
Tangent-3 at the NTCIR-12 MathIR Task

Kenny Davila
Richard Zanibbi

Rochester Institute of Technology, USA
{kxd7282,rxzvcs}@rit.edu

Andrew Kane
Frank Wm. Tompa

University of Waterloo, Canada
{arkane,fwtompa}@uwaterloo.ca

ABSTRACT
We present the math-aware search engine Tangent-3 and
report its results for the NTCIR-12 MathIR task. Tangent
uses a federated search over two indices: 1) a TF-IDF textual
search engine (Solr), and 2) a query-by-expression engine.
We use an inverted index to store math expressions using
pairs of symbols extracted from a Symbol Layout Tree rep-
resentation built from Presentation MathML. We use a cas-
cade model with two stages for retrieval. In the first stage,
relevant expressions are retrieved quickly using iterator trees
over posting lists to find matches and expressions are ranked
using the Dice coefficient of matched symbol pairs. In the
second stage, the top-k best candidates are reranked with
a more strict similarity metric supporting unification and
wildcard matching. Our system produces relevant (and par-
tially relevant) Precision@5 values of 21% (50%) for the main
arXiv task, 25% (49%) for the Main Wikipedia subtask and
45% (84%) for the Wikipedia Formula Browsing subtask.

Team Name
RITUW (Rochester Institute of Technology, USA and Uni-
versity of Waterloo, Canada)

Subtasks
MathIR arXiv Main Task (English), optional MathIR Wiki-
pedia Task (English), optional MathIR Wikipedia Formula
Browsing Task (English)

Keywords
mathematical information retrieval, reranking, MathML, uni-
fication, wildcard matching, symbol layout tree

1. INTRODUCTION
Large collections of data exist which are full of mathemat-

ical notation, and the task of finding relevant documents in
such collections based on their mathematical content is a
difficult one. Multiple approaches have being proposed in
the field of Mathematical Information Retrieval (MathIR)
with the intent of producing scalable solutions that facili-
tate search of math-related content on these large datasets.

The NTCIR-12 MathIR competition [17] provides a com-
mon ground to evaluate and compare different approaches
using medium and large datasets and fixed sets of queries.
The MathIR arXiv Main Task at NTCIR-12 consists of find-
ing the most relevant documents from the arXiv1 collection
1http://arxiv.org/

Query
Formula

Solr Text
Search EngineKeywords

Tangent-3 Formula
Search Engine

Math
Expressions

Document
Reranking

Matched
Text

Matched
Math

Final
Ranking

Figure 1: Tangent-3 Retrieval Model.

for a set of 29 queries containing keywords and math ex-
pressions. The optional MathIR Wikipedia Task includes
30 queries containing keywords and math expressions, and
the optional MathIR Wikipedia Formula Browsing Task in-
cludes 40 queries for isolated math expressions. Participat-
ing teams submitted up to four runs for each task, and the
top-20 results from submissions for each query received rel-
evance assessments from evaluators.

Our submission is based on the Tangent-3 system [19].
Our approach uses two indices, the first for text using Solr2,
and the second for math expressions using pairs of symbols
and their relationships in Symbol Layout Trees (SLTs) [19]
built from a Presentation MathML representation. For each
query, the system processes the keywords and math expres-
sions separately to find relevant documents for each, assign-
ing relevance scores to each document where a match is
found (see Figure 1). The math expression search is two-
staged, where the first stage finds the top-k highest scored
expressions using the Dice coefficient of matched symbol
pairs, and then the second stage applies a more detailed
similarity metric between the query expression and each of
the top-k candidates (See Figure 2).

Once text and math expression search are complete, a
combination step is required to produce a final ranking,
where documents that contain matches for both keywords
and math expressions will be ranked higher than documents
containing matches for just text or math.

Most queries in the arXiv main task contain multiple key-
words and at least one math expression. Our current model
uses a linear combination of relevance scores for matched
text and math expressions. For text, traditional TF-IDF
can be used to assign relevance scores to matched keywords.
However, it is not clear that TF-IDF is effective for scoring
math expressions. In addition, our system supports par-
tial matching with unification and wildcards for formulae.
Partial matches are scored using various similarity metrics
(Section 3.2.5).

In this competition, our experiments were based on the
following research questions. The first two questions are
related to the distribution of weights for final document

2http://lucene.apache.org/solr/

ranking: RQ1. How to assign weights to keywords and
math expressions in a single query? and RQ2. Should
larger math expressions have heavier weights? The last four
questions are related to the similarity metric used for math
expressions: RQ3. How good is the approximated Dice
coefficient similarity metric without matching constraints?
RQ4. What is the effect of applying matching constraints
to the Dice coefficient similarity metric during re-ranking?
RQ5. How does unification affect perceived similarity be-
tween math expressions? RQ6. How does the Dice Coef-
ficient similarity metric compare to the Maximum Subtree
Similarity (MSS) [19] metric?

2. RELATED WORK
Existing techniques for formula retrieval are described in

this section. Depending on the primitives used for formulae
representation, we have divided these techniques into text-
based, tree-based, and spectral.

Text-Based Approaches. Math expressions are struc-
tured data typically represented as trees. Text-based ap-
proaches require linearization of math expressions in or-
der to represent them as strings. Normalization procedures
like generalization and canonicalization are applied to en-
sure that equivalent math expressions can be matched on
their flat representation. Generalization techniques replace
variable names with generic identifiers to allow matching
of equivalent expressions using different variable names [9].
Canonicalization sorts the elements within a math expres-
sion based on the commutativity of certain operations to
achieve a consistent representation [9, 12,13,18].

Linearization masks significant amount of structure, but
it allows taking advantage of optimized text search engines.
Most text-based approaches use TF-IDF (term frequency-
inverse document frequency) for retrieval [8, 13].

Tree-Based Approaches. Trees are used to represent
either formula appearance or semantics. Expressions are
indexed as complete trees, along with their subtrees to sup-
port partial matching. It is possible to compress the trees by
storing identical subtrees uniquely [5]. Exact trees and/or
subtrees can be matched, but some methods consider simi-
larity matching using metrics like the tree-edit distance [6].
The substitution tree [2] has been used to create indices for
operator trees in the Math Web Search systems [3].

One method adapts TF-IDF retrieval for SLTs, using vec-
tors of subexpressions, along with subexpressions where ar-
guments are replaced by wildcards [7]. SLTs are modified,
normalizing argument order for commutative operators and
representing operator precedences. Text in the paragraphs
preceding and following formulae are added to provide con-
textual features for improved ranking [16].

Spectral Approaches. These approaches use paths or
partial subtrees rather than complete subtrees as retrieval
primitives. This can improve recall through more flexible
partial matching of expressions (e.g. in the SLT for x2a, x2

is a subtree, but x2i is not). Nguyen et al. convert operator
trees to a bag of ‘words’ representing individual arguments
and operator-argument triples [10]. A lattice is defined over
generated word sets for formulae, and a breadth-first search
starting from the query formula set is used to find similar
formulae. Hiroya and Saito [4] use bags of paths from the
root to each operator and operand in an operator tree, with
an inverted index used for retrieval. The large number of
possible paths from the root make this technique brittle.

The Tangent search engine uses relative positions of sym-
bols in SLTs to create a bag of symbol pairs representa-
tion [14, 19], along with extensions to represent matrix and
grid structures [11]. This representation supports partial
matches well, while preserving enough information to return
exact matches. Formula similarity is defined by the har-
monic mean for the percentage of matched pairs in the query
and a candidate (i.e., Dice’s coefficient).3 A Dice coefficient
variant incorporating symbol pair frequencies was found to
perform similarly [14]. This technique combined with key-
word retrieval in Solr produced the highest Precision@5 re-
sult for the NTCIR-11 math retrieval task (92%) [1].

The Tangent-3 system [19] incorporates a two-stage re-
trieval model with an optimized search engine based on sym-
bol pairs sets, using the Dice coefficient similarity metric for
candidate selection, and then a reranking stage using the
Maximum Subtree Similarity (MSS) metric [19]. In this pa-
per, we take advantage of the improvements in the Tangent-3
system and evaluate the effect of using various scoring met-
rics for MathIR (see Section 4).

3. METHODOLOGY
In this work, we use a simple model where keywords and

math expressions in a query are processed separately and re-
sults are then combined to produce a final document ranking
as illustrated in Figure 1.

3.1 Text Retrieval
The text retrieval component of Tangent-3 is unchanged

from Tangent-2 [11]. We have used Solr which provides an
inverted index and TF-IDF scoring algorithm. The text sim-
ilarity score used in our system is provided by Solr’s Dis-
junction query, which applies TF-IDF to multiple fields of a
document. For a single field, Solr scores a document d for
query q = {t1, ..., tn} by:

st(q, d) = c(q, d)idn(q)
∑
t∈q

√
freq(t, d) · idf(t)2 · norm(t, d)

where c is the ratio of query terms (ti) matched in the docu-

ment, idn(q) =
√∑

t∈q idf(t)2
−1

normalizes the squared idf

values, freq(t, d) the number of times t appears in d, and
norm(t, d) is the normalized number of tokens in the field
(in our case, body text or title).

To emphasize title text, the score for the title field is dou-
bled, and then the maximum of the title and body text scores
is returned as the final text score.

3.2 Formula Retrieval
The Tangent-3 formula search engine [19] employs a two-

stage cascading search [15] for fast retrieval and intuitive
rankings (see Figure 2). Queries are parsed into a Symbol
Layout Tree (SLT, see Figure 3), which is then traversed
from the root, generating tuples of the form (s1, s2, R,#)
with ancestor symbol s1, descendant symbol s2, edge label
sequence R from s1 to s2, and a count (#). Two parame-
ters control the maximum path length between symbols in
tuples (the window size, w) and whether to include tuples
for symbols at the end of writing lines (EOL).

3Given query tree Tq and candidate tree Tc with symbol pair sets

Fq and Fc, Dice’s coefficient of similarity is given by
2|Fq∩Fc|
|Fq|+|Fc|

.

Query Processing

Core Engine

Query
Formula Parse Gen. Tuples

(s1, s2, R, #)
SLT

Wildcard
Expansion

1 wildcard

Inv. Index:
tuple to

in exps.

0 wildcards

X
(ignore)

2 wildcards

Window Size
(w)

End-of-Line
(EOL)

Tuple List Gen. & Exec.
Iterator Trees

Postings

Number of Hits
(k)

Re-rank
(M1-M4)

Initial
Ranking Final

Ranking

Figure 2: Tangent-3 Formula Search Engine.
5/6/15, 10:24 PMexpression

Page 1 of 1file:///Users/rlaz/Desktop/Research/Tangent_0.3/tangent-03/tangent/CIKM_paper/Figures/NTCIR11-Math-94_query.svg

()2x1

π =

i

↓
2

 *
↑

N i

πi = 2∗
(
N
i

)

Figure 3: Query Formula with Corresponding SLT.
The query has one wildcard, and a tabular structure.

After parsing, the candidate selection retrieval stage (the
core engine) ranks a given number of expressions k by match-
ing query tuples, using an inverted index mapping symbol
pair relationships to expressions and counts (see Sections
3.2.2 and 3.2.3). Tuples with one wildcard are expanded,
but tuples with two wildcards are ignored for efficiency.

The initial ranking weights matched vs. unmatched sym-
bol pairs in the query and candidates. The second (re-
ranking) stage finds an approximate best matching subtree
(see Section 3.2.4) and re-scores candidates for the query
using a detailed similarity metric (see Section 3.2.5)

3.2.1 Representation
SLTs in Tangent-3 use a unified representation of all paren-

thesized subexpressions regardless of their interpretation (for
example, as function arguments vs. parenthesized matrices).
To use greedy unification, we also add a crude representation
of type. We describe these in more detail elsewhere [19].

Every node has a label, and a node’s type (number, vari-
able, operator, etc.) is reflected in its label. If a node’s label
includes an exclamation mark (e.g., V!), the type is the la-
bel prefix up to the (first) exclamation mark. Node labels
starting with an asterisk (*) have type wildcard, and other
node labels without exclamation marks have type operator.

Labeled edges in the SLT capture the spatial relationships
between objects represented by the nodes. With respect to a
given object O, nine axes reflect the following relationships:
next, within, element, above, below, pre-above, pre-below,
over and under. The ‘element’ relationship references the
next element appearing in row-major order inside a struc-
ture represented by M! (matrices, tabular structures, and
parenthesized expressions).

An SLT is rooted at the leftmost object on the main writ-
ing line of the formula it represents. Figure 3 shows an
example of an SLT, where for simplicity, unlabeled edges
represent the next relationship and the type prefixes are
omitted. Additional details on tuple generation from this
representation are available in our previous work [19].

3.2.2 Index
Indexing of math expressions is done through the core

engine of Tangent-3. Since runtime performance is a high
priority, the core engine uses a customized inverted index
data structure implemented in C++.

The input to the indexer is a set of document names and
the extracted mathematical formulae found in each docu-
ment. Each formula is converted to a set of tuples that
serve as index and search “terms.”

At index time, an inverted index is built over the given
document-formula-tuple relationships. The index includes
postings lists that map each tuple to all formulae contain-
ing that tuple. In order to return document information for
query results, the engine stores postings lists mapping each
formula identifier to the identifiers of the documents contain-
ing those formulae, along with their positions in documents.

More details about the core engine index, its data struc-
tures and additional optimizations can be found in our pre-
vious work [19].

3.2.3 Candidate Selection
The core engine is the first retrieval stage in Tangent-

3, quickly finding the top-k highly relevant matches for a
formula. The engine ranks these top-k formulae using Dice’s
coefficient over tuples, counting the number of tuples that
overlap between the query and a candidate formula using
the query iterators. In addition, the engine evaluates only a
subset of the query language functionality to allow the use
of a fast and simple ranking algorithm that can still find a
good set of candidate results. For example, the core engine
supports limited wildcard functionality.

Query processing follows the architecture shown in Fig-
ure 2. First, the query is parsed into an SLT, and tuples are
extracted. Then wildcard tuples are expanded, the associ-
ated postings lists for each tuple are found, iterators over
these lists are created, and an iterator tree that implements
the query is formed. Next, the iterator tree is advanced
along formula identifiers in order, the scores are calculated,
and the top-k formulae are stored in a heap. During this
process, non-wildcard iterators are advanced first so that
wildcard iterators only match unallocated tuples. After the
iterators are finished, matching formulae and scores are re-
turned along with the associated document names.

3.2.4 Reranking: Matching
Since our formula retrieval system supports partial match-

ing, it requires a detailed matching procedure that involves
identifying corresponding parts of the SLTs that represent
a query and a candidate match. We base such a correspon-
dence on structural equivalence of those parts. In this con-
text, we refer to those corresponding parts as aligned SLTs.

Formally, we say that SLTs T1 and T2 are aligned if there
is an isomorphism f mapping nodes from T1 onto nodes from
T2 such that for every edge (na, nb) ∈ T1, there is a corre-

Table 1: Tangent-3 greedy wildcard expansion.
Wildcards are shown with red asterisks (e.g. * or
1). Exact matches are shown in green, wildcard
matches in red and wildcard expansion anchors in
blue. Symbols in black are unmatched.

Behavior Query Match

Unrestricted
x+ ∗

x+1
x+y + z + sin(x)
y + x+z = π

4

e∗ f(x) = ex+1 + 2

Restricted
by children

∗2+1
x2 + y2+1
x2 + y+1
x2 + (y + z)2+1

Restricted
by binding

∗1∗2+∗1∗+1
x2+x+1
(x+ 1)2+(x+ 1)+1
x2+y+1

Horizontal
expansion
(right)

x+ ∗+1

x+y+1
x+y+z + 1
x+y − z+1
x+ 1

2+y − 3z+1

Horizontal
expansion
(left)

∗+1
x+ y + z+1
α = f(x+ y+1, x2)
f (x, y) = 1

x+y+1

sponding edge (f(na), f(nb)) ∈ T2 that has the same label.
(Note that node labels in aligned trees need not match.).

In addition, approximate matches might also involve uni-
fication which in this context means simple substitutions of
symbols in one SLT by alternative symbols (e.g., x for y
or 3 for 2). When matching T1 with T2 and allowing sub-
stituted symbols, it is important that the substitutions are
consistent when determining that T1 and T2 match approx-
imately. We identify candidate sets of nodes in T1 that can
be consistently relabelled to match T2.

A greedy matching algorithm is applied to find the ap-
proximately best alignment between a given query SLT Tq

and a candidate SLT Tc. The algorithm tests all potential
alignments between Tq and Tc and selects the alignment that
has the maximum value for a given similarity metric. For
each candidate alignment, the procedure applies a greedy
unification algorithm that attempts to maximize the num-
ber of nodes with matching labels after substitution. In the
end, the best alignment found is used to define the similarity
score between query and candidate. Additional definitions,
theorems and algorithms describing our basic matching pro-
cedure in detail can be found elsewhere [19].

Wildcards in queries can be expanded to match subtrees
of the candidte SLT. Additional restrictions are applied to
ensure that wildcards with the same name are bounded con-
sistently to the same subtrees. The number of potential
alignments between a query and a candidate grows quickly-
when the number of wildcards increases because wildcards
can be expanded to match subtrees of any arbitrary size.

To keep our greedy matching algorithm efficient, we only
expand wildcards if certain conditions are met. For example,
we always expand wildcards completely if they are located
at leaf nodes of the query SLT. Otherwise, we only allow
horizontal expansion which means matching elements to the
right on the same baseline by following ‘next’ links in the
SLT. We expand wildcards horizontally until we find a node
in the candidate that can be matched with the ‘next’ child

of the wildcard node in the query. We restrict horizontal
expansion if the wildcard node has children other than a
‘next’ child. When the root of the query subtree is a wildcard
and it is horizontally expandable, we treat it as a special case
and allow left-side horizontal expansion to match parents of
the current alignment root located on the same baseline on
the candidate expressions. Examples of different types of
wildcard expansions behaviors are shown in Table 1.

3.2.5 Reranking: Scoring
Because the whole SLT for an arbitrary query formula will

not necessarily align with the SLT for an arbitrary candidate
match formula, we need to consider subtrees of the SLTs
that can be aligned. In so doing, we need to allow (but pe-
nalize) situations in which superfluous or mismatched sym-
bols might appear in the query or in the candidate match.
We wish to balance the amount of structural match with
the number of symbols that are identically preserved, but
also take into account the size of the “excess” unmatched
structure and the extent to which wildcards engulf candi-
date nodes.

We suggest the following properties for a scoring function
(see Figure 4): alignments with more matched symbols, and
especially identical symbols, in close proximity to each other
score higher than those with fewer matched symbols or more
disconnected matches; if two candidates score equally with
respect to matched symbols and their proximity, the one
with fewer superfluous symbols scores higher; and every-
thing else being equal, alignments with more matched sym-
bols that are identical scores higher. Finally, alignments in
which wildcards match only a few symbols score higher than
alignments with large parts absorbed by wildcards.

Tangent-3 uses two different scoring functions: the Dice
coefficient of pairs of symbols matched for candidate selec-
tion, and Maximum Subtree Similarity (MSS) for re-ranking
[19]. Here, we describe these two metrics and add two new
variations of the Dice coefficient metric that can be used for
re-ranking the candidate set.

First, we define Matching(Tq, Tc) as a function that re-
turns the approximated maximum subtree between query
tree Tq and candidate tree Tc as defined in Section 3.2.4. Let
Tm = Matching(Tq, Tc). Let Em be the set of nodes from Tm

that are exact matches. Let Um be the set of nodes from Tm

that are unified matches. Let Wm be the set of nodes from
the candidate in Tm that are matched by wildcards, and
let Wq be the corresponding set of wildcard nodes from the
query in Tm. Note that Em, Um, Wm are mutually exclusive
subsets of Tm. Let EW m = Em ∪Wm, EW q = Em ∪Wq,
EWU m = Em ∪Wm ∪ Um and EWU q = Em ∪Wq ∪ Um.
In addition, let Pairs(x,w) be a function that counts the
number of pairs of symbols defined by a set of nodes x given
the window parameter w. In this case x will be a subset of
nodes from Tc.

In multiple cases, just using the main scores for some sim-
ilarity metrics is not enough to distinguish certain matches.
To handle these cases, a score vector is formed by adding
tie-breakers. A lexicographical comparison between score
vectors of two given candidates is used to determine which
one ranks higher. The value Wm that represents the total
number of elements in the candidate that were matched to
wildcards is used as a tie-breaker in some of the functions
proposed. In addition, let WDev be the standard deviation
of the number of elements matched to each individual wild-

(1, 0, 3) (1, 0, 2) (1, -1, 2) (0.6, 0, 2) (0.6, -1, 2)

Figure 4: MSS Scoring for Query S(k). Candidate
formulae are ranked using a triple: 1) unified struc-
tural match, i.e., Dice coeff. of query symbol & rela-
tionship recall, 2) unmatched symbols (-ve), and 3)
matched symbols identical to query symbols. Paren-
theses are represented as single nodes/symbols.

card in Wm. Finally, Let Lm be a score that depends on the
left to right location of the root of Tm in Tc. Lm will give
preference to subtrees located closer to the root of Tc.

M1 - Approximated Dice Coefficient. This is the
metric used by the Core Engine for selection of candidates.
It is the Dice coefficient of matched pairs of symbols. The
metric is considered an approximation because wildcards are
not expanded beyond a single symbol, so additional sym-
bols that could be covered by wildcards are considered un-
matched by this metric. When the candidate expression
and/or query expressions have a depth less than two, this
metric considers additional tuples for symbols at the end of
writing lines (EOL). Also, note that the core engine does
not perform unification.

M2 - Constrained Dice Coefficient. This is a modified
version of function M1. Unlike the original metric, this con-
strained version is computed after finding the largest com-
mon subtree using Matching(Tq, Tc). As a result, many in-
consistent tuple matches will be removed resulting in lower
scores for some expressions that M1 would rank higher.
However, matching does consider wildcard expansion result-
ing in higher scores for some candidates that M1 would rank
lower. The unification algorithm is disabled for this metric.
In addition, this metric does not require the usage of addi-
tional tuples for symbols at the end of writing lines, instead
it does add a dummy pair to the count to deal with small
expressions. The M2 score is defined as:

Rm2 =
Pairs(EW q, w) + 1

Pairs(Tq, w) + 1
, Pm2 =

Pairs(EW m, w) + 1

Pairs(Tc, w) + 1

M2 = (
2Rm2Pm2

Rm2 + Pm2
,−Wm,−WDev ,−Lm)

M3 - Dice Coefficient with unification. Similar to
M2, this is also based on the Dice coefficient of matched
triplets after matching. However, this metric considers uni-
fication during matching and scores unified matches lower
than regular matches. The final M3 is computed as follows:

Rm3 =
Pairs(EW q, w) + Pairs(EWU q, w) + 2

2(Pairs(Tq, w) + 1)

Pm3 =
Pairs(EW m, w) + Pairs(EWU m) + 2

2(Pairs(Tc, w) + 1)

M3 = (
2Rm3Pm3

Rm3 + Pm3
,−Wm,−WDev ,−Lm)

M4 - Maximum Subtree Similarity. This metric is
the same as defined in our previous work [19]. The only
difference is that our newest matching algorithm does wild-
card expansion. An example of the sorting produced by this

metric is given in Figure 4. The metric is defined as follows:

S =

2

|Tq|
|EWUq|

+
|Tq|−1

max(|Pairs(EWUq,1)|,0.5)

if |EWU q| > 0

0 otherwise

M4 = (S, |EWU m| − |Tc|, |Em|)

In this function, S represents the harmonic mean of the
matched symbols and spatial relationships on the query, to
weight large, connected matches higher. The sub-expression
max (|Pairs(EWU q, 1)|, 0.5) is used to avoid S becoming 0
when no tree edges are matched.

3.3 Combining Results
After searching for keywords on the text index and finding

documents with matching formulas, these outputs are com-
bined into a single final ranking of documents. For this task,
we compute the final score sf of a document d for query q
using a simple linear combination as follows:

sf = α

(∑
e∈q

bestmatch (e, d)we

)
+ (1− α) st (q, d)

where α is the weight given to the math component of the
query, bestmatch(e, d) is a function that returns the score
for the best matching formula in d for math expressions e,
we is the relative weight given to math expression e. st(q, d)
represents the text search score for document d as defined
in Section 3.1. If there are no keywords on the query q, then
st(q, d) is equal to 1. Note that

∑
e∈q we = 1 and 0 ≤ α ≤ 1.

The function bestmatch(e, d) returns a score vector with
m dimensions as defined in Section 3.2.5. The result from
st is treated as a vector with the actual text score value
on the first dimensions and 0 for each of the remaining m
- 1 dimensions. The final score of a document is a vector
of scores. Documents are sorted by lexicographical order of
these score vectors.

4. EXPERIMENTS
In order to investigate how to assign weights to keywords

and math expressions, we tested two different ways to assign
the value α representing the weight given to math expres-
sions in the query. The first way is fixed (α = 0.5) where
math expressions and keywords weigh the same. The sec-

ond way is dynamic defined as α = |E|
|E|+|T | for each query

q, where E and T are the sets of all math expressions and
keywords in q respectively.

In order to investigate if larger expressions should have
heavier weights than smaller ones on queries with multi-
ple math expressions, we evaluated two different ways to
assign the individual weights we assigned to each math ex-
pression e on a given query q. The first way is balanced,
where we = 1

|E| meaning that all math expressions weight

the same independently of their size. The second way is by
size, where larger expressions in the query are given heavier

weights using we = size(e)∑
x∈E size(x)

, where size(x) returns the

count of symbols in x.
We configured our system using 4 different settings using

combinations of these 2 variables. We used these 4 settings
for both the main arXiv tasks and the Wikipedia subtask.
We fixed the similarity metric to M3 as defined in Section
3.2.5. The window size w was unbounded (all possible pairs)

Table 2: NTCIR-12 MathIR arXiv Main Task. Precision@K Results using TREC evaluation tool

Relevant Partially Relevant
Submission P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
MCAT allfields lr unif 0.2621 0.2448 0.2046 0.1810 0.5586 0.5483 0.5126 0.4707
MCAT allfields nowgt unif 0.2828 0.2379 0.2184 0.1948 0.5448 0.5345 0.5149 0.4897
RITUW ArXiv run1 (α-fixed we-by-size) 0.2069 0.1517 0.1126 0.0948 0.4966 0.3966 0.3310 0.2879
RITUW ArXiv run2 (α-fixed we-balanced) 0.2069 0.1517 0.1126 0.0948 0.4966 0.3966 0.3310 0.2879
RITUW ArXiv run3 (α-dynamic we-by-size) 0.1379 0.1138 0.1034 0.0914 0.4897 0.4586 0.4207 0.3983
RITUW ArXiv run4 (α-dynamic we-balanced) 0.1379 0.1138 0.1034 0.0914 0.4897 0.4586 0.4207 0.3983
Ideal Pool Ranking 0.6966 0.5586 0.4644 0.4086 0.9655 0.9552 0.9172 0.8828

Table 3: NTCIR-12 optional MathIR Wikipedia Task. Precision@K Results using TREC evaluation tool

Relevant Partially Relevant
Submission P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
ICST WikiMainTask 0.4733 0.3767 0.2978 0.2617 0.8533 0.7900 0.7133 0.6600
RITUW wiki run1 (α-fixed we-by-size) 0.2533 0.2367 0.2089 0.1983 0.4933 0.4833 0.4889 0.4733
RITUW wiki run2 (α-fixed we-balanced) 0.2533 0.2467 0.2156 0.2017 0.4933 0.4900 0.4822 0.4700
RITUW wiki run3 (α-dynamic we-by-size) 0.1600 0.1300 0.1244 0.1267 0.3867 0.3633 0.3733 0.3617
RITUW wiki run4 (α-dynamic we-balanced) 0.1600 0.1400 0.1311 0.1300 0.3800 0.3667 0.3644 0.3583
Ideal Pool Ranking 0.8400 0.6967 0.5956 0.5133 0.9467 0.9400 0.9289 0.9217

for the Wikipedia main subtask, and it was set to 2 for the
arXiv main task because of memory limitations for larger
index. Final submissions can be described as: α-fixed we-by-
size, α-fixed we-balanced, α-dynamic we-by-size, α-dynamic
we-balanced. Table 2 shows results using Precision@K for
K = {5, 10, 15, 20} on MathIR arXiv Main Task for rele-
vant and partially-relevant matches. Table 3 shows the same
evaluation metrics on optional MathIR Wikipedia Task. For
space reasons, we have only included submissions from other
systems containing highest scores for any category.

Note that a TREC evaluation tool was used to compute
Precision@K for all participants. This tool’s default be-
havior re-ranks documents with the same score based on
their ids. Systems like ours use internal tie-breakers that
were not submitted as part of the final score, and as a
result Precision@K values were affected by re-ranking of
documents. If we use the original ranks submitted, our
best submission (RITUW wiki run2) obtains higher preci-
sion values (P@5, P@10, P@15, P@20) of (26.21%, 20.00%,
16.32%, 13.62%) for relevant results and (54.48%, 45.52%,
39.08%, 35.17%) for partially-relevant results on the MathIR
arXiv Main Task, and (25.33%, 25.00%, 22.00%, 20.50%) for
relevant results and (49.33%, 49.33%, 48.67%, 47.67%) for
partially-relevant results on the optional MathIR Wikipedia
Task. Complete precision values for all submission are avail-
able in the main NTCIR-12 MathIR competition paper [17].

In all result tables, we have included additional rows for
“Ideal Pool Ranking” representing the performance of an
ideal system with perfect relevance-based ranking for all re-
sults in each pool. This represents a soft upper bound for
the current pool of results that does not consider additional
relevant and partially-relevant documents/formulas in the
collection that might be absent from each pool. In addition,
we have included rows for “Re-ranking Upper Bound” in Ta-
bles 5 and 6 to represent the maximum Precision@K values
that our system could get if the top-1000 candidates selected
by the core are re-ranked according to their relevance scores.

In order to address our research questions regarding sim-
ilarity between math expressions, we tested 4 different met-
rics for the optional MathIR Wikipedia Formula Brows-
ing Task. Table 4 shows results using Precision@K for
K = {5, 10, 15, 20} on this task for relevant and partially-

relevant matches. Table 5 shows the same evaluation when
the submitted ranks are used without reranking ties by docu-
ment name. For metrics M1, M2 and M3, w was unbounded
(all pairs). Finally, Table 6 shows our Precision@K results
for this task for relevant and partially-relevant matches di-
vided between queries with and without wildcards. There
were a total of 20 concrete queries (without wildcards) and
20 wildcard queries in the workload.

In terms of space, our system required 8,348.39 MB in
hard drive to index all formulas in the arXiv collection and
580.51 MB for the Wikipedia dataset. These quantities re-
quire between 2.0 and 2.5 times that space when loaded into
RAM. In terms of run time, we had the following (mean,
minimum, maximum, median) times (in seconds): MathIR
arXiv Main Task (27.54, 2.77, 178.51, 16.014) and optional
MathIR Wikipedia Task (37.83, 1.33, 176.06, 33.84). In the
case of the optional MathIR Wikipedia Formula Browsing
Task, we obtained: M1 (2.67, 0.10, 64.13, 1.07), M2 (12.75,
0.17, 109.61, 3.61), M3 (45.26, 0.58, 1032.39, 8.58), M4

(29.80, 0.18, 718.70, 4.67). Note that these run times are
typically longer for many queries containing wildcards. For
example, M4 requires (13.05, 1.26, 66.97, 4.50) for concrete
queries, but (46.55, 0.18, 718.70, 4.82) for wildcard queries.
We use a Ubuntu Linux 14.04 server with 24 Intel Xeon pro-
cessors (2.93GHz) and 96GB of RAM. While some indexing
operations were parallelized, all retrieval times are reported
for single threaded processing.

4.1 Discussion
For both the arXiv and Wikipedia main tasks, we gener-

ally obtained better precision using α-fixed. Most queries in
the MathIR arXiv Main Task contained multiple keywords
and at most one math expression making the dynamic set-
ting give larger weights to keywords. In most cases, our sys-
tem performed better when math expressions in the query
had the same weight as keywords. A detailed analysis of re-
sults showed that this might be due to multiple cases where
documents that only matched keywords were considered ir-
relevant. In particular, this happened often when these key-
words were very generic terms like “define”, “name”, “arith-
metic”. Also, certain keywords like “mean” are ambiguous
and should only be matched in context. Our current search

Table 4: NTCIR-12 optional MathIR Wikipedia Formula Browsing Task. Precision@K Results using TREC
evaluation tool

Relevant Partially Relevant
Submission P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
MCAT-browse allfields nowgt unif 0.4900 0.3900 0.3317 0.2825 0.9100 0.8400 0.8067 0.7687
RITUW-formula run1 (M1) 0.4150 0.3150 0.2650 0.2200 0.8100 0.7450 0.7117 0.6737
RITUW-formula run2 (M2) 0.4250 0.3175 0.2567 0.2200 0.8150 0.7550 0.7200 0.6938
RITUW-formula run3 (M3) 0.4400 0.3225 0.2700 0.2300 0.8400 0.7650 0.7317 0.7063
RITUW-formula run4 (M4) 0.4450 0.2925 0.2517 0.2200 0.8250 0.6825 0.6533 0.6100
Ideal Pool Ranking 0.7900 0.6400 0.5383 0.4725 1.0000 1.0000 0.9933 0.98

Table 5: NTCIR-12 optional MathIR Wikipedia Formula Browsing Task. Precision@K Results using sub-
mitted ranks

Relevant Partially Relevant
Submission P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20
MCAT-browse allfields nowgt unif 0.5150 0.4050 0.3450 0.3000 0.9300 0.8650 0.8300 0.8012
RITUW-formula run1 (M1) 0.4300 0.3400 0.2933 0.2450 0.8400 0.7800 0.7533 0.7225
RITUW-formula run2 (M2) 0.4450 0.3675 0.3100 0.2687 0.8550 0.8125 0.7833 0.7638
RITUW-formula run3 (M3) 0.4900 0.3750 0.3283 0.2812 0.8750 0.8175 0.7833 0.7563
RITUW-formula run4 (M4) 0.4900 0.3750 0.3217 0.2937 0.9000 0.8250 0.8033 0.7762
Re-ranking Upper Bound 0.7450 0.5625 0.4433 0.3700 1.0000 0.9925 0.9683 0.9375
Ideal Pool Ranking 0.7900 0.6400 0.5383 0.4725 1.0000 1.0000 0.9933 0.9800

Table 6: NTCIR-12 optional MathIR Wikipedia Formula Browsing Task. Precision@K Results using ranks
for concrete and wildcard queries

Relevant Partially Relevant
Query Type Submission P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20

Concrete

RITUW-formula run1 (M1) 0.4800 0.3550 0.2900 0.2375 0.9400 0.8850 0.8267 0.7950
RITUW-formula run2 (M2) 0.4200 0.3300 0.2667 0.2300 0.9200 0.8550 0.8000 0.7700
RITUW-formula run3 (M3) 0.5200 0.3500 0.2933 0.2500 0.9100 0.8600 0.8133 0.7750
RITUW-formula run4 (M4) 0.5300 0.3700 0.3167 0.2775 0.9100 0.8250 0.8067 0.7700
Re-ranking Upper Bound 0.7200 0.5400 0.4167 0.3375 1.0000 1.0000 0.9800 0.9325
Ideal Pool Ranking 0.7300 0.5800 0.4733 0.4000 1.0000 1.0000 0.9967 0.9800

Wildcard

RITUW-formula run1 (M1) 0.3800 0.3250 0.2967 0.2525 0.7400 0.6750 0.6800 0.6500
RITUW-formula run2 (M2) 0.4700 0.4050 0.3533 0.3075 0.7900 0.7700 0.7667 0.7575
RITUW-formula run3 (M3) 0.4600 0.4000 0.3633 0.3125 0.8400 0.7750 0.7533 0.7375
RITUW-formula run4 (M4) 0.4500 0.3800 0.3267 0.3100 0.8900 0.8250 0.8000 0.7825
Re-ranking Upper Bound 0.7700 0.5850 0.4700 0.4025 1.0000 0.9850 0.9567 0.9425
Ideal Pool Ranking 0.8500 0.7000 0.6033 0.5450 1.0000 1.0000 0.9900 0.9800

for keywords in text does not consider context, order or prox-
imity of matched keywords, which results in many irrelevant
documents matching only keywords ranked very high.

In terms of weights assigned to each math expression in
queries with multiple expressions, we found that there was
not much difference between setting by− size and balanced.
However, in the current query sets most queries contain only
one math expression meaning that current data might not
be enough to observe a difference if any exists. Analysis
of queries with multiple expressions shows that, in many
cases, a document is not considered relevant unless all math
expressions are matched. The relevance of a math expression
in a query is likely to depend on other factors.

Overall, our results show that simple linear combination
of weights for keywords and math expressions is not enough
for search, and that interactions between math expression
and text in their context should be considered in the future.

We can compare our proposed similarity metrics using the
results from the optional MathIR Wikipedia Formula Brows-
ing Task shown in Tables 5. Note that for this analysis we
only consider Precision@K produced by our ranks originally
submitted. As expected, our core engine ranking (M1) pro-
vides a baseline performance before re-ranking with slightly
worse results than our re-ranking metrics. Overall, the Max-
imum Subtree Similarity (M4) has the best performance of

our four metrics. However, a detailed analysis separating
concrete from wildcard queries shows that different metrics
perform better under certain conditions (see Table 6).

For concrete queries, M4 performed best in terms of rank-
ing the most relevant matches higher, but M1 was the best
for partially relevant matches. M4 achieved better perfor-
mance for relevant results because in many cases some ex-
pressions became exact matches after variable unification
and were considered relevant by evaluators. In the case
of disconnected exact sub-matches, our detailed matching
algorithm enforces a connected component constraint and
as a result some good candidates might be ranked low by
the scoring functions M2, M3 and M4 based on the size
of the largest sub-match. However, disconnected exact sub-
matches tend to be good only if they appear on similar base-
lines. For example, for the query u+v+x+y+z, the match
u+v−y+z might be considered acceptable, but u+v

y+z
might

not. Also, M3 and M4 increase the rank of smaller unified
matches that often were considered to be less relevant than
disconnected exact matches.

For wildcard queries, all metrics using wildcard expansion
(M2, M3, M4) performed better on average than the core
engine (M1) that only considers single symbol matches. In
terms of relevant matches, the gap between these three met-
rics that consider wildcard expansion is small. At the level

of partial matches, M4 performs better than M3 because
multiple slightly relevant unified matches are ranked higher.
For queries containing polynomials, wildcard horizontal ex-
pansion to the left matched high degree polynomials that
were considered irrelevant.

Unification of variables and constants was useful when ap-
plied over candidates with high structural match. However,
multiple irrelevant expressions are ranked too highly when
unification is applied over partial structural matches.

By comparing the best results for each metric (M1-M4)
to the “Re-ranking Upper Bound” and “Ideal Pool Ranking”
in Tables 5 and 6, we can measure how much room there
is for improvement both in terms of initial candidate se-
lection and re-ranking. For Precision@20, the gap between
“Ideal Pool Ranking” and “Re-ranking Upper Bound” is cur-
rently 10.25% for relevant results meaning that, in average,
there are at least 2 out of 20 relevant results in the ideal
pool that are not selected by our system as initial candi-
dates. For concrete queries only, this gap is just 6.25%
(around 1 candidate), and for wildcard queries the gap is
14.50% (around 3 candidates). In terms of re-ranking, the
gap for Precision@20 for relevant results between the best
re-ranking metric and the current upper bound 7.63% over-
all, 6.00% for concrete-only and 9% for wildcard-only. The
larger performance gaps are currently on queries containing
wildcards. Note that the values for our “Re-ranking Upper
Bound”are higher than the best submission (7% of difference
in Precision@20 for relevant results), meaning that we could
achieve similar precision values by improving our re-ranking
functions using the same candidates from the core.

5. CONCLUSION
A math-aware retrieval system has been presented, and its

performance has been evaluated on multiple MathIR tasks.
Our research questions from the introduction have also been
partially answered. In terms of weighting query terms (RQ1,
RQ2), we need a better model for weight distribution that
considers interactions between math expressions and text.
Some query terms might be considered more important based
on their intrinsic value to the query topic independently of
their size in terms of count of symbols.

The optional MathIR Wikipedia Formula Browsing Task
in particular was useful to provide additional answers to
our questions. Our current set of candidates obtained by
the core using the Dice coefficient (M1) is competitive, but
there is considerable room for improvement (RQ3). A de-
tailed matching algorithm was generally helpful to rank the
most relevant matches higher, but some partially-relevant
disconnected matches are ranked too low (RQ4). A less
constrained matching algorithm can be helpful in ranking
these candidates higher. On the other hand, the unification
process might need to be constrained to avoid ranking many
irrelevant partial matches too high (RQ5). Finally, both the
Dice Coefficient and the MSS performed better under differ-
ent circumstances (RQ6). Further analysis can be used to
create similarity metrics that perform better.

6. REFERENCES
[1] A. Aizawa, M. Kohlhase, I. Ounis, and M. Schubotz.

NTCIR-11 Math-2 task overview. In NTCIR, pages
88–98, 2014.

[2] P. Graf. Substitution tree indexing. In RTA, pages
117–131, 1995.

[3] R. Hambasan, M. Kohlhase, and C.-C. Prodescu.
Mathwebsearch at ntcir-11. In NTCIR. Citeseer, 2014.

[4] H. Hiroya and H. Saito. Partial-match retrieval with
structure-reflected indices at the NTCIR-10 math
task. In NTCIR, pages 692–695, 2013.

[5] S. Kamali and F. W. Tompa. A new mathematics
retrieval system. In CIKM, pages 1413–1416. ACM,
2010.

[6] S. Kamali and F. W. Tompa. Structural similarity
search for mathematics retrieval. In Intelligent
Computer Mathematics, pages 246–262. Springer,
2013.

[7] X. Lin, L. Gao, X. Hu, Z. Tang, Y. Xiao, and X. Liu.
A mathematics retrieval system for formulae in layout
presentations. In SIGIR, pages 697–706, New York,
NY, USA, 2014. ACM.

[8] B. R. Miller and A. Youssef. Technical aspects of the
digital library of mathematical functions. Annals of
Mathematics and Artificial Intelligence,
38(1-3):121–136, 2003.

[9] J. Mǐsutka and L. Galamboš. System description:
Egomath2 as a tool for mathematical searching on
wikipedia. org. In Intelligent Computer Mathematics,
pages 307–309. Springer, 2011.

[10] T. T. Nguyen, S. C. Hui, and K. Chang. A
lattice-based approach for mathematical search using
formal concept analysis. Expert Syst. Appl., 39(5):5820
– 5828, 2012.

[11] N. Pattaniyil and R. Zanibbi. Combining TF-IDF text
retrieval with an inverted index over symbol pairs in
math expressions: The Tangent math search engine at
NTCIR 2014. In NTCIR, pages 135–142, 2014.

[12] M. Ružicka, P. Sojka, and M. Ĺı̌ska. Math indexer and
searcher under the hood: History and development of
a winning strategy. In NTCIR, 2014.

[13] P. Sojka and M. Ĺı̌ska. Indexing and searching
mathematics in digital libraries. In Intelligent
Computer Mathematics, pages 228–243. Springer,
2011.

[14] D. Stalnaker and R. Zanibbi. Math expression
retrieval using an inverted index over symbol pairs. In
DRR, volume 9402, pages 940207–1–12, 2015.

[15] L. Wang, J. Lin, and D. Metzler. A cascade ranking
model for efficient ranked retrieval. In SIGIR, pages
105–114, 2011.

[16] Y. Wang, L. Gao, X. Liu, and K. Yuan. WikiMirs 3.0:
a hybrid MIR system based on the context, structure
and importance of formulae in a document. In Proc.
JCDL, pages 173–182, 2015.

[17] R. Zanibbi, A. Aizawa, M. Kohlhase, I. Ounis,
G. Topić, and K. Davila. NTCIR-12 mathir task
overview. In NTCIR. National Institute of Informatics
(NII), 2016.

[18] R. Zanibbi and D. Blostein. Recognition and retrieval
of mathematical expressions. IJDAR, 15(4):331–357,
2012.

[19] R. Zanibbi, K. Davila, A. Kane, and F. Tompa.
Multi-stage math formula search: Using
appearance-based similarity metrics at scale. SIGIR,
2016.

