jtc in place, it is appropriate to demonstrate what the sum of these parts
makes possible in jtc.

20

Higher-order Templates H-blocks provide the ability to break up HTML templates into func-
tions, and interact with these templates just as if they were JavaScript functions. Higher-order
templates, templates that take other templates as parameters, are possible using h-blocks. Con-
sider a basic HTML template that will be the same for each page of a website, only substituting in
the “content area” of each page:

@
var my_content = #{

<hl>Welcome to the site</hl>

Log in here
Y#;

function page(content) {
return #{
<html>
<head>
<!-— Relevant stylesheets and meta tags ——>
</head>
<body>
<div id="content">
@{ content }@
</div>
</body>
</html>
M5
}
1@

@{
page (my_content)
1@

The above example could be made more useful if the page function was included in every
template, and the templates would each define their own content. The major takeaway is that the
template function page is receiving an h-block as its argument.

concatMap An even more powerful example of the capabilities of higher-order templates is
presented by jtc’s concatMap function. The concatMap function takes a template and a JavaScript
array as its arguments. It then applies the given template to each element in the list, accumulating
the HTML string result to be returned. It is analogous to its namesake, the FP higher-order
function concatMap. The concatMap function introduces the ability to take higher-order templates
to another, more useful level. Consider a template function such as this:

21

@{
function artistTemplate (albumTemplate) {
return function(artist) {
return i {
<div class="artist">
<h2>@{artist.name}@ (@{artist.albums.length}@ albums)</h2>
</div>
<div id="all_albums">
@{ concatMap (albumTemplate, artist.albums) }@
</div>
P

}

var body = #{
<h1>All Artists</hl>
<div id="artists">
// Apply the curried function to the artists made
// available by Node
@{ concatMap (artistTemplate (album_grid), @'artists) }@
</div>
P
¢

@
page (body)
1@

The above example actually demonstrates two key abilities of jtc. First, the use of the concatMap
function. It receives as its first argument a template function to display information about a mu-
sical album on a webpage. It can be assumed that the database defines many musical artists and
albums. Given any one of those albums in the form of a JavaScript object, the albumTemplate
function would display information about that album such as its cover image, liner notes, or its
track listing in HTML form.

The second ability demonstrated is template currying. The artistTemplate function takes
the aforementioned album template as its argument, and returns a function that expects an artist
as a parameter. The returned function, given an artist, would itself return information about
the artist followed by a collection of all of that artist’s albums rendered by the original album
template argument. The body variable uses concatMap once again to run this process for every
artist provided to the template by Node.

The FP concept of function currying is therefore possible in jic HTML templates. It is made
technically possible by JavaScript’s anonymous functions and closures.

Note: A user guide in documentation form is available as an appendix at the end of document.
It details the mentioned functions, and some of the utility functions to simplify template design that
are not covered here.

4.5 Limitations

There are some recognized limitations of jtc. Each limitation and its cause is discussed below.

22

4.5.1 XHTML Well-Formedness and Validity

Because of the way the output string is accumulated, there is no way to guarantee the resulting
output is a valid or well-formed document. The responsibility falls on the end user to ensure that
the structure of the document is correct, and that the document conforms to the schema named
by its doctype.

4.5.2 Error Handling

The jtc system’s error handling is quite limited in its current state, though it will attempt to
gracefully handle eval exceptions. The syntax errors that are caught are invalid JavaScript, not
invalid jtc syntax. The ability to give syntactical and semantic errors regarding jtc constructs
(at-blocks, h-blocks, lookups, or includes) would be ideal. More information is available in Section
6.5.2.

4.5.3 Eval and H-block Expansion

There are some limitations presented by the use of eval with regards to h-block expansion. The
implementation of h-blocks is detailed in Section 5.3.1, with a specific limitation on JavaScript
statements detailed in Section 5.4.3. The use of eval and its limitations are detailed in Section
5.3.2.

4.5.4 Lack of Namespaces

As noted in Section 4.4.3, there is no concept of namespaces between local template functions and
imported functions. Functions with the same name can redefine each other, as each is evaluated
in the same environment. This could potentially be remedied by re-implementing include to use
JavaScript’s prototype inheritance to separate local and included functions. Though most use cases
should not run into this issue, it remains a documented limitation.

4.6 Example Application

An example application was developed to showcase the concepts of jtc, and how it could be used
to develop a web application. The general goals of the example were to:

e Provide a visually appealing demonstration of a working project using jtc
e Integrate with a database to show the way jtc flexibly displays data in different ways

e Use functions both passed from Node and existing in jtc template code

The example that fulfills those goals is Clef. Clef is a simple music application that allows users
to display their purchased music albums. In terms of data relationships, users are connected to
the albums they own and other users with whom they are friends. Albums in turn are connected
to their own tracks and related to artists. The database schema was defined by Sequelize, and the
data was inserted manually. Because the purpose of the example is to showcase templates, users
are not provided the ability to alter their data beyond several available preferences. Data exists in
the database solely for demonstration. A variety of features are demonstrated within Clef.

23

Including Common Functions Clef uses a single file, “common.js”, to hold all of its functions
and variables that are used across the site. The base HTML for the site, including a doctype,
head, and body containing a simple menu will be used on every page. For that reason a base
function is defined with takes three arguments: a page title, any additional HTML to insert into
the head, and any additional HTML to insert into the body’s content section. This function is
called on every page with the appropriate arguments to generate that page’s HTML result. A
typical Clef template is structured similar to the following:

@{

@include ("clef/common. js");

function template_function () {
//Define function specific to this template

}

var body = #{
//Define HTML specific to this template, using the above function
}H#;
1@
@
//Use the base function to output HTML
base (@!user.username,null, body)

re

Other included functions include a menu function that displays the available menu options
relative to a user’s authentication state, a function to display albums in a grid that is used in many
pages, and an array of functions for sorting albums.

Template Currying The currying example provided in Section 4.4.4 is taken from Clef. It
shows on a small scale the power of higher-order templates. The idea is taken a step further in the
template for a user’s profile page:

<h2>Albums</h2>
<div id="albums" class="group">
@

concatMap ((@!user.albums.length > 8) ? compressed_grid : album_grid,
@'user.albums.sort (asf[@!prefs.album_sort]))
}@
</div>

This use of concatMap uses JavaScript’s ternary operator to use the compressed_grid if the
user owns more than eight albums, or the standard album_grid function otherwise. In this case
the sorting of the albums is provided by the user’s album sorting preference. That preference is an
index which is used to retrieve a sorting function available in the included template functions from
“common.js”.

Function Location The above idea of the preference holding an index into an array of functions
living in the view is an example of the flexibility of jtc. The system allows functions in either the
view or controller. Instead of storing the album sorting functions within a template, they could be

24

stored in the controller (Node) and passed to jtc. This is done for the page that displays all the
albums that Clef has in its database:

server.get ("/albums/ ([0-2])?$", function (req, res, number) {
if (number === undefined) {
number = 0;
}
Album. findAll ({fetchAssociations:true}, function (albums) {
res.write(jtc.render ("clef/albums.html", {
cookies:get_cookies (req),
albums:albums,
sort_function:album_sorts[number],
sort_index:parselnt (number),
get_album_length: get_album_length
P)) i

res.end () ;
1)
1)

The server will listen for HT TP GET requests on “/albums/”, and will grab the number after the
slash (invalid numbers will result in a 404 error). That number corresponds to an array of sort
functions on the server (album_sorts), and the function at the given index is passed to jtc in order
to sort the albums. Typically, as seen in Django, RoR, or Snap for example, functions must be
integrated with the controller code. With jtc, presentational functions can be embedded directly
within template code. Functions can exist in either application layer depending on specific need.

Block Depth The ability to nest at-blocks and h-blocks provides more presentational power to
the view. Consider the above example which displays all available albums. If the albums are sorted
by time length, it would be useful to display the length of each album. This is achieved in the
album template with a few nested blocks:

@
(Q!sort_index === 2) 2

#{
 @{ (Q@!get_album_length (album)/60).toFixed(2) }Q@ min}# : "'
1@

First the template checks if the length sort function is being applied (it has the index “27). If it
is, an HTML break tag is inserted, followed by another at-block to use JavaScript to perform math
on the number of seconds of the album (done by the get_album_length function, also passed from
Node). The inner at-block closes, and the word “min” is inserted after that calculation of minutes
is done. Of course, if the albums are not being sorted by length, an empty string is returned,
signifying nothing being added to the document.

The ability to embed the power of a full programming language into the template is much
different than Django, which uses a special Django template language as opposed to Python (Section
6.3). This ability is similar to RoR, which does allow the full embedding of the Ruby language in
its templates. In both RoR and jtc, developers are encouraged to utilize the power of this feature
while still maintaing a separation of concerns in the code.

The full Clef example’s source is made available with this document for further examination of
jtc’s abilities.

25

5 Implementation

This section describes the implementation of the jtc template engine and the framework surrounding
the template engine. Components of the framework considered orthogonal to jtc were implemented
either using external modules, or created to provide the minimum functionality to demonstrate
concepts of jtc. Each component of the framework is described in detail below.

5.1 URL Routing

The nature of web applications requires any framework to hold some form of a URL router. This
piece of any given framework receives the request for a certain URL from the client. The router
directs the client’s request to the appropriate controller to render the corresponding template. An
example from Django was presented in Section 3.2.1.

For this project, the open source node-router project [23] is used as the URL router. This Node
module allows URL requests received by Node to be processed, calling the jtc template engine with
the appropriate template files to create its HTML result. The code that uses node-router is within
the Node server. An example to illustrate:

var node_router = require('node-router');
var server = node_router.getServer();
var Jjtc = require('jtc');

jtc.template_dir ('templates/"');
/S

// User profile
server.get ("/user/ ([a-zA-2z0-9]+) /?$", function (request, response, username) {
User.find({username: username}, {fetchAssociations: true}, function (user) {
response.write(Jjtc.render ("clef/profile.html"™, {
cookies: get_cookies (req),
user: user

})) s

response.end () ;
b
1)

The declarations at the top of the example code import node-router and jtc, making both
modules available to Node. The call to server.get sets up the server to listen for HI'TP GET
requests at the specified URL, a regular expression. Because parentheses surround the portion of
the string after “user/”, that value is passed in as a parameter (username) to the callback function.

Within this callback function, the User object (mapped to a MySQL table through Sequelize)
is used to query for the given username. More details on the Sequelize query are explained in
Section 4.2.1. The final code executed will be the HT'TP response object being written to with the
contents of jtc’s render function. The response.end function signifies that no more data will be
written to the HTTP response, and it can be returned in full to the user. Again, the node-router
module only provides the ability to match regular expressions to the specified callback functions.
The other functionality in this example is provided by Node, Sequelize, and jtc.

26

5.2 Data Simulation

Web applications must connect to a database to store all of their information. Most modern
frameworks leverage an object-relational mapper to make working with the database more natural
in the application codebase. Building a new ORM was not a goal of this project, but to demonstrate
some of its capability data was needed. The Sequelize module was used as an ORM for Node, and
data was entered manually into a MySQL database to provide a test set for the project.

The user data in the database was partly used for authentication, to simulate different users
logging in and out of the example site. The authentication system was implemented using very
simplistic cookies set via HI'TP headers. This practice is in no way secure or practical for pro-
duction systems, but was useful for demonstration purposes of this project. Implementing this
simplistic authentication was satisfactory to simulate user access and avoid the introduction of
another external dependency in addition to Sequelize.

5.3 Template Engine

Of course, the jtc engine is the primary piece of the framework. This section details how the jtc
template engine is constructed.

5.3.1 The Language

When Node calls jtc.render, it passes the render function two arguments—a template filename,
and a JavaScript hash. Render then loads the template file specified from disk, makes the JavaScript
hash available in the engine’s execution environment, and begins parsing the template.

Grammar The grammar is relatively straightforward. The symbol AB represents at-blocks, HB
represents h-blocks, LK represents lookups, and INC' represents includes:

S+of

S« @{AB}@ S

AB + o AB

AB + @{AB}@ AB

AB «+ #{HB}# AB

AB<«+ LK HB

AB <+ INC HB

AB + ¢

HB <+ o HB

HB + Q{AB}Q@ HB

HB <+ LK HB

HB + ¢

LK + QI JSIDENTIFIER
INC < Qinclude(FILENAME)

Parsing Template files are parsed with each character as a token. The recursive descent parser
continues to descend at each level of at-blocks or h-blocks, and within appropriate blocks descends
into lookups or includes (or sub-blocks).

To accomplish this task, the parser is divided into several major parse levels. The topmost
parse function (parse) contains an index and the template file being parsed, which all the functions
access. Because no backtracking is necessary, the index need not be passed to each parse level and

27

can remain a global index. The topmost function starts the index at zero, and enters the first parse
level, outerpParse.

The outerParse function iterates over the incoming tokens, only looking for the beginning of
an at-block. Otherwise, it is simply echoes each token to the output string that will be sent back
to the user as HTML on parse completion. Should it find the start of an at-block (@{), the parser
descends into the atParse function.

Once within the atParse function, there are five possible routes the parser can take, depending
on what it finds:

Start of Another At-block
Recursively call itself and append the result to the current atParse’s result

Start of an H-block
Call the hparse function and append the result to atParse’s result

A Lookup
Call the lookup function and append the result to atParse’s result

An Include
Call the include function and append the result to atParse’s result

End of the At-block
Return the result to the caller

The tokens that do not trigger any of the above outcomes are continually appended to the result
to be returned. Each time that atParse returns to outerParse, outerParse uses JavaScript’s
eval function to execute the JavaScript code returned by atParse. Eval is explained in Section
5.3.2, but ultimately this means that the string that atParse returns must be valid JavaScript
code. Since at-blocks contain valid JavaScript, their content can be accumulated normally. There
are measures taken to handle comment-only at-blocks and ignore their output. Measures also must
be taken to create valid JavaScript from the other calls from within atParse.

The includeParse function is invoked when atParse reads @include (. After being called,
includeParse reads until it hits a closing parenthesis, then loads the filename between both
parentheses from the template directory. The contents of that template are inserted directly in
place of the @include(...) call as if they were in the calling document. When includeParse
returns, atParse begins parsing again at the start of the include, so its contents are immediately
processed in the order expected from the user.

The lookup function is invoked when the parser reads the @! tokens. After the bang token,
lookup greedily grabs as many valid JavaScript variable name tokens as it can (alphanumeric,
underscores, and dashes). Periods are also read, as JavaScript syntax allows object properties to
be accessed via those characters. The lookup is returned as a string which access the environment
array that was provided from Node, such as the lookup “@!artist.albums” producing the valid
JavaScript result “jtcEnv.artist.albums”.

The hparse function is invoked after atParse reads the beginning of an h-block (#{). There
are three possible routes hParse can take:

Start of an At-block
Call the atParse function and append the result to hParse’s result

A Lookup
Call the 1ookup function and append the result to hParse’s result

28

End of the H-block
Return the result to the caller

As with atParse, tokens that do not trigger any of the above outcomes are continually appended
to the result to be returned. The string that is accumulated from the content of the h-block and
the values from any lookup or atParse calls is returned to the hparse caller. However, since the
caller is known to always be atParse, the returned string must be valid JavaScript so that atParse
can safely accumulate it. Since h-blocks contain HTML fragments and not valid JavaScript, their
content is escaped and transformed into a parenthesized string concatenation.

The hparse function begins its string accumulation with (unescape (, then continues to parse
over its contents, escaping each character with the escape function. This prevents whatever was
inside the string from potentially getting evaluated as code; an unintentional injection of statements
would be possible otherwise. When it does finally return to atParse and is eventually executed
by outerParse with eval, the call to unescape will occur. The result will be the original HTML
string as entered by the user. To maintain this string, the parenthesis to close the original unescape
is appended before the result from a lookup call, with the result preceding another (unescape (.
This is better explained through the line from the actual jtc source code:

token = '"") + (' + lookup + ') + (unescape("';

A similar step is taken when accumulating the returned value from the inner atParse, but
atParse is a slightly different case. Because at-blocks contain JavaScript, it is possible that their
result could return undefined if the block only contains void JavaScript expressions. For that
reason, a rather rudimentary trick is applied—the result is passed to an anonymous function. The
function will return an empty string if the result is undefined, or the string of the result if it
is defined. This trick is commonly used in the client-side JavaScript world to establish a scope
to protect code from other included libraries, and to get around some behaviors in incompatible
browsers. Its use for this project is detailed in Section 5.4.3.

5.3.2 Eval

The jtc template engine is built around the capabilities of JavaScript’s eval function. Eval takes
a string as its argument and executes that string as JavaScript code within the current lexical
environment. If the string is a JavaScript expression, it returns the result of that expression. If
the string is a series of statements, it will return the value of the last statement (or undefined if
there is no return value) [24, p. 641-642]. This behavior is why convention dictates two at-blocks
in template files for clarity, as detailed in Section 4.4.1.

The code evaluated by the eval function is added to the executing environment and remains
available for the duration of the caller’s lexical scope. This behavior exists as the default in the
Google Chrome V8 JavaScript engine. Though eval can be executed at a global level by the use
of eval.call [25], that functionality was not needed for the purposes of this project.

Eval provides the only way to dynamically modify the execution environment in JavaScript, as
is true in most other dynamic programming languages. It is for this reason that its functionality
was leveraged in this project. The ability to use JavaScript essentially as a JavaScript interpreter
proved very useful to this project’s goals.

The eval function is very rarely recommended for use in client-side JavaScript because of the
security risks. The possible execution of arbitrary code could open up significant holes for malicious
scripts if not used properly. In this server-context where the only code execution is controlled by

29

the developer, it may be considered generally safer. However, insertion of user-submitted data
that is not cleaned or valid into the environment could still pose a potential risk. Though data
validation was not part of this project, the author recognizes that in a production environment
certain measures for safety of this system would have to be in place.

5.3.3 Utility Functions

The jtc template engine includes several small utility functions to speed up some of the common
tasks in web development.

styles([stylesheets])
The styles function takes one or more strings corresponding to stylesheets (“layout.css” for
example), and returns the HTML tags to include those stylesheets on the page.

scripts([scripts])
Like its sibling styles, scripts takes one or more strings corresponding to JavaScript files

(“jQuery.js” for example), and returns the HTML tags to include those scripts on the page.

concatMap (template_function, array)
As demonstrated in Section 4.4.4, concatMap takes a template function and an array, applying
the template function to each array element and accumulating the result to be inserted into
the HTML of the page.

Because these functions are defined within the same evaluation context as the code being exe-
cuted through eval, the dynamically evaluated code has access to these functions.

5.4 Problems During Development
5.4.1 MongoDB and Mongoose

MongoDB [20] is a document-oriented database that was originally chosen as the database for this
project. MongoDB’s documents are stored in a JSON format. With JavaScript being leveraged so
heavily, this database seemed to be a natural fit. Connection to the database was integrated using
the Mongoose [21] Node module.

Since MongoDB is a document-oriented database and not a relational database, relations are
done through the DBRef standard [20]. DBRef objects allow documents to reference each other
in a fashion somewhat analogous to joining tables in a relational database. As the example web
application was being developed, the limitations of Mongoose were reached when it was discovered
that the Mongoose module did not natively support DBRef. For this reason, Mongoose and Mon-
goDB were abandoned. But, the time spent on research and integration of these technologies was
significant and therefore, though abandoned, the technologies are mentioned here.

5.4.2 Sequelize

Sequelize solved one limitation of Mongoose as detailed in Section 4.2.1, but it did introduce a
minor inconvenience of its own. Sequelize allows the retrieval of associated objects through its
object-relational mapper, through the following syntax:

30

// 1. Query with fetchAssociations set to true
Artist.find(
{title: 'Radiohead'},
{fetchAssociations:true},
function (artist) {
// 2. Use the fetchedAssociations property
// to access the related objects
var albums = artist.fetchedAssociations.albums;

In the above example, imagine albums were related to tracks; a given album’s tracks would not
be accessible via artist.fetchedAssociations.albums([0].tracks. The issue is that there is
no way to fetch related objects’ related objects, better stated as the transitive closure of an object’s
associations. While this did not limit the framework’s functionality in any way, it would make
working with some related data easier.

5.4.3 Statements in H-blocks

An at-block that is nested within an h-block is must be a JavaScript expression due to the way
h-blocks are concatenated together. Characters such as the var keyword or the use of semicolons
break this concatenation process, as demonstrated below:

// The h-block
#1{

<hl>Hello, @{ var x = getName(); }@</hl>
}#

// The resulting concatenation (though the HTML would be escaped)
"<hl>Hello, " + var x = getName(); + "</hl>"

The above concatenation is clearly invalid. However, the requirement of expressions in nested at-
blocks is not limiting, as their use case is precisely for inserting the values of JavaScript expressions
into HTML. A similar problem must be dealt with when nested at-blocks, though they are in
expression form, return undefined. This could be caused by void functions, for example. To
overcome this issue, all nested at-block results are surrounded with a wrapper function, as so:

(function(z) {
if(z){
return z;
lelse(
return "";

}
}) (atString)

The anonymous function takes the result of the at-block as its parameter, and it is not null
or undefined, returns it. Otherwise, it returns the empty string. This simple trick works for void
expressions, but does not work for the aforementioned problem with statements in nested at-blocks.
For that reason, only expressions are allowed inside non-top-level at-blocks.

31

5.4.4 Delaying Database Queries through Synchronization

The capabilities of the framework allow for functions to be passed from Node into jtc. One idea for a
practical use of this functionality was to pass closures containing database queries into jtc, allowing
the template to query the database if needed. This approach would allow Node, the controller, to
pass these closures to jtc for any template—only the templates that needed to query the database
would execute the function.

However, this task was ill-conceived based upon the entire system. With Node being a single-
threaded server, it is completely tied to the idea of asynchronous function calls. The Sequelize
module (and all major Node modules) are in line with this philosophy, and perform all of their
computation through this asynchronous model. The model does not mix well with return values
however.

The concept of calling a function that queries the database and waiting for its return value is
practically impossible in the world of Node. Attempts were made to work around the issue in many
forms, but the constant fighting with the Node model did not yield any useful results. Even an
attempt at tricking the asynchronous functions into returning through the use of a busy wait was
proven impossible because Node’s single thread blocks on the busy wait’s loop. Since this feature
was non-essential to the project, it was abandoned after repeated attempts to implement it.

6 Results

This section discusses the project results and other information gathered as a result of this project.

6.1 Benefits

The benefits of the framework have been explored and demonstrated throughout this entire doc-
ument. The jtc template engine integrated with Node provides developers a new perspective on
templating, and what is possible with some FP concepts applied to the domain. In a team setting,
the flexibility of providing functions that either come from the controller or the view would be a
great asset. The function could live on either side depending on the team to which it is more closely
related (presentational or developmental), while not requiring the team to isolate these functions
to one area.

For example, consider a social networking site where the creators want to implement a friend
sorting feature. The design team could simply ask the development team to create a user preference
for friend sorting, assigning each preference to a key. Then the design team can write all the simple
sorting functions themselves, and use the appropriate sort function based on the key passed to the
view from the controller. The development team can add the simple preference, and pass to the
view the user preferences and a friend iterator that accepts a sort function. This separation of
concerns and responsibilities is desirable in a web development environment.

The project also illustrates how unifying web development through a single language can be
beneficial. By using JavaScript across each facet of the application, the project allows rich data
structures to be transferred seamlessly between the controller and view. This is made simple because
the template language (code within at-blocks and h-blocks) knows the host language (JavaScript).

The jtc template engine demonstrates the concept of higher-order templates, and their power
in writing the view layer. The use of higher-order JavaScript functions as higher-order templates
also continues the aforementioned ideas of unifying with the host language.

32

6.2 Node.js and Functional Programming

At the start of this project, Node was selected as the server to be used because:

1. It is a relatively new technology, and researching a newer topic is a more appealing premise
than researching an aging one.

2. It is server-side JavaScript, allowing the unification of a single language.

3. It uses JavaScript closures and anonymous functions, which tied into the FP goals of the
project.

While the first two benefits certainly ring true even at the end of the project, the initial percep-
tion of Node as demonstrating some FP concepts may have been a bit misguided. The feeling was
that since JavaScript is a Scheme-like language (as noted by Crockford [26]), and Node is able to
use those features for its goals, Node must be FP. After working with the project, that assumption
now seems less clear. In fact, it calls into debate whether using FP features in non-functional
languages is functional programming. That discussion is worthy of an entire paper in itself.

Node is certainly at least related to FP because of its reliance on anonymous functions and
closures. But the creators of Node made their goals clear: to experiment with the strategies of
browser JavaScript on the server, hiding the event loop from the user [18]. The event-driven server
is closely patterned after simple event callbacks in JavaScript such as mouseover or onclick. This
event-driven style has been used in other FP web frameworks, as discussed in Section 4.2.1.

Node is built around the concept of completely non-blocking 10 through the use of asynchronous
programming. Another piece of information gathered from project work is that the fields of func-
tional and asynchronous programming are completely independent of each other. Asynchronous
programming can be done without FP, and FP can be written without being asynchronous. This
seems obvious in retrospect, but was made more clear with each week in the project timeline.

6.3 Comparison within Field

Many template systems are limited to only inserting string data into an HTML file. This is partly
due to the handling of HT'TP GET and POST data being string based. It also is in some cases a
language constraint, because the ability to pass closures between application layers is impossible in
some languages. Jtc is able to overcome this simplistic structure because of JavaScript, allowing
richer data to flow between view and controller.

In a larger sense, the view layer is almost an afterthought in terms of computation. For example,
the Django template language is intentionally limited to force developers to constrain their code to
the Django design pattern. While a separation of concerns is certainly a good design principle, this
system does misplace some responsibility of presentation into the controller (known as the view in
Django). The jtc approach is to give that flexibility to the developers, who then have the ability
to distribute functionality to the area in which is fits more appropriately.

The power and reusability that these FP concepts grant is hard to achieve naturally in the
related template engines. The curried template function in Section 4.4.4 would be difficult to
replicate. In the Django template language, one could imagine something like the following:

33

<hl>All Artists</hl>
<div id="artists">
% for artist in artists %}
<div class="artist">
<h2>{{ artist.name }} ({{ artist.albums.count }} albums)</h2>
</div>

<div id="all_albums">
{% for album in albums %}
<div class="album">

<h5>
{{ album.artist_name }}</h5>
<p class="small">{{ album.title }}</p>
</div>
{% endfor %}
</div>
{%$ endfor %}
</div>

The above example works to display all the albums for each artist, displaying the album using
the innermost HT'ML code. But, any template that uses this code will have to have this code copied
into it, or inherit from some template that defines it. That kind of HTML fragment inheritance does
not fall within Django’s typical structure. And should the code need to be rewritten to change the
HTML for displaying an album, it is much less trivial than simply changing a function argument.
In the jtc example only the included album function used as the parameter needs to be updated,
though this is partly a demonstration of inheritance strategy and not FP.

Rather, the FP capabilities are demonstrated in other scenarios. If the way to display an album
is based on a user preference, the above Django code would become an unreadable mess of i f-else
statements. In jic, the controller can simply pass the necessary template function to the view, and
that function will be given to concatMap. Similar opportunities present themselves with passing
sorting functions. Other common iteration structures in HTML generation can be more cleanly
expressed with FP as the web is full of list data. Being able to succinctly and flexibly process that
data is a major benefit of jtc.

6.4 Achievement of Proposal Goals

The proposal for this project stated the following goals. Each will be addressed in relation to the
final result.

1. Create a template processing engine that simplifies client-side development through
FP and boilerplate code generation. The highly expressive template language will al-
low developers to tersely express common web actions and automatically create AJAX
code where appropriate. The jtc template engine provides the FP client-side development en-
vironment. The utility functions and the ability to reuse templates provide the boilerplate code.
“Highly-expressive” and “terse” are relative terms and may have been poor word choices in the
original proposal, but the jtc template language is concise and designed for simplicity.

34

The generation of AJAX code was a part of the proposal that was not implemented in the
final version. Because of the myriad of ways to implement and design AJAX code, it was decided
that automatically generating it was not in developers’ best interest. Additionally questions arise
about choosing a “sacred” JavaScript library that the project would use, as opposed to leaving the
decision to developers. However, the example does demonstrate how AJAX code can be embedded
in templates just as with other template engines.

2. Maintain accessibility and ease of use to both experienced and inexperienced FP de-
velopers. The aim is to create a system that can be effectively used by web developers
regardless of their prior FP experience. This goal was the one of the primary motivations
to use JavaScript for the framework language. JavaScript’s ubiquity among web developers means
that an engine like jic should have a relatively low learning curve for the target audience. In this
regard it is similar in spirit to Node. And as stated, no FP background is required to use jtc,
though it does use FP concepts.

3. Demonstrate that functional programming is an ideal choice for web development
by solving common web problems using FP concepts. Jic attempts to present FP concepts
as useful to template engines. The research presented in this document also demonstrates FP as
useful to web development outside of template engines.

Additionally the proposal noted that the following pieces of a web framework would be delivered,
with the delivered result in parentheses:

e A web server (Node)
e Server-side scripting for application logic (Node)
e Client-side scripting for dynamic interaction (See Section 6.4)

e A template engine for dynamically generated content (jtc)

6.5 Further Work

Though the concepts have been demonstrated, there are many features that could benefit the jic
template engine to prepare it for production environments.

6.5.1 Improve the Parser

The jtc parser went through several iterations, but always was focused on the most simple solution
possible so that the project concepts could be demonstrated. Improvements could be made such as
using a formal parser-generator to process the input.

6.5.2 Error Handling

Related to the parser, currently error handling is minimal. Eval exceptions are tolerated, resulting
in no output for a given at-block being appended to the HTML response. But if the at-block that
throws the exception is a top-level at-block, the page will not likely be able to display anything.
Errors are logged to Node, but a more robust error checking system would benefit future versions of
the project. Perhaps the HTML output could be replaced by parser errors during development. A
syntax highlighter for popular editors would also help limit some simple errors during development.

35

6.5.3 Performance

Performance under high server load was not a goal of this project, so its ability to scale to large
systems is untested. The parser improvements and allowing the accumulated HTML result to
append by larger tokens than just characters would likely benefit performance.

References

[1] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, “Links: Web programming without tiers,”
in Proceedings of the 5th International Conference on Formal Methods for Components and
Objects, FMCO’06, (Berlin, Heidelberg), pp. 266-296, Springer-Verlag, 2007.

[2] D. Heinemeier Hansson, “Ruby on rails.” http://rubyonrails.org/, 2011.

[3] D. S. Foundation, “Django: The web framework for perfectionists with deadlines.”
http://www.djangoproject.com/, 2011.

[4] G. Collins, D. Beardsley, S.-y. Guo, J. Sanders, C. Howells, S. O’Brien, O. Ataman, and
C. Smith, “Snap framework documentation.” http://snapframework.com/docs/.

[5] E. Inc., “Codeigniter - open source php web application framework.” http://codeigniter.com/.

[6] V. Balat, “Ocsigen: Typing web interaction with objective caml,” in Proceedings of the 2006
workshop on ML, ML ’06, (New York, NY, USA), pp. 84-94, ACM, 2006.

[7] D. Ghosh and S. Vinoski, “Scala and lift: Functional recipes for the web,” IEEE Internet
Computing, vol. 13, pp. 88-92, May 2009.

[8] N. Welsh and D. Gurnell, “Experience report: scheme in commercial web application devel-
opment,” SIGPLAN Not., vol. 42, pp. 153-156, October 2007.

[9] W3C, “Http - hypertext transfer protocol overview.” http://www.w3.org/Protocols/.

[10] M. Elsman and K. F. Larsen, “Typing xhtml web applications in ml,” in In International
Symposium on Practical Aspects of Declarative Languages (PADLO04), volume 3057 of LNCS,
pp- 224-238, Springer-Verlag, 2004.

[11] M. Gunderloy, M. Lindsaar, and J. Iniesta, “Ruby on rails guides: Layouts and rendering in
rails.” http://guides.rubyonrails.org/layouts_and_rendering.html, April 2010.

[12] G. Pollack, “An introduction to rails.” http://railsforzombies.org/, 2010.
[13] R. K. Dybvig, “The scheme programming language, third edition,” 2003.

[14] C. Wanstrath, “mustache.” http://mustache.github.com/.

[15] C. Wanstrath, “mustache(5) —logic-less templates..” http://mustache.github.com/mustache.5.html,

April 2010.
[16] M. Eernisse, “geddy: A modular, full-service web framework for node.js..” http://geddyjs.org/.

[17] S. Tilkov and S. Vinoski, “Node.js: Using javascript to build high-performance network pro-
grams,” IEEE Internet Computing, vol. 14, pp. 80-83, November 2010.

36

[18] R. Dahl, “Node.js: Evented i/o for javascript.” http://nodejs.org/.

[19] V. Balat, J. Vouillon, and B. Yakobowski, “Experience report: ocsigen, a web programming
framework,” in Proceedings of the 14th ACM SIGPLAN international conference on Functional
programming, ICFP ’09, (New York, NY, USA), pp. 311-316, ACM, 2009.

[20] 10gen Inc., “Mongodb.” http://www.mongodb.org/.

[21] G. Rauch, N. White, B. Noguchi, and A. Heckmann, “Learnboost/mongoose.”
https://github.com/LearnBoost /mongoose.

[22] S. Depold, “Sequelize: A mysql object-relational-mapper for nodejs.”
http://www.sequelizejs.com/, 2011.

[23] T. Caswell, “node-router.” https://github.com/creationix/node-router, August 2010.
[24] D. Flanagan, “Javascript: The definitive guide, fifth edition,” August 2006.

[25] M. D. Network, “call - mozilla developer center docs.”
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/call, March 2011.

[26] D. Crockford, “The little javascripter.” http://javascript.crockford.com/little.html.

37

A Walkthrough and Documentation

This appendix is designed as an informal documentation of this project through the building of a
simple application that uses the jtc template engine. All pieces of software are included with this
document. A syntax reference is provided in Section A.9.

A.1 Setup

The first step is to install Node.js (version 0.4.3). Unarchive node-v0.4.3.tar.gz and follow the
instructions in README . md.

All of our work will be done within the example folder, where the required modules are included
in the node_modules subfolder. If you run into any problems or would rather just read along, the
completed_example folder has a working version of the project this appendix describes.

A.2 First Steps
The example folder should contain:
® server.js

e templates/

— homepage.html

The server. js file already contains the necessary import statements for a jtc project. It should
look like this:

var node_router = require('node-router');
var server = node_router.getServer();
var jtc = require('jtc');

jtc.template_dir ('templates/"');

A.3 Adding a Route

The first step is to connect a URL to some HTML we want to display. To map a URL to a
template, we first create the appropriate function in server.js. Typical HTTP methods (GET,
POST, PUT, DELETE) can be used. For this example, GET is used. Add the following simple
route to the server file after the pre-existing declarations:

server.get (' /homepage/?$', function (request, response) {
response.write(jtc.render ('homepage.html', {

title : 'Student homepage',
name : 'Justin',
bio : 'A CS student at RIT'

1))

response.end() ;
1)

The last piece of this initial route setup is to start the server listening on a given port. Add
this line at the bottom of server. js to have the server listen on port 8080:

server.listen (8080, '127.0.0.1");

The behavior is now defined. But, since the template does not exist, it is not yet ready to be
used.

38

A.4 Building a Template

The homepage.html template must be edited so that the above route can render HTML back to
the user. Edit homepage.html to the following:

@{
function body () {
return #{
<html>
<head>
<title>@!title</title>
</head>
<body>
<hl>@!name</hl>
<h2>Q@!bio</h2>
</body>
</html>
HE;

1@

@{
body ()
re

Notice the use of two at-blocks, one for declaration and one expression to be rendered to the
user. In the first, the body function is defined. It returns an h-block that will be the HTML of
the page we are rendering. Inside the title, hl, and h2 tags are lookups. These lookups refer to
the information that was passed to the template by the route we created earlier. They are invoked
using the @/key syntax, as shown above.

To see this page in action, open a shell and navigate to the directory that contains server. js.
Enter node server.js to start the node server with our server file, then point your browser to
http://localhost:8080/homepage/. The page is the HTML result with the data from Node
inserted.

Note: Other URLs, such as the visiting the basic http://localhost:8080/ page, will return
an HTTP 404 error.

A.5 Adding a Function

One of the unique capabilities of jtc is the ability to pass functions to the template engine. We’ll
add a function to our route to compute the time since this student began studies at his college.
Rewrite the route so that it reads as follows:

server.get (' /homepage/?$', function(request, response) {
response.write(jtc.render ('homepage.html', {

title : 'Student homepage',
name : 'Justin Cady',

bio : 'A CS student at RIT',
time_in_college : function () {

var rit_start = new Date (2006,8,4);

var today = new Date();

var one_day_ms = 1000x60%x60%x24;

return ((today.getTime() - rit_start.getTime ())/one_day_ms) ;

39

1)

response.end () ;

P

This function creates a Javascript Date object representing the student’s first day at RIT, and
computes the difference in days from that date until the current date. Of course, to display this
information the template must be updated as well. Add this snippet right below the h2 tag in
homepage.html:

<p>I have been at RIT for @{ @!time_in_college () }@ days</p>

Inside the h-block, Javascript can be executed by created an inner at-block. Here, we are
opening a block to execute Javascript, and calling the function that was passed over through a
lookup. Restart the Node server by entering CTRL-C at the shell prompt, then re-executing the
node server.js command. Any time that we change server.js, we must remember to restart
the server.

A.6 Another Function

Our first function was passed from Node to jic, but functions can exist solely within jtc templates
as well. We will add a template function to display our student’s favorite programming languages.
Let’s first add the languages to our route, rewriting it so that it now looks like this:

server.get (' /homepage/?$', function (request, response) {
response.write(jtc.render ('homepage.html', {

title : 'Student homepage',
name : 'Justin Cady',

bio : 'A CS student at RIT',
time_in_college : function() {

var rit_start = new Date (2006,8,4);
var today = new Date();
var one_day_ms = 1000%x60%x60x24;

return ((today.getTime() - rit_start.getTime())/one_day_ms);
}I
languages: [

'Javascript',

'Python',

'Objective-C',

'Haskell’,

'SML'

]
1))
response.end() ;

P

With the languages array added to the information our template is receiving, we must edit the
template to display this information. Since this is a collection of data that we want to display
similarly in the template, it is an ideal situation to use the concatMap function of jtc. The
concatMap function takes a template function and a list of elements, such as our language array,
as arguments. Edit homepage.html to look like this:

@
function language_template (lang) {
return #{
@{ lang }Q@</1li>

40

HE;
}

function body () {
return #{
<html>
<head>
<title>@!title</title>
</head>
<body>
<hl>@!name</hl>
<h2>@!bio</h2>
<p>I have been at RIT for @{ @!time_in_college () }@ days</p>
<h3>My favorite programming languages</h3>

@{ concatMap (language_template, @!languages) }@

</body>
</html>
H#;

1@

@{
body ()
je

The function language_template is a template function that takes a language string as an
argument, and renders it as a 1i tag. Note that this function only exists in the template itself.
This function is used by concatMap inside the ul to render the list of the favorite programming
language strings. Restart the Node server and verify this new data is displayed.

A.7 Expanding the Language Function

As a small example of the abilities that jtc provides, we will now add some random colorization to
the list of languages. The language_template function will access a random color from an array.
To accomplish this, edit the top of the template as follows:

@

var colors = [
'red',
'blue’,
'green’',
'purple’,
'orange'’

1;

function language_template (lang) {
return #{
<1li style="color:@{ colors[Math.floor (Math.random()*5)] }@;">Q@{ lang }@</1li>
M

41

The function now uses Javascript’s Math.random function to randomly create an integer from
0 to 4, and insert the corresponding color as the color of the list item. There is no need to restart
the server, as we have only changed the template file. Reload the page to see these changes. As
this demonstrates, any Javascript code can be used in these template functions.

A.8 Going Further

This tutorial was designed to get new developers started with the basic principles of jtc. Using the
concepts above, powerful templates can be designed and utilized. For more information, review the
Clef source code included with this document.

A.9 Syntax Reference

At-block
@{ ... @
Contains Javascript functions and statements. A template file that is going to render HTML
should contain two at-blocks—one for declarations and one containing an expression for
output. A template file used for includes need only contain one at-block.

H-block
#{ ... }#
Contains HTML spliced with at-blocks or lookups. A h-block can be assigned to a
variable, used as a parameter, or returned from a function.

Lookup
@...
A lookup is used to insert data that was passed in via the jtc hash. The string following
the bang will be used as the key into the hash, and its value will be inserted in place of the
lookup.

Include
@include(...)
Load an external template file into another template file. The string parameter should be a
filename relative to the jtc template directory. That file will be inserted at the exact point of
the include statement.

42

