
Line-of-Sight Stroke Graphs and Parzen Shape Context Features
for Handwritten Math Formula Representation and Symbol Segmentation

Lei Hu
Department of Computer Science
Rochester Institute of Technology

Rochester, USA
lei.hu@rit.edu

Richard Zanibbi
Department of Computer Science
Rochester Institute of Technology

Rochester, USA
rlaz@cs.rit.edu

Abstract—This paper presents a new representation for
handwritten math formulae: a Line-of-Sight (LOS) graph
over handwritten strokes, computed using stroke convex hulls.
Experimental results using the CROHME 2012 and 2014
datasets show that LOS graphs capture the visual structure
of handwritten formulae better than commonly used graphs
such as Time-series, Minimum Spanning Trees, and k-Nearest
Neighbor graphs. We then introduce a shape context-based
feature (Parzen window Shape Contexts (PSC)) which is com-
bined with simple geometric features and the distance in time
between strokes to obtain state-of-the-art symbol segmentation
results (92.43% F-measure for CROHME 2014). This result
is obtained using a simple method, without use of OCR or
an expression grammar. A binary random forest classifier
identifies which LOS graph edges represent stroke pairs that
should be merged into symbols, with connected components
over merged strokes defining symbols. Line-of-Sight graphs
and Parzen Shape Contexts represent visual structure well,
and might be usefully applied to other notations.

Keywords-Line-of-Sight graph, symbol segmentation, hand-
written math recognition, shape contexts

I. INTRODUCTION

Math expressions are an essential part of scientific com-
munication. Recognizing handwritten expressions written on
tablets and other touch-sensitive devices would be helpful in
document editing, mathematics education applications, and
search engines that support mathematical notation in queries.
In this paper, we are interested in recognizing Symbol Lay-
out Trees (SLTs) for expressions, which represent expression
appearance by a set of symbols with spatial relationships
between them (e.g., Right-adjacent, Subscript, Above [1]).
SLTs represent information similar to LATEX formulae, but
without formatting information.

Recognizing handwritten formulae requires three main
tasks: symbol segmentation, symbol recognition and struc-
tural analysis. While often implicit in the literature [1], all
tasks require a graph-based representation for handwritten
strokes in the expression. These stroke graphs constrain
stroke and symbol relationships considered while searching
for the best interpretation of a formula. An ideal stroke graph
contains enough edges to represent all spatial relationships
and symbols (i.e., perfect recall), while containing as few

extraneous edges as possible (i.e., high precision). We want
to be able to express the correct expression, but we also want
few additional edges so that we increase the likelihood of
producing the correct interpretation.

In this paper, we propose Line-of-Sight (LOS) stroke
graphs for representing handwritten formulae written online,
and introduce a symbol segmentation technique using LOS
graphs and new Parzen window-modified Shape Context
features (PSC). We first present existing stroke graph repre-
sentations in Section II, and then algorithms for constructing
LOS stroke graphs in Section III. In Section IV we compare
different graph representations using the CROHME compe-
tition benchmarks [2], and find that LOS graphs are able to
represent the most expressions correctly, while still having
a reasonable Precision. In Section V we present our LOS-
based segmenter using PSC features, which obtains state-of-
the-art symbol segmentation results for the CROHME 2014
data set. We then conclude and identify directions for future
work in Section VI.

II. HANDWRITTEN STROKE GRAPH REPRESENTATIONS

In this Section we briefly introduce stroke-level graph
representations used to parse formulae written online. Nodes
represent individual strokes, while edges represent possible
relationships between strokes, such as identifying strokes
belonging to the same symbol, and identifying spatial rela-
tionships between symbols such as right-adjacency (R) or
superscript (Sup). Details regarding using stroke graphs to
represent formula appearance may be found elsewhere [2].

The graph types below define edge subsets for the com-
plete graph with

(
n
2

)
= n(n−1)/2 undirected edges between

all stroke pairs. The motivation to use more compact graphs
is to reduce the number of irrelevant edges, making both
training and parsing more efficient and accurate. However,
pruning stroke pairs can reduce the space of representable
expressions, as we will later show in Section IV.

Time-series. Time-series graphs representing the se-
quence in which strokes are written are common [3], [4].
Many current systems that parse formula using a modified
Cocke-Younger-Kasami (CYK) algorithm consider strokes

in time order [2]. A Time-series graph can be represented
using an undirected edge between each stroke and its
successive stroke (except for the final stroke). Time-series
graphs are unable to directly represent formulae with de-
layed strokes (e.g., the dot for an ‘i’ written after writing
other symbols) or non-local relationships. These graphs are
compact; as sequences they are a restricted form of tree,
with n− 1 undirected edges for n strokes.

k-NN Graph. Others such as Eto and Suzuki [5] have
used k-Nearest Neighbor graphs (k-NN). In a k-NN graph,
there is an undirected edge from each stroke to each of its
k nearest neighboring strokes. This allows strokes that are
nearby in space but not necessarily time to be related in
the graph (e.g., the dot of an ‘i’ written after a delay). k-
NN graphs are less compact than Time-series, with O(kn)
edges. Smaller values of k may produce a disconnected
graph, splitting a formula into two or more sub-expressions.

Minimum Spanning Tree (MST). Matsakis [6] uses
a stroke graph where edges are defined by the Minimum
Spanning Tree (MST) over strokes, based on the distance
between stroke bounding boxes. The MST is more compact
than k-NN graphs, with n−1 undirected edges, and guaran-
tees that the graph is connected. A limitation is that edges
for relationships between non-neighboring strokes may be
absent.

Delaunay Triangulation Hirata et al. employ Delaunay
Triangulation (DT) for stroke graphs [7]. A DT for a set of
2D points S is a triangulation where no point in p is inside
the circumcircle of any triangle [8]. It is the dual structure
of the Voronoi diagram. Each point in the triangulation
is adjacent to all vertices (strokes) in attached triangles.
Like MSTs, Delaunay Triangulations guarantee a connected
graph, but have more edges: 3n − 3 − h, where h is the
number of points of the convex hull. This allows more
relationships to be represented in a DT than an MST.

In the next Section we propose using a new graph
representation, Line-of-Sight graphs.

III. LINE-OF-SIGHT (LOS) GRAPHS OVER STROKES

We came to consider Line-of-Sight graphs after creating
k-NN graphs with large values of k, and finding that
expressions with large exponents were having edges between
horizontally adjacent symbols pruned (e.g., for k = 2, in
x2a + 1, the x and + do not share an edge). However, an
unobstructed line could often be drawn between strokes with
relationships pruned by k-NN in cases like these. A Line-
of-Sight graph [8] is a visibility graph defining which nodes
can ‘see’ one another. For our stroke graphs, the LOS graphs
define edges for strokes that can be ‘seen’ from the bounding
box center of another stroke, or vice versa. An example LOS
stroke graph is shown in Figure 1.

Algorithm 1 constructs LOS graphs from handwritten
stroke set S. For a given stroke s ∈ S, we consider whether
other strokes are visible by incrementally blocking angles

Figure 1: Line-of-Sight (LOS) Graph for a Handwritten
Expression. Small square nodes represent bounding box
centers for eleven handwritten strokes. Edges represent
mutually ‘visible’ strokes. Two strokes share an edge if an
unobstructed line can be drawn from one stroke’s bounding
box center to a point on the convex hull for the other stroke
(see Algorithm 1)

Algorithm 1 Line-of-Sight (LOS) Graph Construction
Input: S, the set of handwritten strokes for an expression

let E = ∅ be an empty edge set
for each stroke s ∈ S with b.box center sc = (x0, y0), do

let unblocked angle interval set U = {[0, 2π]} radians
for t ∈ S − s, by increasing distance from s, do

let θmin = +∞, θmax = −∞
for each node n = (xh, yh) in the convex hull of t do

let vector w = n− sc = (xh − x0, yh − y0)
let angle θ between w and horizontal h = (1, 0) be

θ =

arccos
(

w·h
||w|| ||h||

)
if yh ≥ y0

2π − arccos
(

w·h
||w|| ||h||

)
if yh < y0

let θmin = min(θmin, θ), θmax = max(θmax, θ)

let hull interval h = [θmin, θmax]
if V =

⋃
u∈U u− h contains a non-empty interval

let E = E ∪ (s, t) ∪ (t, s) (sc ‘sees’ t)
let U =

⋃
u∈U

(u− v0 − . . .− vn), V = {v0, . . . ,vn}

return E (LOS stroke edges)

covered by strokes. Strokes other than s are sorted by the
smallest distance between two sample points: one point is
from s, while the other point is from the other stroke. To test
their visibility, strokes are represented by their convex hull
[8]: the smallest convex polygon containing sample points
in the stroke. While ‘looking’ at each stroke t from sc, if we
find an unobstructed angle range between sc and the convex
hull for t, we define an undirected edge between s and the
other stroke (as two directed edges). We then remove the
visible angle range for t from the set of unblocked angle
intervals U . Figure 2 illustrates how visible and blocked
angles are defined using convex hulls.

Algorithm 2 recovers missing labeled edges in stroke
graph representations, including LOS, to make sure that

Figure 2: Line-of-Sight Illustration (adapted from [8]).
‘Looking’ from point p, the purple and blue arcs represent
the angle ranges blocked by Polygons A and B, ignoring
other polygons in the scene (h in Algorithm 1). The green
arc represents the visible range of Polygon B (V), taking
into account the portion blocked by Polygon C. The red
lines are sight lines to vertices blocked by Polygon C.

Algorithm 2 Assigning Labels to an Undirected Stroke
Graph. Label *: merge strokes into symbol; Label : un-
defined

Inputs:
G = (S,E) an undirected and unlabeled stroke graph
Gt = (S,Et, λSt, λEt) a complete labeled stroke graph with

same node set S (strokes), label functions λSt and λEt

let λS = λSt (label strokes)
let φ : S → 2S maps strokes to stroke sets for symbols

Initially, φ(s) = {s}, ∀s ∈ S
let Ec = E ∩ Et be the common edges in G and Gt

for e = (s1, s2) ∈ Ec do
λE(e) = λEt(e) (label edge)
if λE(e) = ∗ (define symbols)

let φ(s1) = φ(s1) ∪ φ(s2), φ(s2) = φ(s1)
for (si, sj) ∈ φ(s1)× φ(s1) where si 6= sj do

let λE(si, sj) = λE(sj , si) = ∗
(refine relationships)

for e = (s1, s2) ∈ Ec do
if λE(e) is labeled with a relationship (i.e., not * or)

for so ∈ φ(s1) where so 6= s1 do
let λE(so, s2) = λE(s1, s2)

return (λS , λE) (stroke and edge labels for G)

edge labels represent a valid SLT. Connected components of
merge-labeled stroke edges are converted into cliques (i.e.,
all pairs of strokes in a symbol share a merge-labeled edge),
and all strokes in a symbol are given the same relation-
ship with strokes in other symbols. The algorithm ignores
conflicting undefined () labels and assumes no conflicting
relationship labels, which is valid for well-defined SLTs.

Note that if we have a labeled stroke graph, we can pass
it in both inputs for Algorithm 2 to insure that the SLT
representation is consistent, e.g., for recognition results [9].
In fact, the symbol segmenter described later in this paper

(a) Handwritten strokes (b) Time-series edges

(c) Edge types (d) Recovered SLT
(‘z = 4’)

Figure 3: Recovering Edge Labels with Algorithm 2. Edges
in Time-series graph (b) are assigned corresponding labels
from Ground Truth in (c). (d) is then produced from (c)
by requiring strokes in a symbol to have the same spatial
relationship with strokes in other symbols. The Time-series
graph in (a) represents the same SLT as in Ground Truth

uses Algorithm 2 in this way.
Figure 3 illustrates recovering an SLT from a Time-

series graph for expression z = 4, using the corresponding
complete ground truth graph with labels for all strokes and
stroke pairs (identical to Figure 3(d)). In Figure 3(c) and
(d), there are two directed * (merge) edges between the two
lines in the equals sign.

From a different perspective, Algorithm 2 can test whether
a stroke graph has sufficient edges to represent labeled edges
in a ground truth SLT stroke graph. We use this to test the
expressivity (coverage) of different stroke graph types in the
next Section.

IV. GRAPH COVERAGE EXPERIMENTS

Datasets and Performance Metrics. Our experiments
test the expressivity (coverage) of LOS and other stroke
graph representations. We use data from the Competition on
Recognition of On-line Handwritten Mathematical Expres-
sions (CROHME) [2]. CROHME 2012 has 1336 training
and 486 test expressions; CROHME 2014 contains more
structurally complex formulae, and is larger with 8834
training and 986 test expressions.

For each test expression, all graph representations are
passed along with Ground Truth to Algorithm 2. Perfor-
mance metrics are then computed using the resulting graph.
We compare SLT graph coverage using four metrics. First,
the number of expressions that can be correctly represented:
if all labeled ground truth edges and recovered, the expres-
sion is represented correctly (as in Figure 3). At the level
of directed edges, we also consider the Recall for labeled
edges, Precision of selected edges, and F-score.

1) Recall = | Labeled Recovered Edges |
| Labeled Ground Truth Edges |

2) Precision = | Labeled Recovered Edges |
| Graph Edges |

3) F-score = 2× Recall×Precision
Recall+Precision

Graph Construction and Distance Metrics. MST, k-
NN and LOS require distances between stroke pairs for
construction. We consider three Euclidean distances:

1) AC: distance between two strokes’ averaged
center/center-of-mass (AC), the mean of x and
y coordinates for the set of stroke sample points.

2) BBC: distance between bounding box centers (BBC).
3) CPP: the smallest distance between two sample points

from each of the strokes, the Closest Point Pair.
We choose the distance metric and stroke representation

based on model selection experiments [9]. AC works best for
MST, while CPP distance works best for k-NN. For k-NN,
2-NN achieves the highest F-score, while 6-NN achieves the
highest precision for k-NN with a recall higher than 99% [9].

For Delaunay Triangulation, we do not require a stroke
pair distance, but instead need to a point to represent strokes,
for which we try the center-of-mass (AC) or bounding box
center (BBC); AC worked best.

Results. Table I shows results for the CROHME 2012
and 2014 test sets. All graph types have stable edge metrics
across the datasets. For complete graphs containing directed
edges between all stroke pairs, Recall is perfect, but over
90% of the directed edges are irrelevant (Precision < 10%).

The highest Precision and F-scores are obtained for MST,
suggesting these edges frequently belong to the SLT. Time-
series graphs have the second-highest precision and F-score
values. For expressions on a single baseline, the MST and
Time-series graphs may be identical. This high Precision is
partly cause by having fewer edges than the other types,
which also leads to very low expression coverage (< 45%).

For k-NN, as one expects edge Recall increases with
k, while Precision decreases more rapidly. 2-NN obtains
the lowest expression coverage for CROHME 2012, while
6-NN obtains the second-highest expression rate for both
data sets. Using k ≥ 6 mostly decreases Precision and F-
score. Delaunay obtains the next-highest expression rate.
While Delaunay has higher Precision and F-score through
producing fewer edges than 6-NN and LOS, its expression
coverage is 13%-14% lower than 6-NN.

LOS obtains the highest expression coverage (> 98.5%)
with a slightly higher edge Precision than 6-NN of roughly
30%. LOS misses fewer than 0.1% of labeled ground truth
edges. Table II summarizes missing edges in the LOS results.
Most missing edges are ‘Right’ relationships. Almost all
edges with a merge label can be covered by the Line-of-
Sight graph, as related strokes are often close to and can
‘see’ one another. In Figure 4, we see missing edges caused
by using a single ‘eye’ at the stroke bounding box center,
or completely blocked sight lines.

The nearly perfect Recall for merge edges in LOS graphs
provides a strong foundation for graph-based symbol seg-
mentation, which we discuss in the next Section. Work on
parsing with LOS graphs using visual features may be found
in a companion paper [10].

Table I: Coverage Comparison for Stroke Graph Types.
Percentage of representable CROHME expressions (SLTs)
are shown along with metrics for directed stroke edges

CROHME 2012 Test (486 Expressions)
Stroke Pair Edges

Expr. (%) Recall Precision F-score
Complete 100.00 1.000 0.087 0.159
LOS 98.56 0.999 0.309 0.472
6-NN 89.92 0.994 0.286 0.444
Delaunay 76.75 0.977 0.388 0.555
MST 36.21 0.882 0.921 0.901
Time-series 31.28 0.878 0.917 0.897
2-NN 24.90 0.879 0.708 0.784

CROHME 2014 Test (986 Expressions)
Stroke Pair Edges

Expr. (%) Recall Precision F-score
Complete 100.00 1.000 0.091 0.167
LOS 98.99 0.999 0.297 0.458
6-NN 95.81 0.994 0.283 0.441
Delaunay 79.11 0.973 0.391 0.558
2-NN 44.93 0.885 0.685 0.773
MST 42.39 0.875 0.899 0.887
Time-series 40.77 0.868 0.891 0.879

Complete: all stroke pairs, LOS: Line-of-Sight
2/6-NN: k-nearest neighbor, MST: Minimum Spanning Tree

Delaunay: Delaunay Triangulation

Table II: Number of Missing Edges for Line-of-Sight
Graphs. CROHME 2012/2014 Test correspond to Table I

CROHME Total * R Sub Sup Above Below Inside
2012 Train 14 14
2012 Test 13 10 3
2014 Train 358 2 235 65 24 16 16
2014 Test 22 22

* merge (into symbol)

V. SEGMENTATION USING LOS GRAPHS AND PARZEN
SHAPE CONTEXTS (PSC)

In this Section we present a new technique for segmenting
handwritten symbols using LOS graphs and modified Shape
Context features [11]. Our segmentation algorithm is simple,
using a classifier to identify which directed LOS stroke
pair edges correspond to strokes that should be merged. We
will now briefly review work on handwritten math symbol
segmentation, provide a description of the segmentation

(a) Sight lines for leftmost ‘A’ and comma blocked
(bottom-left of ‘A’ and comma can see one another)

(b) Sight line between leftmost ‘y’ and the second
’+’ blocked by subscript and exponent y’s

Figure 4: Examples of Missing Right-Adjacency (R) Edges
in Line-of-Sight graphs

algorithm and features, and present segmentation results for
the CROHME 2012 and 2014 benchmarks.

Related Work. There have been many graph-based seg-
mentation methods for online handwritten formulae [3],
[6], [12]. Toyozumi et al. [12] use a candidate character
lattice method, where the closest distance between points
on two strokes along with language constraints are used to
determine whether strokes should be merged. Matsakis [6]
proposes a minimum spanning tree (MST) approach, where
each node in the MST represents a stroke, with distances
defined by the Euclidean distance between stroke bounding
box centers. A limitation is that this technique only considers
connected subtrees in the MST for partitioning.

Other methods include Smithies et al. [4] progressive seg-
mentation method, which assumes that symbols are written
one-at-a-time. After four strokes are written, the segmenter
generates all possible groupings. Strokes from the highest
confidence candidate symbol are removed. The process
then repeats after another four strokes have been written.
Kosmala et al. [13] propose a segmentation method based
on Hidden Markov Models (HMM). Discrete left-to-right
HMMs without skips and with differing numbers of states
are used. A space model is also introduced to represent
spaces between symbols. Many recent techniques perform
segmentation as a sub-routine while parsing handwritten
strokes using an expression grammar, e.g., using a modified
Cocke-Younger-Kasami (CYK) algorithm [2].

Hu and Zanibbi [3] classify pairs of strokes in time order
as merge/split, i.e., using the Time-series graph for strokes.
An AdaBoost classifier with multi-scale shape contexts and
symbol classification confidence features is used. In this
paper we extend this work, but use random forests applied
to Line-of-Sight graphs, do not use classification features,
and improve the shape context features.

Stroke Preprocessing and Image Generation. To reduce
the effects of sample noise, writing jitter and differences in
resolution between expressions, we preprocess strokes and
render the expression as a binary image. Preprocessing con-
tains four steps: duplicate point filtering, size normalization,
smoothing and resampling.

We first delete duplicate points which have the same
(x, y) coordinate as the previous point, because they are
uninformative. To reduce the influence of writing velocity
and differences in the coordinate range and resolution for
different stroke recording devices, we normalize y coor-
dinate values to be in the interval [0, 1], while preserving
the width-height aspect ratio for x coordinates. To reduce
noise caused by stylus/finger jitter, we smooth all strokes.
For each stroke, with the exception of the first and last
points, we replace the coordinate of each point by the
average of the current, previous, and next coordinate. Finally,
we use linear interpolation to resample the expression and
render it as a binary image. For the image we use a fixed
height of 200 pixels, and then set the width to preserve the

width/height aspect ratio of the formula. In generating the
image we interpolate ten points between each consecutive
pair of sample points, and remove any duplicates.

Segmentation Algorithm. Our algorithm is fairly simple:
1) Construct a stroke LOS graph using Algorithm 1
2) Use a binary classifier to classify all directed edges as

* (merge into symbol) or ‘ ’ (undefined)
3) Define symbols by converting connected components

for * labels into cliques; pass the graph from Step 2
as both inputs for Algorithm 2

We create a random forest for classification in Step 2,
using the Python scikit-learn library [14]. We use 129
features, which are described below. These include the
distance in time between strokes (‘time gap,’ e.g., the first
and third handwritten strokes have a time gap of two),
Parzen window-modified Shape Context features (PSC) and
geometric features.

Parzen Shape Context Features (PSC). A Shape Con-
text characterizes the relative position and density of points
(pixels) in an image around a given point using a log-polar
histogram [11]. Shape Contexts have been widely used in
computer vision for shape matching and classification, as
these local representations of appearance and context are
often globally discriminative.

In our work, we use Shape Contexts to characterize the
density of points (pixels) in an expression image around
two strokes being considered for merging. First, we pro-
duce smoother probability distributions with Parzen window
estimation, using a 2D gaussian kernel. Second, the shape
context region is divided into bins using uniform angles and
distances from the center of the histogram. Previously, it was
found that features using equal rather than the conventional
log-polar bin distances perform better when classifying
spatial relationships in formulae [15]. The center of the
PSC is the average of the two stroke bounding box centers.
The radius of the shape context includes the strokes being
compared. Note that for distant strokes, the polar histogram
may cover the entire expression.

We use three separate Parzen window Shape Contexts
when classifying directed LOS edges as ‘merge’ or ‘split.’
We use a separate PSC for each stroke, and then a third PSC
for other strokes in the neighborhood of the two strokes.
We do this to improve discrimination by clearly separating
point sources. We confirmed empirically that using multiple
histograms is beneficial. Figure 5 shows an example of
Parzen Shape Context features for classifying a directed
LOS edge. In this example, we consider an edge from the
vertical stroke of ‘+’ (the parent of the edge) to a nearby
‘1’ stroke (the child of the edge). Red represents points
from the parent stroke, green points from the child stroke,
and blue points from other strokes in the histogram. Color
intensity represents the density of each bin. Note that during
segmentation, the reverse edge from the ‘1’ to the vertical
stroke of the ‘+’ would also be considered.

PSC features produce a simplified image of the region
around a pair of strokes, but with the point sources (parent,
child, and other strokes) clearly separated. Polar histograms
have higher resolution near their center, which we hoped
would be beneficial. However, 2D histograms, convolution
masks or other abstracted/compressed image representations
might be used to similar or better effect.

Expression with PSC center and perimeter shown

Parent stroke Child stroke Other strokes

Figure 5: Example Parzen Shape Contexts (PSCs). A di-
rected edge from the vertical line in ‘+’ to the ‘1’ is
considered. Each PSC has 120 bins, with the PSC radius
reaching the furthest parent or child stroke point (pixel). In
experiments we use only 30 bins (5 distances × 6 angles),
with a radius 1.5 times the distance to the furthest parent or
child stroke point, capturing more context from other strokes

Geometric Features. We also use geometric features
from previous work on classifying relationships between
stroke pairs, including horizontal distance, size difference
and vertical offset [16]; minimum point distance [12]; over-
lapping area [17]; minimum distance, horizontal overlapping
of the bounding box, distance and offset between stroke
start and end points, and finally backward movement and
parallelity [18]. Parallelity is the angle between two vectors
representing strokes, with the vectors defined by the first and
last points of each stroke.

We also add some additional geometric features. These
include the distance between bounding box centers, dis-
tance between centers-of-mass, maximal point pair distance
(two points are from different strokes of the stroke pair),
horizontal offset between the last point of the first stroke
and the starting point of the second stroke, vertical distance
between bounding box centers, writing slope (angle between
the horizontal and the line connecting the last point of the
current stroke and the first point of the next stroke) and
writing curvature (angle between the lines defined by the first
and last points of each stroke). We normalize all geometric
features to lie in the interval [0, 1] except for parallelity,
writing slope and writing curvature.

Training. Using CROHME training data, We used greedy

search and cross validation with random forest classifiers
to determine the parameters of the PSC features [9]. We
choose six angles and five distances for the polar histograms
(30 bins), and a Parzen window width of 1

5 of the shape
context radius. The shape radius itself is 1.5 times the
longest distance between stroke points to the center of the
histogram. We also used the CROHME training data to
create our random forest merge/split classifier [9]. We use
a random forest with 50 trees, with maximum depth 40 for
each decision tree. The Gini criterion was used for splitting.
There are n = 129 features, and

√
n features (11) are

selected to define candidate splits at each decision tree node.
Experimental Results. The classification rate for merging

or splitting stroke pairs is quite high: we obtain 98.26%
for CROHME 2012, and 97.88% for the CROHME 2014.
Table III shows our segmenter obtaining the second-highest
reported symbol recall for CROHME 2012 (94.87%), and
CROHME 2014 (92.41%), while obtaining the highest F-
score for CROHME 2014 (92.43%).

Note that we obtain these results without using OCR or an
expression grammar. Many of the systems shown are parser-
driven, and use classification and relationship constraints
(i.e., context) to refine segmentation. We believe that lan-
guage constraints would improve our results substantially.

Table III: Symbol Segmentation Metrics for CROHME 2012
Test (only Recall reported [19]) and CROHME 2014 Test

CROHME 2012 Test (486 Expressions)
Symbol

Recall (%) Precision (%) F-score (%)
MacLean et al. [20] 95.56
LOS + PSC 94.87 94.56 94.72
Alvaro [21] 91.95
Awal et al. [22] 87.75
Hu et al. [23] 87.51
Simistira et al. 71.21
Celik et al. [24] 59.20

CROHME 2014 Test (986 Expressions)
Symbol

Recall (%) Precision (%) F-score (%)
Alvaro [25] 93.31 90.72 92.00
LOS + PSC 92.41 92.45 92.43
Awal et al. [26] 89.43 86.13 87.75
Yao and Wang [27] 88.23 84.20 86.17
Hu et al. [3] 85.52 86.09 85.80
Le et al. [28] 83.05 85.36 84.19
Aguilar [29] 76.63 80.28 78.41

LOS + PSC: Line-of-Sight Graph using Parzen Shape Contexts
w. Random Forest Classifier

VI. CONCLUSION

We propose a Line-of-Sight (LOS) stroke graph that is
able to represent more formulae than Time-series, Mini-
mum Spanning Tree, Delaunay and k-NN graphs. For the
CROHME 2012 and 2014 Test sets, LOS graphs omit fewer
than 0.1% of necessary directed stroke pair edges, with a
Precision of roughly 30%. We have used LOS graphs to

create a symbol segmenter making use of Parzen window-
modified Shape Context features (PSC) that obtains state-
of-the-art results for the CROHME 2014 Test set (92.43%
F-measure) without using OCR or expression grammars. In
other work, LOS graphs have been used to obtain surpris-
ingly strong results for parsing handwritten formulae using
primarily visual features [10].

Avenues for future work include exploring modified ver-
sions of LOS graphs (e.g., relaxing the notion of ‘visibility’
by allowing strokes to be partially transparent), exploring
new graphs and combinations of graph types, incorporating
classification and language constraints with our segmenter,
and improving Parzen Shape Context features.

ACKNOWLEDGMENT

This material is based upon work supported by the
National Science foundation under Grant No. IIS-1016815.
We thank Francisco Álvaro for providing code to convert
CROHME stroke data to images.

REFERENCES

[1] R. Zanibbi and D. Blostein, “Recognition and retrieval of
mathematical expressions,” IJDAR, vol. 15, no. 4, pp. 331–
357, 2012.

[2] H. Mouchère, R. Zanibbi, U. Garain, and C. Viard-Gaudin,
“Advancing the state of the art for handwritten math recogni-
tion: the crohme competitions, 2011–2014,” IJDAR, pp. 1–17,
2016.

[3] L. Hu and R. Zanibbi, “Segmenting handwritten math sym-
bols using adaboost and multi-scale shape context features,”
in Proc. ICDAR, Aug. 2013, pp. 1212–1216.

[4] S. Smithies, K. Novins, and J. Arvo, “A handwriting-based
equation editor,” in International Conference on Graphics
Interface, 1999, pp. 84–91.

[5] Y. Eto and M. Suzuki, “Mathematical formula recognition
using virtual link network,” in Proc. ICDAR, Sep. 2001, pp.
762–767.

[6] N. Matsakis, “Recognition of handwritten mathematical ex-
pressions,” Master’s thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, May 1999.

[7] N. S. T. Hirata and W. Y. Honda, “Automatic labeling of
handwritten mathematical symbols via expression matching,”
in International Conference on Graph-based Representations
in Pattern Recognition, May 2011, pp. 295–304.

[8] M. d. Berg, O. Cheong, M. v. Kreveld, and M. Over-
mars, Computational Geometry: Algorithms and Applications,
3rd ed. Springer-Verlag TELOS, 2008.

[9] L. Hu, “Features and algorithms for visual parsing of
handwritten mathematical expressions,” Ph.D. dissertation,
Rochester Institute of Technology, 2016.

[10] L. Hu and R. Zanibbi, “MST-based visual parsing of on-
line handwritten mathematical expressions,” in Proc. ICFHR,
2016.

[11] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and
object recognition using shape contexts,” TPAMI, vol. 24,
no. 4, pp. 509–522, 2002.

[12] K. Toyozumi, N. Yamada, T. Kitasaka, K. Mori, Y. Suenaga,
K. Mase, and T. Takahashi, “A study of symbol segmentation
method for handwritten mathematical formula recognition
using mathematical structure information,” in Proc. ICPR,
Aug. 2004, pp. 630–633.

[13] A. Kosmala and G. Rigoll, “On-line handwritten formula
recognition using statistical methods,” in Proc. ICPR, Aug.
1998, pp. 1306–1308.

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” J. Machine Learning Research,
vol. 12, pp. 2825–2830, 2011.

[15] F. Alvaro and R. Zanibbi, “A shape-based layout descriptor
for classifying spatial relationships in handwritten math,” in
ACM DocEng, Sep. 2013, pp. 123–126.

[16] Y. Shi, H. Li, and F. Soong, “A unified framework for symbol
segmentation and recognition of handwritten mathematical
expressions,” in Proc. ICDAR, Sep. 2007, pp. 854–858.

[17] S. MacLean and G. Labahn, “A new approach for recognizing
handwritten mathematics using relational grammars and fuzzy
sets,” IJDAR, vol. 16, no. 2, pp. 139–163, 2013.

[18] S. Lehmberg, H.-J. Winkler, and M. Lang, “A soft-decision
approach for symbol segmentation within handwritten math-
ematical expressions,” in International Conference on Acous-
tics, Speech, and Signal Processing, May 1996, pp. 3434–
3437.

[19] H. Mouchère, C. Viard-Gaudin, D. H. Kim, J. H. Kim, and
U. Garain, “ICFHR 2012 competition on recognition of on-
line mathematical expressions (CROHME 2012),” in Proc.
ICFHR, Sep. 2012, pp. 811–816.

[20] S. MacLean and G. Labahn, “A bayesian model for recogniz-
ing handwritten mathematical expressions,” Pattern Recogni-
tion, vol. 48, no. 8, pp. 2433–2445, 2015.

[21] F. Alvaro, J.-A. Sanchez, and J. Benedi, “Recognition
of printed mathematical expressions using two-dimensional
stochastic context-free grammars,” in Proc. ICDAR, Sept.
2011, pp. 1225 –1229.

[22] A.-M. Awal, H. Mouchere, and C. Viard-Gaudin, “Towards
handwritten mathematical expression recognition,” in Proc.
ICDAR, 2009, pp. 1046–1050.

[23] L. Hu, K. Hart, R. Pospesel, and R. Zanibbi, “Baseline
extraction-driven parsing of handwritten mathematical expres-
sions,” in Proc. ICPR, Nov. 2012, pp. 326–330.

[24] M. Celik and B. Yanikoglu, “Probabilistic mathematical for-
mula recognition using a 2d context-free graph grammar,” in
Proc. ICDAR, Sep. 2011, pp. 161–166.

[25] F. Alvaro, J. Sanchez, and J. Benedi, “Recognition of on-
line handwritten mathematical expressions using 2d stochastic
context-free grammars and hidden markov models,” Pattern
Recognition Letters, vol. 35, pp. 58–67, 2014.

[26] A. Awal, H. Mouchère, and C. Viard-Gaudin, “A global
learning approach for an online handwritten mathematical
expression recognition system,” Pattern Recognition Letters,
vol. 35, pp. 68–77, 2014.

[27] H. Mouchère, C. Viard-Gaudin, R. Zanibbi, and U. Garain,
“ICFHR 2014 competition on recognition of on-line hand-
written mathematical expressions (CROHME 2014),” in Proc.
ICFHR, Sep. 2014, pp. 791–796.

[28] A. D. Le, T. V. Phan, and M. Nakagawa, “A system for
recognizing online handwritten mathematical expressions and
improvement of structure analysis,” in Proc. DAS, Apr. 2014,
pp. 51–55.

[29] F. JulcaAguilar, N. Hirata, C. ViardGaudin, H. Mouchere, and
S. Medjkoune, “Mathematical symbol hypothesis recognition
with rejection option,” in Proc. ICFHR, Sep. 2014, pp. 500–
505.

