
MST-Based Visual Parsing of Online Handwritten Mathematical Expressions

Lei Hu
Department of Computer Science
Rochester Institute of Technology

Rochester, USA
lei.hu@rit.edu

Richard Zanibbi
Department of Computer Science
Rochester Institute of Technology

Rochester, USA
rlaz@cs.rit.edu

Abstract—We develop a Maximum Spanning Tree (MST)
based parser using Edmonds’ algorithm, which extracts an
MST from a directed Line-of-Sight graph in two passes. First,
symbols are segmented by grouping input strokes, and then
symbols and symbol pair spatial relationships are labeled.
The time complexity of our MST-based parsing is lower than
the time complexity of CYK parsing with 2-D Context-Free
grammars. Also, our MST-based parser obtains higher formula
structure and expression rates than published techniques using
CYK parsing when starting from valid symbols. This parsing
technique could be extended to include n-grams or other
language constraints, and might be used for other notations.

Keywords-MST-based parsing, handwritten math recogni-
tion, Parzen windows, shape contexts

I. INTRODUCTION

Math expressions are an essential part of scientific doc-
uments. Handwritten math expression recognition can ben-
efit human-computer interaction, especially for educational
applications, and can be used to support math-aware search
engines or recognizing the structure and content of handwrit-
ten documents [1]. Math expression recognition consists of
three main parts: symbol segmentation, symbol recognition
and structural analysis. Many current math expression recog-
nition systems use 2-dimensional Stochastic Context-Free
Grammars (SCFG) to define an expression language, which
is then used to parse handwritten strokes or candidate sym-
bols using the Cocke-Younger-Kasami (CYK) algorithm.
Production rules in context-free grammars for handwritten
math need to be designed carefully for specific domains,
and often require special cases to deal with different writing
orders. Sometimes the number of rules can be in the hun-
dreds. Currently in practice, grammar creation is normally
done manually based on an expression sample.

In this paper, we consider whether a more intuitive
parsing technique based on visual features can compete with
these grammar-driven parsers. Motivated by the observation
that mathematical expression recognition can be posed as
searching for a Symbol Layout Tree (SLT) representing
symbols and their associated spatial relationships in a graph
of handwritten strokes, we propose MST-based parsing with
Edmonds’ algorithm [2], and introduce new visual features
based on shape contexts for use in parsing.

II. RELATED WORK

For online handwritten math recognition, syntactic pattern
recognition methods, and particularly CYK parsing with
2-dimensional Stochastic Context-Free Grammars (SCFG)
are widely used, and obtain good performance. Context-
free grammars can incorporate people’s prior knowledge and
heuristics well. With cost or probability estimates (e.g., for
symbol classification confidences), search algorithms can be
constructed to automatically define one or more best inter-
pretations within the very large space of possible symbol
segmentations, classifications, and structural relationships.
The quality of grammars is key for these systems, as they
constrain the output space: fewer possible interpretations
lead to a higher probability of selecting the correct interpre-
tation. However, ‘ungrammatical’ interpretations cannot be
returned without additional processing. The time complexity
of the CYK algorithm is O(N3|G|), where N is the number
of symbols in the expression, and |G| is the number of rules
in the grammar.

Chou [3] presented the first Cocke-Younger-Kasami
(CYK) algorithm adapted for 2-dimensional SCFGs, used
for parsing typeset math images. Recognition has two steps:
first a list of candidates characters in the image is created
using template matching, and character candidates are then
passed on for parsing. An 2-D extension of the CYK
algorithm is used to perform maximum likelihood parsing in
a manner similar to the Viterbi algorithm for Hidden Markov
Models. The Inside/Outside is used to learn the production
rule probabilities from a training set. In this paper, the
system takes an entire binary image as a sentence, and then
parses it hierarchically all the way down to the pixel level.

Yamamoto et. al [4] present an online handwritten math
expression recognition system based on a SCFG at the
stroke level. They represent the generation of the 2-D layout
and appearance for handwritten strokes in formulae. CYK
is used to identify the expression(s) derivable from the
expression grammar that have the highest likelihood strokes
and relationships. Each stroke is initially classified as a
symbol, and this defines the stroke likelihood. The structure
likelihood is calculated using geometric features.

Similar to [4], Le et. al [5] represent mathematical ex-

pressions using CFGs at the stroke level, and employ CYK
for parsing. As for Yamamoto et al., these grammars were
designed manually. Parsing tries to locate the legal expres-
sion with the highest combined probability for segmentation
scores, symbol classification scores, structure scores, and
production rule scores. SVMs are trained separately for two
spatial relation groups: (Above, Below, Inside) and (Hor-
izontal, Superscript, Subscript). The separation probability
for each pair of adjacent strokes is computed, and used to
define all possible symbol segmentation hypotheses. As a
result, they need to create production rules to capture all pos-
sible writing orders, such as those before and after fractions,
roots, and parentheses to avoid parsing failures. In symbol
classification, they define specific rules for dot/comma.

Celik et. al [6] present a math expression recognition
system based on 2-D context-free probabilistic graph gram-
mar at the symbol level. The probabilistic graph grammar
allows the system to find all valid interpretations and their
associated probabilities according to the grammar. The like-
lihood of an interpretation depends upon the suitability of
the symbols’ spatial distribution for the production rules
used, and likelihoods for recognized symbols. A drawback
of graph grammars is that they are much more expensive to
parse due to the complexity of subgraph matching, but they
also provide production rules that are easier to read than
CFG-based expression grammars.

Alvaro et. al [7], [8] present an online handwritten math
expression recognition system using SCFGs defined at the
symbol level. The paper [7] defines a 2D extension of SCFG
and the corresponding version of the Cocke-Younger-Kasami
(CYK) parsing algorithm. The SCFG determines whether to
merge two symbol candidates or not based on the class label
and class confidence produced by the symbol classifier. The
probability associated with the grammar rule is based on
statistics observed in the training data. Parsing contains two
steps. First, initialization begins by building basic units (lex-
ical units) from the set of symbol segmentation hypotheses.
Next, the parser calculates new subproblems of increasing
size, where both spatial and syntactic constraints are taken
into account for each new subproblem. During parsing,
there is a level for each subproblem size, and these levels
store a set of elements which contain their two-dimensional
structure information.

Awal et. al [9] present a math expression recognition
system using multiple two dimensional context-free gram-
mars. The two dimensional math expression grammars are
combined by two sets of one dimensional grammars that
consider the horizontal and vertical directions separately.
Each production rule is associated with a spatial relation
describing the layout between the elements of the rule, and
each relation has an associated cost function. Two features,
position and size difference are used to define costs. Gaus-
sian models are constructed for each element of a relation.
Given the input expression, a hypothesis generator produces

all possible symbol candidates which will be passed to a
symbol classifier and structure analyzer. The maximum num-
ber of hypotheses, strokes per symbol, and distances between
strokes forming a symbol are restricted. For each symbol
candidate, a score is assigned based on the symbol recogni-
tion cost and structural cost. The output of the recognition
system is a relation tree similar to an operator tree. Each
relation tree has its cost which is calculated recursively based
on symbol classification and relationship probabilities. The
system chooses the expression interpretation with minimum
cost according to the expression grammars.

Simistira et. al [10] propose a CYK-based algorithm
to parse handwritten math expressions. They use seven
geometrical features and train a probabilistic SVM classifier
to recognized spatial relations between two symbols or sub-
expressions. This paper assumes the symbols have been
correctly recognized and symbols are divided into three
categories: ascenders, centered and descenders. In addition,
the chronological order of symbols is used during parsing.

MacLean et. al [11] use CFGs to generate all identifiable
parses for the input strokes. Parses are represented as a fuzzy
set, in which the membership grade of a parse measures the
similarity between the expression and the handwritten input.
Parsing contains two steps: shared parse forest construction
and parse tree extraction. To identify and report parses
efficiently, they adapt and apply rectangular partitions and
shared parse forests, and introduce relational classes and in-
terchangeability. A Bayesian scoring model was introduced
in later work [12].

MST-Based Recognition. Graph-based parsing does not
require the definition of a grammar, instead seeking to iden-
tify a subgraph with minimal cost or maximum probability
subject to certain constraints. For math recognition, these
have been based on Minimum Spanning Trees (MSTs).

Suzuki et. al [13] present a printed math expression
recognition system using virtual link networks. Each node
represents a symbol, and each edge is represented by four
components: (parent candidate, child candidate, label, cost).
Recognition is performed by finding a spanning tree for the
network with minimum penalty. The penalty of the spanning
tree contains two parts: local penalty and global penalty.
The local penalty is calculated based on the distribution of
relative sizes and positions for each relation type in parent-
child links. The global penalty is based on predefined rules
designed to exploit context. The total penalty is the sum of
edge link penalties and the global penalty.

Matsakis [14] defined a segmentation method based on
minimum spanning trees (MST). For the given expression,
it will form an MST over the strokes. In the MST, each
node represents a stroke, and the distance between any two
strokes is the Euclidean distance between the centers of the
bounding boxes. The segmentation method only considers
partitions that form connected subtrees in the MST.

In the next section we introduce a new, more robust MST-

based parsing technique, which does not require a grammar.

III. METHODOLOGY

MST-Based Parsing. Figure 1 shows an example of an
MST-based parse. A Line-of-Sight (LOS) graph is con-
structed based on whether an unobstructed line can be drawn
from the center of one stroke to the convex hull of another
stroke [15]. After constructing the stroke level LOS graph
[16] (see Figure 1 (b)), a binary classifier labels each edge as
‘merge’ or ‘split’ (Figure 1 (c)). Each connected component
defined by ‘merge’ edges is taken to be a symbol candidate.
A symbol level Line-of-Sight graph is then constructed using
the symbol candidates, using the same LOS algorithm but
with symbols rather than strokes as input (Figure 1 (d)).
For each edge (symbol pair) in the symbol level Line-of-
Sight graph, a symbol spatial relationship classifier produces
a score list (a ranked list of scores (Ci, Si) for each class Ci
with score Si). Edmonds’ algorithm first adds a dummy node
to the symbol LOS graph with all symbols as its children,
which will allow us to represent the leftmost symbol on the
main baseline of the expression. The algorithm then extracts
a spanning tree at the symbol level (Figure 1 (e)). We then
remove the dummy node, producing a Symbol Layout Tree.

Our method is quite different from Eto and Suzuki’s MST-
based algorithm [13]: they recognized math images, used
undirected MSTs along with local beam searches, defined
heuristic penalty functions, and the construction of their
initial graph over symbols is unclear.

Edmonds’ Algorithm. We apply Edmonds’ algorithm [2]
to a directed Line-of-Sight graph over given or recognized
symbols [15], with symbol relationship classification prob-
abilities associated with edges. Given this directed graph
with real-valued edge weights, Edmonds’ finds a rooted
spanning tree with directed edges as output (see Figure 1
(d-e)). This fits our needs well, as the Symbol Layout Trees
we wish to recover are also rooted directed trees - while
more familiar, Prim and Kruskal’s MST algorithms produce
undirected spanning trees. We make one small change, in
that we use Edmonds’ to obtain the maximum probability
spanning tree. Edmonds’ algorithm greedily selects the in-
coming edge with the highest weight for each node, allowing
the ‘best’ relationships to be selected from any location in
the expression as the algorithm progresses. As the MST is
constructed, if no cycles exist, then all selected edges form
an MST. If there is a cycle, the algorithm contracts the cycle
into a single node, and then recalculates edge weights going
into and out the cycle before selecting the next edge.

We implement Edmonds’ Algorithm as described in [2],
with O(|E| × |V |) time complexity. In the worst case,
|E| = |V | × (|V | − 1). Therefore, the time complexity of
MST-based parsing is O(|E| × |V |) = O(|V |2 × |V |) =
O(|V |3) = O(N3), where N is the number of symbols in
the expression. We use symbol level Line-of-Sight graphs as
input, with |E| seldom reaching this worst case. On average,

(a) Input:
Six strokes for kn = 1

(b) Stroke Line-of-Sight (LOS)
graph

(c) Segment symbols w. binary
directed edge classifier [15]

(d) Create symbol LOS graph.
Classify symbols & compute

relationship probabilities

(e) Apply Edmonds’ algorithm to obtain MST.
Output: Remove dummy node for Symbol Layout Tree

Figure 1: MST-based Parse for a Handwritten Formula.
In (d) visual and geometric features are used to compute
symbol and relationship class probabilities independently

the number of edges in LOS is 3.3 times the number of
strokes [16]. One could also use Gabow et al.’s [17] faster
version with running time O(|E|+ |V | log |V |) ∈ O(N2).

Stroke Pair and Symbol Pair Relation Classifica-
tion. We use random forests for both the binary stroke
pair classifier (‘merge’/‘split’), and symbol pair relationship
classifier (seven classes). The set of spatial relationship is
one seven classes: undefined (no-relation,), Right (R),
Subscript (Sub), Superscript (Sup), Above (A), Below (B),
Inside (square root, I). Both classifiers also use Parzen
window Shape Context features (described below), along
with geometric features. In the binary stroke classifier we
also use a time gap feature: for stroke pair (i, j), time gap
feature is j − i.

Geometric features include distances between bounding
box centers, distances between averaged centers (centers-
of-mass), maximal point pair distances (for two points, one
from each stroke), horizontal offset between the last point of
the current stroke and first point of the next stroke, vertical
distance between bounding box centers, writing slope (angle
between the horizontal and the line connecting the last point
of the current stroke and the first point of the next stroke)
and writing curvature (angle between the lines between the
first and last points of the current and subsequent stroke).
We normalize all the geometric features in [0, 1] except
parallellity, writing slope and writing curvature.

Parzen window Shape Context Feature (PSC). Be-
longie et al. [18] propose shape contexts for shape matching
and object recognition. The shape context [18] at a given
point captures the distribution of the other points relative to
it, and therefore provides a globally discriminative character-
ization. Shape context features have been usefully applied to
math symbol classification [19]–[21], math symbol retrieval
[22] and spatial relationship classification [23]. These shape
context features are histograms, obtained by counting the
number of points within each bin of a polar histogram.
Therefore, all these previously used features are discrete,
with each point only affecting the bin to which it belongs.

In our work, we compute shape contexts from foreground
pixels in binary images generated from the stroke data
[15], using a fixed image height of 200 pixels, and then
adjusting the width to match the aspect ratio of the original
expression. We have designed a continuous shape context
feature based on Parzen Windows that insures every point
contributes to all bins in the histogram, making the resulting
distributions smoother. Parzen-window density estimation is
a data-interpolation technique [24]. A kernel function is
placed at the location of each point, generating ‘pulses’ that
collectively define a continuous distribution. To produce our
PSCs, these pulses are measured at the center point of each
shape context bin and added to produce a histogram of real
values that is then normalized. We use a two dimensional
gaussian distribution as the Kernel function:

P (x, y) =
1

n

n∑
i=1

1
√
2πσ

exp

(
−

(xi − x)2

2σ2

)
1

√
2πσ

exp

(
−

(yi − y)2

2σ2

)

(xi, yi) are the coordinates of the points, while (x, y)
represents the center of a given bin. As can be seen in Figure
2, the result is a simplified, radially skewed version of the
input image.

Given a pair of strokes or symbols (i, j), the center of
shape context is the average of their two bounding box
centers. The radius can vary - we crop the histogram around
pairs of symbols, but allow PSCs for strokes to be larger
in order to include additional context, which we found
empirically to be beneficial. The number of bins is the
product of the number of angles (M) and distances (N).
The shape context is divided into bins uniformly by angle
and distance, as done by Álvaro [23]. We actually use three
separate PSCs to characterize the distribution of points from
each of our three sources (parent, child, and other). This
produces 3MN features.

Figure 2 shows an example of stroke-level PSC. Different
color represents different sources: red for points from the
parent stroke, green for points from the child stroke, and
blue for points from other strokes. The parent stroke (red)
is the vertical stroke of ’+’ and child stroke (green) is ’1’,
and other strokes are blue. Brightness indicates densities in
the bins.

Expression with PSC center and perimeter shown

Parent stroke Child stroke Other strokes

Figure 2: Example of Parzen Shape Contexts. Here a di-
rected edge between the vertical stroke of the ‘+’ and stroke
for the ‘1’ are to be classified, making the ‘+’ stroke the
parent, and the ‘1’ the child of the relationship. The center of
the Shape Context is the average of the two stroke bounding
box centers. Each PSC has 120 bins, with the PSC radius
reaching the furthest parent or child stroke point (pixel). In
experiments we use only 30 bins (5 distances × 6 angles).
For symbol-level PSCs, we use the same representation after
grouping all points from parent symbol strokes together, and
all points from child symbol strokes together.

IV. EXPERIMENTAL RESULTS

Datasets. The Competition on Recognition of On-line
Handwritten Mathematical Expressions (CROHME) is a
well-established annual competition [25]. The results re-
ported in this section are computed using the CROHME
2012 and 2014 data sets. CROHME 2012 has 1336 training
and 486 test expressions; CROHME 2014 contains more
structurally complex formulae, and is larger with 8834
training and 986 test expressions.

Training. Greedy search and cross validation are used to
determine the parameters of Parzen window shape context
feature [16]. We use 30 bins, with 5 angles and 5 distances.
We use a Parzen window width of 1

5 of the polar histogram
radius. For symbol pairs, the shape radius is the longest dis-
tance from points in the two symbols to the polar histogram
center, while the shape radius is 1.5 times of the longest
distance for stroke pairs.

Symbol Segmentation and Classification. Classification
rates for identifying LOS stroke graph edges as ‘merge’
or ‘split’ are quite high. Using the CROHME Test sets
we obtain rates of 98.26% for 2012 and 97.88% for 2014.
Symbol segmentation rates (Recall) are also strong, with
94.87% for 2012 and 92.41% for 2014. These Recall rates
are within 1 percent of the best published results for systems
trained using the CROHME Training set. The 2014 F-
measure we obtain (92.43%) was the highest published value
at the time of submission. It is interesting that these strong

Table I: Parsing Results with Provided Symbols (CROHME
2012 & 2014). Here, correct symbols are provided as input
to parsing algorithms. Shown are rates for correct detection
of relationships on edges (Det.), and correct detection and
labeling of relationships (+Class). We also provide rates for
correctly recognized formula structure (Str.), and formulae
with correct structure and relationship labels (+Class)

REL. RATES FORMULA RATES
Det. +Class Str. +Class

2012 Test
MST-based 96.16% 93.16% 72.63% 67.70%
Simistira et al. [10] 57.41% 56.37%
2014 Test
MST-based 95.51% 91.08% 76.67% 67.44%

results are obtained without the use of OCR or expression
grammars. Additional details are available elsewhere [15].
For symbol classification we used Davila and Zanibbi’s
classifier [26], which obtains a classification rate of 88.6%
for the CROHME 2014 Test data.

Symbol Relationship Classification. When classifying
spatial relationships between symbols, there are seven
classes for CROHME SLTs: undefined (no-relation), Right,
Subscript, Superscript, Above, Below and Inside (square
root). For training and testing, we generated samples for
all pairs of symbols in CROHME expressions. For the
CROHME Test sets we obtain recognition rates of 97.64%
for 2012, and 96.55% for 2014.

Parsing from Provided Symbols. Table I shows results
when parsing with symbols provided from Ground Truth.
For our algorithm this means starting from step (d) in Figure
1, but with correct symbol classes given.

For comparison, we provide results from a CYK parsing-
based system using Stochastic Context-Free Grammars
(SCFG) and a manually designed expression grammar [10].
Their symbol relationship classifier is SVM-based, with an
error rate of 2.8% for CROHME 2012. This is close to our
symbol pair relation classifier error rate, but unlike Simistira
et al. symbol classes are not used to compute relationship
classification features in our system. The MST-based parsing
system obtains a 15% higher formula structure recognition
rate, and 10% higher expression rate than Simistira et al.,
despite having a lower isolated symbol relationship recog-
nition rate when correct symbols are provided as input.

When symbol labels are used, we can obtain nearly a
2% improvement in structure and expression rates simply
by filtering invalid labels for symbol pairs with associated
relationships before applying Edmonds’ algorithm [16].

Parsing from Strokes. Table II compares the MST-based
parser with other results obtained for the CROHME 2014
Test set. MyScript obtains the highest expression rate, but
did so using a separate, much larger training set. For data
sets trained using CROHME data, we obtain the third-
highest symbol, relationships, and expression recognition

Table II: Parsing Results for Handwritten Strokes
(CROHME 2014). Recognition rates shown require
both correct segmentation or structure recognition, and
correct classification. G: system uses a grammar. MST-based
results are shown in bold

RECOGNITION RATES
Symbols Relationships Expressions G

MyScript* 93.91% 94.26% 62.68% X
Alvaro [7] 86.59% 84.23% 37.22% X
MST-based 81.95% 79.89% 26.88%
Awal et. al [9] 76.53% 71.77% 26.06% X
Le et. al [5] 69.72% 66.83% 25.66% X
Hu et. al 76.64% 70.78% 18.97%
Yao and Wang 78.45% 61.38% 18.97%
Aguilar [27] 66.97% 60.31% 15.01% X

* large, independent training set used. Others use CROHME 2014 Train

rates after MyScript and Álvaro, but without the use of
an expression grammar, and while classifying symbols and
symbol relationships independently of one another.

Additional Results. Both symbol segmentation and struc-
tural analysis can be represented as edge labeling tasks
in graphs over strokes [25]. We completed preliminary
experiments with parsers and parser ensembles that seg-
ment symbols and parse relationships directly from stroke
graph edges, and found that simultaneous segmentation
and structural analysis achieved lower structure rates than
doing structural analysis after symbol segmentation [16]. We
also tested a backtracking version of the MST-based parser
at the symbol level (i.e. after segmentation), considering
the top-k symbol classes, and using a simple product of
the three probabilities for each label combination (parent
symbol, child symbol, relationship). The algorithm in Figure
1 outperforms this backtracking algorithm, possibly because
it is a simple greedy algorithm.

V. CONCLUSION

We propose a new ‘visual’ MST-based algorithm for pars-
ing handwritten mathematical notation. Edmonds’ algorithm
is used to obtain a directed MST representing symbol layout,
with only visual and geometric features used to segment,
classify, and determine relationships between symbols. Our
visual features include new Parzen window modified Shape
Contexts (PSCs), which have been shown to be effective
for symbol segmentation and relationship classification. Ed-
monds’ algorithm has lower time complexity (O(N2) for N
strokes [17]) than widely-used CYK parsers with context-
free grammars (O(N3|G|) for |G| production rules). Ex-
perimental results demonstrate that our MST-based parsing
obtains higher formula recognition rates than a published
CYK-based parser when symbols are provided [10], and
is very competitive parsing from handwritten strokes for
CROHME 2014 data [25].

The fact that MST-based parsing does not require gram-
mars is appealing. Syntactic pattern recognizers require

a new grammar to be defined when the target language
changes. In this regard MST-based parsing has better gen-
eralization ability than Stochastic Context-Free Grammars
for other notations. That said, our method may benefit
greatly from n-grams or other language constraints. In the
future, more research is needed on how to integrate symbol
segmentation and classification into MST-based parsing.
Some of the techniques presented in this paper might also be
incorporated into SCFG-based parsers (e.g. PSC features).

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science foundation under Grant No. IIS-1016815.

REFERENCES

[1] R. Zanibbi and D. Blostein, “Recognition and retrieval of
mathematical expressions,” International Journal on Docu-
ment Analysis and Recognition, vol. 15, no. 4, pp. 331–357,
2012.

[2] J. Edmonds, “Optimum branchings,” Journal of Research of
the National Bureau of Standards B, vol. 71, no. 4, pp. 233–
240, 1967.

[3] P. A. Chou, “Recognition of equations using a two-
dimensional stochastic context-free grammar,” in Intelligent
Robotics Systems Conference, 1989, pp. 852–865.

[4] R. Yamamoto, S. Sako, T. Nishimoto, and S. Sagayama,
“On-line recognition of handwritten mathematical expressions
based on stroke-based stochastic context-free grammar,” in
International Workshop on Frontiers in Handwriting Recog-
nition, Oct. 2006, pp. 249–254.

[5] A. D. Le, T. V. Phan, and M. Nakagawa, “A system for
recognizing online handwritten mathematical expressions and
improvement of structure analysis,” in International Work-
shop on Document Analysis Systems, Apr. 2014, pp. 51–55.

[6] M. Celik and B. Yanikoglu, “Probabilistic mathematical for-
mula recognition using a 2d context-free graph grammar,” in
International Conference on Document Analysis and Recog-
nition, Sep. 2011, pp. 161–166.

[7] F. Alvaro, J. Sanchez, and J. Benedi, “Recognition of on-
line handwritten mathematical expressions using 2d stochastic
context-free grammars and hidden markov models,” Pattern
Recognition Letters, vol. 35, pp. 58–67, 2014.

[8] F. Alvaro, J. Sánchez, and J. Benedı́, “An integrated grammar-
based approach for mathematical expression recognition,”
Pattern Recognition, vol. 51, pp. 135–147, 2016.

[9] A. Awal, H. Mouchère, and C. Viard-Gaudin, “A global
learning approach for an online handwritten mathematical
expression recognition system,” Pattern Recognition Letters,
vol. 35, pp. 68–77, 2014.

[10] F. Simistira, V. Katsouros, and G. Carayannis, “Recognition
of online handwritten mathematical formulas using proba-
bilistic svms and stochastic context free grammars,” Pattern
Recognition Letters, vol. 53, pp. 85–92, 2015.

[11] S. MacLean and G. Labahn, “A new approach for recogniz-
ing handwritten mathematics using relational grammars and
fuzzy sets,” International Journal on Document Analysis and
Recognition, vol. 16, no. 2, pp. 139–163, 2013.

[12] S. MacLean and G. Labahn, “A bayesian model for recogniz-
ing handwritten mathematical expressions,” Pattern Recogni-
tion, vol. 48, no. 8, pp. 2433–2445, 2015.

[13] Y. Eto and M. Suzuki, “Mathematical formula recognition
using virtual link network,” in International Conference on
Document Analysis and Recognition, Sep. 2001, pp. 762–767.

[14] N. Matsakis, “Recognition of handwritten mathematical ex-
pressions,” Master’s thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, May 1999.

[15] L. Hu and R. Zanibbi, “Line-of-sight stroke graphs and
parzen shape context features for handwritten math formula
representation and symbol segmentation,” in Proc. ICFHR,
2016.

[16] L. Hu, “Features and algorithms for visual parsing of
handwritten mathematical expressions,” Ph.D. dissertation,
Rochester Institute of Technology, 2016.

[17] H. N. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan, “Efficient
algorithms for finding minimum spanning trees in undirected
and directed graphs,” Combinatorica, vol. 6, no. 2, pp. 109–
122, 1986.

[18] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and
object recognition using shape contexts,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 24, no. 4,
pp. 509–522, 2002.

[19] L. Ouyang, “A Symbol layout classification for mathematical
formula using layout context,” Master’s thesis, Rochester
Institute of Technology, Rochester, NY, 2009.

[20] L. Ouyang and R. Zanibbi, “Identifying layout classes for
mathematical symbols using layout context,” in IEEE Western
New York Image Processing Workshop, 2009.

[21] N. S. T. Hirata and W. Y. Honda, “Automatic labeling of
handwritten mathematical symbols via expression matching,”
in International Conference on Graph-based Representations
in Pattern Recognition, May 2011, pp. 295–304.

[22] S. Marinai, B. Miotti, and G. Soda, “Using earth mover’s
distance in the bag-of-visual-words model for mathematical
symbol retrieval,” in International Conference on Document
Analysis and Recognition, Sep. 2011, pp. 1309 –1313.

[23] F. Alvaro and R. Zanibbi, “A shape-based layout descriptor
for classifying spatial relationships in handwritten math,” in
ACM Symposium on Document Engineering, Sep. 2013, pp.
123–126.

[24] N. Kwak and C.-H. Choi, “Input feature selection by mutual
information based on parzen window,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 24, no. 12,
pp. 1667–1671, Dec. 2002.

[25] H. Mouchère, R. Zanibbi, U. Garain, and C. Viard-Gaudin,
“Advancing the state of the art for handwritten math recog-
nition: the crohme competitions, 2011–2014,” International
Journal on Document Analysis and Recognition, pp. 1–17,
2016.

[26] K. Davila, S. Ludi, and R. Zanibbi, “Using off-line features
and synthetic data for on-line handwritten math symbol
recognition,” in International Conference on Frontiers in
Handwriting Recognition, Sep. 2014, pp. 323–328.

[27] F. JulcaAguilar, N. Hirata, C. ViardGaudin, H. Mouchere, and
S. Medjkoune, “Mathematical symbol hypothesis recognition
with rejection option,” in International Conference on Fron-
tiers in Handwriting Recognition, Sep. 2014, pp. 500–505.

