
An Experiment in Game-Based Classifier Selection

Keywords: game theory, multiple classifier systems, optical character recognition, MNIST

Abstract

We present a two-player game against nature
for the study of classifier combination. The
game is an extension of the prediction with
expert advice framework developed by Cesa
Bianchi et al.. In the game, the player selects
from a set of base classifiers and their com-
binations, playing a closed-world competitive
prediction with expert advice game, with the
aim of selecting one of the classifiers that will
achieve the minimum error. To demonstrate
our approach we present a simple game for
a binary classification task using the MNIST
data set. From our exhaustive evaluation of
this scenario we develop two simple strate-
gies for selecting the best forecaster. In the
future, the game presented may be used to
study various classification contexts, struc-
tural pattern recognition problems, and the
use of learning algorithms to infer strategies
for the game.

1. Introduction

In this paper we extend previous work on game-based
approaches to online prediction (Cesa-Bianchi & Lu-
gosi, 2006; Freund & Schapire, 1996) for the task of
predicting the best classifier in a set of base classi-
fiers and their combinations. It has been repeatedly
demonstrated that often a set of classifiers may be
combined so that the combination outperforms the
individual classifiers (Kittler et al., 1998; Kuncheva,
2004; Fumera & Roli, 2005). A number of different
architectures (e.g. ensembles and cascades, contain-
ing some combination of classifiers with matching and
different output spaces) and combination rules (e.g.
static rules such as majority vote, linear combinations
learned during training) have been studied. For en-
sembles, we have a reasonable understanding of re-

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

gression, but not classification (Brown et al., 2005a).

The motivation for this work is to improve our under-
standing of the factors determining the relative perfor-
mance of classifiers and their combinations. A related
long-term goal is to be able to reliably predict which
classifier(s) in a set of base classifiers and their com-
binations will produce the minimum error for a given
classification problem.

Towards these ends, we present a game-based formal-
ism for a class of classifier combination experiments.
This is a two-player game against nature in which our
player tries to correctly select one of the classifiers pro-
ducing the minimum error (base or combined), and
then loss is computed as the difference in losses be-
tween the best classifier(s) and the classifier chosen by
the player. Our game provides a complete, concrete,
and closed-world framework for comparing theories of
classifier combination performance in an empirical set-
ting.

To illustrate the approach taken in our game, we
present some simple preliminary results demonstrat-
ing instances of this game: we consider binary classifi-
cation using MNIST (LeCun et al., 1998) handwritten
digit images, pixel intensity sums for features and 1-
NN classification. Our example games consider the ex-
haustive combination of features with 1-NN classifiers,
and combinations of these classifiers using the major-
ity voting. Here we do not attempt to be prescriptive,
but rather to demonstrate our game-based approach
and point towards promising research directions.

In the remainder of the paper, we present the predic-
tion with expert advice framework and our extensions
of it to a closed-world competitive setting (Section 2),
our game for predicting the best forecaster (Section 3)
and then provide results and discussion for our prelim-
inary instances of our game (Section 4 and 5).

2. Prediction with Expert Advice

In the model of prediction with expert advice (Cesa-
Bianchi & Lugosi, 2006) a forecaster plays a turn-
based two-player game against nature (the environ-

Experiment in Game-Based Classifier Selection

ment). The forecaster’s goal at each turn is to choose
a prediction belonging to a decision space D that
matches the outcome chosen by the environment from
an outcome space Y . In addition to choosing out-
comes, the environment determines the advice pro-
vided to the forecaster by a set of experts.

For each turn t (t = 1, 2, . . .), the environment chooses
the next outcome yt ∈ Y and the expert advice (fE,t ∈
D, for each expert E). The forecaster then selects a
prediction p̂t ∈ D. Outcome yt is then revealed, and
the loss for the forecaster and each expert is computed
(`(p̂t, yt) and `(fE,t, yt), respectively).

The forecaster’s goal in this game is to minimize
the cumulative regret with respect to each expert E
(RE,n), over all possible outcome sequences:

RE,n =
n∑

t=1

(`(p̂t, yt)− `(fE,t, yt))

Forecasters may use side information before making
a prediction, in addition to the expert advice. In our
case this will be features for the next digit to be clas-
sified.

2.1. Competitive Prediction

To define the interaction of the environment, available
features, and classifiers and their combinations more
concretely, we now consider a variation of prediction
with expert advice in which a set of forecasters (F)
play simultaneously, with some forecasters doubling
as ‘experts’ for other forecasters. In this variation, the
environment selects the outcome, but not the expert
advice: expert advice now comes from other forecast-
ers in the game.

Each forecaster aims to minimize cumulative regret as
defined above, with forecasters ranked in decreasing
order of regret relative to the best forecaster(s) at the
end of the game. This is a game of complete informa-
tion, where a history for completed turns is recorded
and made available to all forecasters in the game. For
each turn, the game history h contains:

1. Feature values (st ∈ S)
2. Parameters for forecasters (θit)
3. Predictions (P̂t = {p̂t1, . . . , p̂t|F |})
4. Outcome yt

S is a fixed feature space, defined at the beginning
of the game. Note that forecasters may not (likely
will not) use all information in the game history; for
example, forecasters will likely use different subspaces
of S (i.e. different features).

The behavior of forecasters is defined by a decision
function (di), and a learning function (li):

di : S ×Θi ×D|A| → D
li : Θi ×H → Θi

Θi is the parameter space for forecaster fi ∈ F , D|A|

is the space of possible expert advice (defined by some
subset of forecasters A ⊆ F), and H is the space of
possible game histories. di is used by forecaster fi to
make its prediction p̂t each turn. Forecasters apply
their learning function li to update their parameters
(θi ∈ Θi) based on their current values and the game
history.

The game as posed here assumes hierarchical depen-
dencies between forecasters, where all expert advice
(other forecaster predictions) must be computed be-
fore a forecaster makes its prediction. Without this
restriction, cyclic dependencies between two or more
forecasters may arise, making it impossible to compute
their predictions.

3. Picking the Best Forecaster

Let us now define the game used in the experiments in
this paper. In this game we ask a player to choose the
best forecaster within a competitive prediction game
before it has ended. Assume that we can see only the
first m turns of the game, with m < n, the (finite)
number of turns in the game. The best forecasters
are those that achieve the minimum loss after the pre-
diction game continues to the final turn n. As before,
this is a two-player game against nature, with the envi-
ronment choosing the outcomes within the prediction
game.

In this new game the outcome space contains sets of
forecasters with equivalent losses (YL = {L1, . . . , Ln}),
while the decision space DF is the set of forecasters
(DF = F,D 6= Y). The measure of regret for our
player in this new game is the difference between the
cumulative regret for one of the best experts (Eb) and
for the selected expert (Es):

q∑
j=1

REs,turns(j) −REb(k),turns(j)

where turns(j) is the number of turns played in pre-
diction game j.

This ‘new’ game is really an instance of the original
prediction with expert advice game (Section 2), with
no experts and side-information (the provided game
history). One might consider having the environment
again provide expert advice to our player; however, we

Experiment in Game-Based Classifier Selection

Figure 1. Examples of digits from the MNIST database
(LeCun et al., 1998)

will assume that our player must pick the best fore-
caster in the absence of expert advice in this paper.

4. Empirical Evaluation of Forecasters

The goal of the experiment in this paper is not to
achieve a competitive error rate on MNIST, but rather
to demonstrate our approach and observe interactions
between a classification rule, available features, and
the combination technique in a ‘pick the best fore-
caster’ game. Towards that end, we use a subset of
the MNIST data to evaluate the game.

The MNIST (LeCun et al., 1998)1 data set consists of
pre-processed 28× 28 grayscale examples of handwrit-
ten digits divided into training (60,000 examples) and
test sets (10,000 examples). Some digits are shown in
Figure 1. MNIST has been used extensively in ma-
chine learning research, making it an ideal benchmark
for studying the properties of classifier combinations.

Many techniques have been used to recognize MNIST
with an error rate of less than 1%, including shape con-
text features paired with k-NN classification (Belongie
et al., 2002), image deformation models (Keysers et al.,
2007), synthetic training data generation using elastic
distortions (Simard et al., 2003), convolutional neural
networks using boosted ensembles (LeCun et al., 1998)
and Support Vector Machines for classification in the
final layer (Lauer et al., 2007), and using an energy
based model (Ranzato et al., 2007) (with error rate
0.39%). These techniques produce few enough errors
that confused digits are often listed in the papers.

4.1. Experimental Design

Using the MNIST data we run the game on the pairs of
digits (“0”, “1”), (“1”, “7”) and (“4”, “9”) to provide
a range of levels of difficulty for our chosen features.
We use only one function for feature extraction: the
sum of a rectangular array (represented as

∑
I) of pixel

values. This can be used to provide histograms of pixel
values within individual rows and columns in an image,
or within subregions of an image (for example, after
splitting an image into 4 regions). For this evaluation,
we select the regions as three columns of widths (left
to right) 9, 10 and 9, which we label as FS1, FS2 and

1http://yann.lecun.com/exdb/mnist/

a) b)

c) d)

Figure 2. Examples of training feature values plotted as
pairs using ground truth classifications to distinguish
classes for a) (“0” , “1”) (white, black) for FS1 (x-axis)
versus FS3 (y-axis); b) (“1”, “7”) for FS2 versus FS3; c)
(“4”, “9”) for FS1 versus FS2; and d) (“4”, “9”) for FS1
versus FS3.

FS3, respectfully.

The features are chosen for both simplicity and their
potential to discriminate with varying levels of perfor-
mance between digits. For example, all three features
provide good discrimination for (“0”, “1”), as can be
seen in Figure 2a for FS1 versus FS3, with a clear
discrimination boundary. In contrast, for (“1”, “7”),
there is no clear discrimination boundary between FS2
and FS3 (Figure 2b), which perhaps matches the simi-
larity of the written digits, whereas for (“4”, “9”), the
distinction is a little clearer if we take into account
neighborhoods of features (Figure 2c, d).

To help quantify the amount of similarity between fea-
tures for a given task, we calculated the correlation
coefficients for pairs of features to show the overall
correlation across and within classes as specified by
ground truth (Table 1). While the correlation coeffi-
cient is not the best measure of feature dependence, it
does allow us to see the potential redundancy our fea-
tures provide. Here we can see that, in general, FS1
and FS3 are highly correlated, especially for “0”, “1”
and “4”, with “7” and “9” showing a slightly lesser
correlation. This would suggest that having just one
of FS1 or FS3 is sufficient for classification of “0”, “1”
or “4”. In contrast, FS1 and FS2, and FS2 and FS3
show little or no correlation, except for “7” (0.44) and
across both classes for (“0”, “1”) and (“1”, “7”), where

Experiment in Game-Based Classifier Selection

Table 1. Correlation coefficients for the training data sets
for the three tasks. Coefficients are shown between pairs
of features for the whole data set, and then for each data
set split by ground truth (GT) classification.

FS1, FS2 FS1, FS3 FS2, FS3

(“0”, “1”) 0.46 0.95 0.38
“0” (GT) 0.12 0.84 -0.03
“1” (GT) 0.04 0.80 -0.04

(“1”, “7”) 0.51 0.77 0.44
“1” (GT) -0.05 0.82 -0.17
“7” (GT) 0.44 0.63 0.17

(“4”, “9”) -0.23 0.79 -0.16
“4” (GT) -0.21 0.83 -0.16
“9” (GT) -0.01 0.61 0.10

some degree (at least 0.38) of correlation is shown.

For a given game, we select separate training and test-
ing sets from the respective MNIST data in the order
supplied. For both training and testing we select 1/20
of the available digits, sufficient to allow our classi-
fiers to learn, but small enough to facilitate evaluation
without being too computationally intensive. For ex-
ample, for the (“0”, “1”) game, we select the first 296
“0”s and the first 337 “1”s for training. The complete
set of sample sizes is shown in Table 2.

A training phase of the game is executed first in which
the forecasters are permitted to adjust their parame-
ters θit, and which uses the training set to construct
the feature values st. The number of turns n in the
game is set to the total number of digits in the train-
ing set (in our example 633) so that each example is
used only once. The testing phase then uses the test-
ing set to construct features for samples, but with no
forecaster learning, the last set of trained forecaster
parameters θnt are used. During both training and
testing the environment uses a uniform random sam-
pling method to select examples per turn, assigning
yt to be the ground truth classification for the sample
from the associated MNIST label.

To explore different types of forecaster in a hierar-
chy, we use both base and multiple classifiers. The
base classifiers are binary 1-nearest neighbor (1-NN)
classifiers, using the Euclidean distance metric, tak-
ing values provided by

∑
I and the current classifier’s

training sample set within the parameters θit as input,
and returning the class with the closest instance. Ties
are resolved by taking the class of just the first closest
sample. The learning function for the 1-NN classifiers

Table 2. MNIST digit training and testing sample sizes.

Digit Training Testing

“0” 296 49
“1” 337 57
“4” 292 49
“7” 313 51
“9” 297 50

Table 3. Base classifier feature spaces.

Base FS1 FS2 FS3

classifier (left 9) (center 10) (right 9)

f1 •
f2 •
f3 • •
f4 •
f5 • •
f6 • •
f7 • • •

is trivial (lNN), as it simply adds observed instances in
the feature space to the classifiers sample set (θit), un-
til all the training turns have completed. No changes
to the parameters are permitted during testing. The
idea of combining 1-NN classifiers through voting is
not new: there is at least one published method for
applying k-NN classifiers to individual features, and
then combining their results using a plurality voting
scheme (Akkus & Guvenir, 1996).

To provide us with a distinctive set of base classifiers,
we construct 1-NN classifiers that take as input the
exhaustive combination of the features FS1, FS2 and
FS3, so that f1 has feature space FS3, and so forth,
as shown in Table 3. The multiple classifiers evaluate
the exhaustive combination of each of the 7 base clas-
sifiers with 120 ensembles, combining from 2 to 7 of
the base classifiers. Each ensemble determines its out-
put as a majority vote on the outputs of its associated
base classifiers, with ties broken randomly (uniform
distribution).

To evaluate the best performing forecasters in the
game we use a zero-one loss function ` (1 if the classifier
output is wrong, 0 if correct). For ease of comparison
in the results, we rank the losses for each forecaster
in ascending order (lowest number of losses first). For
an equal number of losses, the rank function preserves
the order of the forecasters. We also report the overall
performance of a forecaster as a cumulative percentage
binary classification accuracy at each turn.

Experiment in Game-Based Classifier Selection

Figure 3. Base classifier cumulative training classification
accuracy for (“0”, “1”).

4.2. Base Classifier Results

First we examine the performance of the base classi-
fiers to determine which achieves the best ranking ver-
sus their corresponding features. Having selected only
1/20 of the available digits for training, we note that
each base classifiers performance appears to stabilize
after approximately 100 examples have been presented
for training (for example, Figure 3). Table 4 shows the
ranking for each base classifier and its corresponding
classification accuracy for the three tasks.

During training, the highest ranking base classifier is
f7 for all three tasks, which uses (FS1, FS2, FS3).
This is then followed by either f6 and f3, which are
always in second or third rank. Indeed, f7, f6 and f3
become dominant as soon as the classifiers achieve sta-
bility in training (for example, Figure 3) for (“0”, “1”)
and (“1”, “7”), although this is less clear for (“4”, “9”)
where the classifiers are more evenly matched. The
worst ranked base classifier is f4, which uses (FS1),
for (“0”, “1”) and (“4”, “9”), and second worst for
(“1”, “7”), with f1 worst using (FS3). Note also that
f5 is always ranked in the middle using (FS1, FS3).
This implies that during training, classification accu-
racy is achieved most by a combination of at least FS2
and one other feature, with all three features achiev-
ing nearly the highest accuracy, even when compared
to the multiple classifiers. These results match the in-
tuition that the correlation coefficients between pairs
of features give an indication of their relative perfor-
mance, where, for example FS1 and FS3 are highly

correlated and hence one conveys similar information
to the other. Just using these two correlated features
provides a median ranking, whereas just one of these
combined with FS2 achieves at least a top three rank-
ing. However, while this might follow intuition for
training, these results are not carried through to test-
ing.

With testing, the ranking of the classifiers changes
moderately with f7 only appearing in the top three
base classifiers for (“0”, “1”), however with the same
number of losses (essentially equal ranking) as f1 and
f5. For (“0”, “1”) and (“4”, “9”), f1 is ranked top,
despite featuring in the bottom three during training.
This shows that FS3 provides sufficient information
for good generalization on its own for these two tasks
over the combination of, say, FS2 and FS3 for f3; even
for (“1”, “7”), f1 achieves a significantly improved ac-
curacy (77%), if not a much higher ranking.

Looking at the correlation based predictions for test-
ing, f6 with FS1 and FS2 achieves rank 2 in testing
for (“1”, “7”), but otherwise achieves no better than
118, while f3, using FS2 and FS3, decreases in accu-
racy for (“0”, “1”) and (“1”, “7”), but improves sig-
nificantly for (“4”, “9”) to rank 33. This shows that,
while our simple 1-NN classifiers have good generaliza-
tion capability, the feature predictions from correlation
coefficients do not provide a good indication of perfor-
mance during testing, despite contrary observations
during training. This is also in contrast to the predic-
tions based upon the class discrimination provided by
the visual inspection of the features (Figure 2), which
suggests that the (“0”, “1”) task is the easiest, (“4”,
“9”) moderate, and (“1”, “7”) the hardest, yet the test
performance shows that (“4”, “9”) is the hardest (59%
best test accuracy).

4.3. Multiple Classifier Results

Within the game we are bringing together a hierarchy
of forecasters (base and multiple classifiers) to explore
how we might predict the forecaster that will mini-
mize the regret between that selected and the best
forecaster. Our multiple classifiers do not adjust their
parameters during training, but use instead the base
classifiers, which do. Therefore, stability of the multi-
ple classifiers is achieved after approximately 100 ex-
amples when the base classifiers themselves have sta-
bilized. Table 5 shows the ranking for selected base
and multiple classifiers and their corresponding classi-
fication accuracy for the three tasks. For example, we
can see that for (“0”, “1”), f58 is ranked highest, com-
bining base classifiers f3, f5 and f7, but during testing
this only achieves a rank of 30.

Experiment in Game-Based Classifier Selection

Table 4. Base classifier training and testing rankings (with classification accuracy) for games run on digit pairings (“0”,
“1”), (“1”, “7”) and (“4”, “9”). Note that rankings are in ascending order with 1 being the best and 127 the worst. The
highest ranking classifier for each task is highlighted in italic.

Base (“0”, “1”) (“1”, “7”) (“4”, “9”)
classifier Train Test Train Test Train Test

f1 (FS3) 117 (72%) 19 (95%) 127 (49%) 112 (77%) 126 (49%) 4 (59%)
f2 (FS2) 125 (63%) 127 (58%) 119 (56%) 127 (65%) 120 (51%) 79 (51%)
f3 (FS2, FS3) 19 (95%) 43 (94%) 56 (70%) 126 (66%) 83 (55%) 33 (55%)
f4 (FS1) 127 (63%) 119 (88%) 124 (54%) 65 (85%) 127 (48%) 125 (45%)
f5 (FS1, FS3) 112 (73%) 20 (95%) 101 (60%) 55 (86%) 94 (55%) 44 (54%)
f6 (FS1, FS2) 30 (92%) 118 (89%) 23 (76%) 2 (91%) 37 (58%) 120 (46%)
f7 (FS1, FS2, FS3) 2 (96%) 21 (95%) 5 (79%) 66 (85%) 7 (60%) 6 (58%)

Table 5. Summary of training and testing rankings (with
classification accuracy) for selected forecasters. For each
task this shows 1) the highest ranked base classifier during
training; 2) the highest ranked multiple classifier during
training; 3) the highest ranked multiple classifier during
testing, which for (“1”, “7”) is the same as 2); 4) the low-
est ranked multiple classifier during training; and 5) the
multiple classifier that combines all base classifiers. Test-
ing loss and regret for each is also shown (see Section5).

Train Test ∑
` R

(“0”, “1”)

f7 2 (96%) 21 (95%) 5 3
f58(3, 5, 7) 1 (96%) 30 (95%) 5 3
f65(1, 2, 3, 5) 83 (80%) 1 (98%) 2 0
f15(2, 4) 126 (63%) 126 (70%) 32 30
f127(1− 7) 43 (89%) 42 (95%) 5 3

(“1”, “7”)

f7 5 (79%) 66 (85%) 16 8
f63(5, 6, 7) 1 (80%) 1 (93%) 8 0
f8(1, 2) 126 (52%) 124 (71%) 31 23
f127(1− 7) 36 (75%) 40 (88%) 13 5

(“4”, “9”)

f7 7 (60%) 6 (58%) 42 4
f97(3, 5, 6, 7) 1 (62%) 30 (56%) 44 6
f35(1, 3, 5) 111 (53%) 1 (62%) 38 0
f8(1, 2) 125 (49%) 34 (55%) 45 7
f127(1− 7) 5 (61%) 78 (52%) 48 10

In general, the multiple classifier rankings match well
with their component base classifiers. During training,
the highest ranking multiple classifiers all use at least
one of the top 2 ranked base classifiers. For example,
for (“4”, “9”), the top 78 ranked multiple classifiers
use either f6 or f7. If we calculate a mean rank for
each group of multiple classifiers that uses each base
classifier (take the mean of all that use base classifier
f1, then f2 and so forth), then the order of the mean
ranks match the base classifier rank orders with only
a few minor exceptions.

During testing, this relationship between the multiple
and base classifiers is maintained, with the same or-
der of mean rankings for testing to that of the base
classifiers, following the different rankings observed
for testing as described above. We note however for
both training and testing that combiner f127 (Table 5),
which uses all base classifiers, performs no better than
the base classifiers, except during for training for (“4”,
“9”). This acts as a useful benchmark if we consider
an approach that subscribes to the principle that an
ensemble of more components provides improved per-
formance. We can see from this that improvement
can only be obtained in this scenario by considering
different strategies combining a lesser number of com-
ponents, which we will discuss shortly.

4.4. Discussion

Our hierarchy of forecasters appears to provide suffi-
cient complexity within a constrained scenario to eval-
uate successful strategies for picking the best fore-
caster, albeit with a limited amount of data to aid
evaluation and reduce computational complexity. In
particular, we have gone from the level of features to
base classifiers to multiple classifiers so that the game
of expert advice is applied to forecasters that them-

Experiment in Game-Based Classifier Selection

selves have their own set of experts. However, in se-
lecting classifiers we have deliberately chosen simple
algorithms to constitute both the base and multiple
classifiers. In order to achieve higher levels of per-
formance, we could have selected to use an increased
number of neighbors, for example, or more complex
combining algorithms that attempt to adjust the com-
ponent classifiers based upon the overall performance
of the ensemble. Using such algorithms, as discussed
in section 4, can give error rates of less than 1%, so
our achieved performances are not competitive, but at
least for (“0”, “1”) is reasonable.

The relationship between the base and multiple clas-
sifiers is perhaps intuitive when we consider that the
multiple classifiers are only as good as their compo-
nents, and hence high performing components leads to
high performing ensembles. However, the notion of di-
versity (Kuncheva & Whitaker, 2003) in an ensemble,
implies that ensemble performance can be improved if
the components complement each other, so that, for
example, if one makes an error, the other components
compensate for this. This principle, for example, may
explain why f127 does not perform optimally.

While metrics to quantify diversity and use it to ac-
tively construct ensembles are still being developed
(see for example (Brown et al., 2005b) for regression),
a simple measure of the component similarities can be
obtained by calculating the correlation coefficient be-
tween pairs of base classifier outputs. For example, the
outputs of f3 and f7 during training for (“0”, “1”) are
highly correlated with a coefficient of 0.97, similarly
between f6 and f7, and f3 and f6, yet the ensemble
f59 that combines just these base classifiers is ranked
6 during training, and 53 during testing. While the
correlation coefficient is a crude measure of diversity,
this does suggest that further investigation of the influ-
ence dissimilarity has is required in such an exhaustive
environment to help inform theory. This follows the
work on boosting that links game theory to a sam-
pling strategy for components successfully (Freund &
Schapire, 1996), but which it may be possible to ex-
tend to the more general scenario we have presented
in which the forecasters themselves are hierarchical.

5. Strategies for Picking the Best
Forecaster

Now that we have provided a empirical environment
that compares a hierarchy of forecasters, the question
remains as to how we can select an appropriate strat-
egy for selecting a forecaster that results in the prac-
tical reduction in regret. Recall that the cumulative
regret is the difference between a forecaster and an

expert, so that our task is to minimize the regret be-
tween a selected forecaster and the best performing
forecaster.

In Table 5, we list the cumulative loss during testing
for each of the selected classifiers. We have a num-
ber of choices for strategy that these losses show us,
based purely on the training results. To provide a
benchmark for each of these strategies, we consider
two cases. First, the worst performing forecaster for
each task, which gives a regret of 30, 23 and 7 for (“0”,
“1”), (“1”, “7”) and (“4”, “9”) respectfully (recall that
our results show that these tasks are in order of diffi-
culty, hence the corresponding reduction in regret for
each task). Second, the näıve multiple classifier that
combines all base classifiers (f127), which gives regrets
of 3, 5 and 10, which are relatively small themselves,
given the overall testing set sizes of 106, 108 and 99.

The first strategy we consider is to use only the highest
ranking base classifier as seen during training, which
for these experiments is (f7). This gives a regret of 3, 8
and 4, which improves upon the benchmarks provided,
except for (“1”, “7”). This strategy could be applied
without computing any multiple classifiers. However,
as we have seen, such multiple classifiers can give im-
proved performance. As a consequence, our second
strategy is to select the highest ranking multiple clas-
sifier. For each task this differs, with f58 giving a regret
of 3, f63 0 and f97 6 for the three tasks, respectfully.
For (“1”, “7”) this is optimal, but for (“4”, “9”) this
is worse than the best base classifier, and hence using
multiple classifiers for this strategy appears counter-
productive, perhaps due to the difficulty of this task
and the resulting poor accuracy (near chance) for all
of the classifiers tested.

Both the strategies we consider here are straightfor-
ward and we have used these as a demonstration of
our game-based approach only. Our approach pro-
vides sufficient generality, and indeed this was the
aim, to develop more mature strategies. For exam-
ple, the interaction between features and forecasters
could be used by combining feature correlation coeffi-
cients with multiple classifier components to weight a
forecaster’s ranking, similar to how weighted majority
voting works at the scale of the forecaster (Littlestone
& Warmuth, 1994), rather than at the features.

6. Conclusion

In this paper we have presented a game-based ap-
proach to the task of predicting the best classifier in
a set of base classifiers and the combinations. Our
approach explicitly represents the interaction of fea-

Experiment in Game-Based Classifier Selection

tures, base classifiers and their combinations. Through
a closed-world, well defined example, we have explored
how this approach can be used to define strategies
for the selection of the best forecaster. We show for
this simple game that two basic strategies have mod-
erate success in reducing the measure of regret, al-
though these are obviously not optimal and are used
for demonstration only.

In the future, we wish to apply the competitive pre-
diction game to structural pattern recognition prob-
lems, using decision and output spaces containing se-
quences of operations that construct instances of a
graph-based structural model. We will then use this as
a basis to study how to learn effective combinations of
structural pattern recognizers. We will also consider
more sophisticated classifiers and theories (for exam-
ple, (Cesa-Bianchi & Lugosi, 2006; Littlestone & War-
muth, 1994)) for making predictions, with the overall
aim of developing automated methods for predicting
the best classifier within a theoretical context that can
be used in practice.

References

Akkus, A., & Guvenir, H. (1996). K nearest neigh-
bour classification on feature projections. Proc. Int’l
Conf. Machine Learning (pp. 12–19). San Francisco,
USA.

Belongie, S., Malik, J., & Puzicha, J. (2002). Shape
matching and object recognition using shape con-
texts. IEEE Trans. PAMI, 24, 509–522.

Brown, G., Wyatt, J., Harris, R., & Yao, X. (2005a).
Diversity creation methods: A survey and categori-
sation. Information Fusion, 6, 5–20.

Brown, G., Wyatt, J. L., & Tiňo, P. (2005b). Man-
aging diversity in regression ensembles. Journal of
Machine Learning Research, 6, 1621–1650.

Cesa-Bianchi, N., & Lugosi, G. (2006). Prediction,
learning, and games. New York: Cambridge Uni-
versity Press.

Freund, Y., & Schapire, R. E. (1996). Game theory,
on-line prediction and boosting. Proceedings of the
9th Annual Conference on Computational Learing
Theory (pp. 325–332). New York: ACM Press.

Fumera, G., & Roli, F. (2005). A theoretical and ex-
perimental analysis of linear combiners for multiple
classifier systems. IEEE Trans. PAMI, 27, 942–956.

Keysers, D., Deselaers, T., Gollan, C., & Ney, H.
(2007). Deformation models for image recognition.
IEEE Trans. PAMI, 29, 1422–1435.

Kittler, J., Hatef, M., Duin, R., & Matas, J. (1998).
On combining classifiers. IEEE Trans. PAMI, 20,
226–239.

Kuncheva, L. (2004). Combining pattern classifiers.
Hoboken, New Jersey: Wiley-Interscience.

Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of
diversity in classifier ensembles. Machine Learning,
51, 181–207.

Lauer, F., Suen, C. Y., & Bloch, G. (2007). A trainable
feature extractor for handwritten digit recognition.
Pattern Recognition, 40, 1816–1824.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.
(1998). Gradient-based learning applied to docu-
ment recognition. Proc. IEEE, 86, 2278–2324.

Littlestone, N., & Warmuth, M. K. (1994). The
weighted majority algorithm. Information and
Computation, 108, 212–261.

Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y.
(2007). Efficient learning of sparse representations
with an energy-based model. Proc. NIPS 19 (pp.
1137–1144). Cambridge, MA: MIT Press.

Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003).
Best practices for convolutional neural networks ap-
plied to visual document analysis. Proc. Seventh
Int’l Conf. Document Analysis and Recognition (pp.
958–963).

