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Abstract. We summarize math search engines and search interfaces
produced by the Document and Pattern Recognition Lab in recent years,
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ical semantics.
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1 Introduction: Why Math Search Pertains to the Masses

Mathematical notation is a natural language used to define the models, metrics
and analytical tools of modern societies. It is natural in the sense that the nota-
tion is re-purposed and adapted for different mathematical concepts, problems,
and communities, leading to various dialects. The influence of mathematical no-
tation, while quiet, is pervasive. Whether it is choosing foods to purchase based
on their cost and quantified nutritional information, or using demographic and
usage statistics to determine which forms of entertainment to attract and pro-
mote, where to build manufacturing sites, or how to represent a problem and its
potential solutions in science and technology, math notation is an essential tool
that shapes both our personal lives and environment. Given this, math literacy
is critical for participating fully in the modern world, and considerable attention
continues to be focused on strengthening mathematics education.

However, for many persons of all ages, mathematical notation is a source of
significant frustration or anxiety at times due to real or perceived difficulties
with interpreting unfamiliar notation. This is particularly true when the text
accompanying mathematical notation is found to be confusing. To search the
internet for alternative sources about the notation, users must formulate their
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query in text, even if they are unclear what about what the represented concept
is. Mathematical experts might search the internet using LATEX for an expression,
or using the (often, already known) name for the concept [42]. Even experts relate
to the odd experience of revisiting concepts expressed in a notation distinct
from that used when they originally learned a concept, and the difficulties this
introduces in interpreting the notation.

While mathematical concepts can often be notated various ways, some psy-
chological studies suggests that the appearance of math notation affects our
reasoning about it [15], and that individuals will often space subexpressions sys-
tematically when entering math, even if mathematically unnecessary [14]. The
studies suggest that our perception of math notation may be grounded in visual
structure, i.e. how it looks.

An important related concern is hit content summarization, i.e. how search
hits are presented to the user [36]. In a recent study it was confirmed that as one
expects, the formatting of math expressions significantly affects relevance assess-
ment of search hits [25]. The normal hit format provided by Google (e.g. as raw
LATEX or Presentation MathML) was compared with the same hits with formulae
rendered, and on average participants had a 17% higher relevance assessment
accuracy in the rendered condition.

We propose that if it is natural to use words from unclear texts in queries,
it is also natural to use mathematical notation from unclear texts directly in
queries. A recent study illustrates the benefit of this approach [35]. When un-
dergraduate students were asked to learn about the binomial coefficient, and
shown the expression

(
4
2

)
, many did not know what the notation represented.

When given an interface in which they could draw, recognize the spatial layout
of symbols and then search for the expression, most participants found this to
be both intuitive and helpful.

In the remainder of our paper, we summarize research carried out to realize
the entry and retrieval of math based on its appearance, as this is what one works
from when notation is unfamiliar or difficult to interpret, or when trying to locate
similarly structured expressions (e.g. when browsing formulae in a collection).

2 Math Encodings: Symbol Layout Trees and Operator
Trees

In practice, math encodings are most commonly used to represent the appear-
ance and mathematical content of formulae. Appearance-based encodings such
as LATEX [13] and Presentation MathML1 are used to display mathematical ex-
pressions. A number of web browsers support Presentation MathML directly
(e.g. Firefox), and online tools such as MathJax2 may also be used to render
LATEX and MathML contained in HTML pages. Mathematical content encodings
such as Content MathML can be used for evaluation and symbolic manipulation
by Computer Algebra Systems (e.g. Mathematica, Maple).

1 http://www.w3.org/Math/
2 https://www.mathjax.org/



As illustrated in Figure 1, the appearance and content of mathematical ex-
pressions are hierarchical. As a result, both appearance and content-based encod-
ings define trees, which are annotated in various ways to support applications.
Encodings for appearance represent a spatial arrangement of symbols on base-
lines (writing lines), which we term a Symbol Layout Tree. In Figure 1a the
symbol layout tree is rooted at the leftmost parenthesis (‘(’), and there are two
writing lines present: the main baseline, and a superscripted baseline.

( a + b )

SUPER

2

EXP

ADD

a b

2

a) Symbol layout tree (appearance) b) Operator tree (semantics)

Fig. 1. Symbol Layout Tree and Operator Tree for (a+ b)2

The Operator Tree in Figure 1b represents a hierarchical application of op-
erations to operands, from the leaves to the root of the tree. Relative to the
layout tree in Figure 1a, in the operator tree operator symbols are replaced by
their associated operation (e.g. ‘+’ becomes ADD), implicit operations are made
explicit (e.g. superscript becomes EXP (exponent)), and parentheses used for
grouping in the expression appearance are removed. Groupings are redundant in
an operator tree, where ordering constraints are explicit.

Due to symbols and spatial relationships in formulae being frequently rede-
fined by authors, it is impossible to define a mapping from formula appearance
to formula semantics. To create this mapping the domain of discourse (e.g. al-
gebra vs. calculus vs. logic, etc.) along with the specific environment defining
constants, variables, and operations in an expression are required. The mapping
from operator trees to layout trees is also one-to-many, as a single operator tree
may be written various ways. For example, ‘x2’ and ‘(x)2’ can represent the same
operation, and operations may be associated with different symbols (e.g. ‘÷’ vs.
‘/’ for division) and symbol arrangements (e.g. 1/2 vs. 1

2 ).
The flexibility of mathematical notation benefits both authors and their tech-

nical communities. However, this flexibility and dependency on context for in-
terpretation poses substantial challenges for automated recognition and retrieval
of mathematical notation [3, 37].

3 min: a Multimodal Math Search Interface

Figure 2 shows the min search interface which runs in standard web browsers on
desktop and tablet computers (e.g. iPads [26]). min is implemented in Javascript



and HTML, with symbol recognition and parsing performed by external web
services.3 In Figure 2 we see a text box for keywords at top-right, while the
large white canvas at bottom is used to enter formulae. A list of formula are
stored in the ‘deck,’ the wide rectangular panel at the top of the interface. The
deck has operations to add, remove, and switch between formulae.

min’s design seeks to allow mathematical non-experts to easily ‘draw’ math
expressions for queries by switching seamlessly between typing, freehand draw-
ing, and importing formula images. Another design goal is providing clear, in-
tuitive feedback for the recognized structure of an expression (i.e. the symbol
layout tree). Our design was influenced by earlier math editing and recogni-
tion prototypes, particularly the pen-based Freehand Formula Entry System
(FFES [29, 41]), the vector graphics-based XPress system [23], and the infty
math OCR system [33].

Figure 7 shows the entry of the formula in Figure 2. A combination of typed
LATEX (e.g. ‘xi − x’ in the top-left panel) and handwriting (shown as red lines)
are used in queries. As handwritten symbols are recognized, they gradually fade
and are replaced by the recognized symbol. LATEX strings are replaced by Math-
Jax renderings. In the final step the symbol layout is parsed, and symbols are
gradually moved in an animation to ideal positions. The fonts and locations for
recognized symbols are obtained from Support Vector Graphics (SVG) MathJax
output produced using the LATEX string for recognized symbol layout. Hand-
writing is visible in the Editing mode, where pen/touch strokes appear above
recognition results (see Figure 2).

Figures 4 and 5 illustrate additional operations for image input, using the
deck to store and combine formulae, matrix entry, and correcting symbol recog-
nition errors.

3.1 Human Studies: Formula Entry Operations and Recognition
Visualization

A pair of human studies have influenced the design of min. The first study com-
pared visualizations of recognition results for handwritten formulae. In the first
condition, results were shown separately from user input in a rendered LATEX im-
age, and in the second condition handwritten symbols were gradually rescaled
and moved to ideal positions using a style-preserving morph [41]. Overall, par-
ticipants found results from the rendered image clearer, but surprisingly there
was no significant difference in entry time for users using the image or morphing
feedback, despite symbol recognition results not being visible in the morphing
condition unless individual symbols were selected. Also, in the image condition
some participants became stuck, as they were unable to find where their expres-
sion was recognized incorrectly (this finding has been replicated in other studies
since; see [37]). This did not happen when the participant’s symbols were ‘mor-
phed’ in-place.

3 Source code: http://www.cs.rit.edu/~dprl/Software.html



Fig. 2. Combined Keyword (‘ssd’) and Formula Query in min (Editing Mode). At
top, from left-to-right buttons are provided for symbol entry, selection and correction,
image import, parsing/grouping symbols, creating an expression grid (matrix), and
undo/redo. The ‘deck’ stores a list of entered formulae, which may be combined (see
Figure 4). On pressing the search button (the magnifying glass), LATEX for the formula
shown in the ‘deck’ is concatenated with keywords and sent to a selected search engine

!
Fig. 3. min circa Spring 2013 (Drawing Mode [35]). The drop-down list of search
engines is visible. The third button from the left at top corrects stroke groupings,
and was later replaced by the symbol correction button. Browser fonts drawn above
handwritten strokes and simple symbol repositioning visualize recognition. In the new
min strokes gradually fade and are replaced by recognized symbols in draw mode



a) Drag and drop image b) Recognition result c) New deck panel; clear canvas

d) New expression e) Moved and resized f) Drag from deck to canvas

g) After drop, add new panel h) Recognition result i) Draw view

Fig. 4. Image Input and the Formula ‘Deck.’ The panel (deck) showing images at top
of the interface stores formulae. An image creates the first expression (a,b), which is
then added to a second expression (c,d,e) by dragging its panel from the deck to the
canvas (f,g), and then storing the combined result in a third slider panel (g,h,i)

a) Drawing a ‘2’ b) Correct misrecognition as ‘n’ c) Select subexpression

d) Parsed subexpression e) Create formula grid (matrix) f) Draw braces and parse

Fig. 5. Matrix Entry and Symbol Correction. As shown in this example, min allows
subexpressions to be grouped separately (c,d) or as a grid of expressions (e). Symbol
recognition errors are corrected using a transparent pop-up window (b). The window
appears after selecting a symbol and then pressing the ‘relabel’ button at top



In min a style-preserving morph is performed when a button to recognize
expression structure is pressed (the ‘Parse/Group’ button). This ‘morph’ is ac-
tually a modified version, described below.

The second human study evaluated an earlier version of min (see Figure
3), and identified opportunities for improvement [35]. In particular, the under-
graduate college students that participated in the study found that while symbol
recognition results were now visible when drawing (they would appear above user
strokes, see Figure 3), this cluttered the canvas, making it difficult to see errors.
The symbol placement from the original style preserving morph is also coarse
and sometimes confusing (e.g. making adjacent symbols appear subscripted [41]).
To address these issues, in the new min recognized symbols replace handwrit-
ten strokes in the drawing view using a gradual fade, and the target positions
for morphing are defined using rendered LATEX. To avoid loss of context and
interfering with users’ ‘mental maps,’ handwritten strokes remain visible in the
editing mode, with strokes shown in red above characters for recognized symbols
(see Figure 2).

Participants in the second study were also shown a tool for stroke grouping
to correct symbol segmentation errors at the beginning of each session, but
there was almost no use of this tool, with participants instead deleting and
redrawing symbols if they were segmented incorrectly. Participants also had
difficulty remembering that double-clicking/tapping on a symbol brings up the
symbol correction menu (see Figure 5b). As a result, the stroke grouping button
was replaced by a button for relabeling selected symbols in the new version of
min.

In the future we hope to carry out additional studies to evaluate the new
interface, and in particular the utility of the formula deck when working with
multiple expressions, and the new matrix entry operations. We feel that we have
made some progress, but questions about which formula editing and correction
operations to include in the interface, and how best to visualize recognition
results remain.

3.2 min System Architecture and Recognition Modules

Figure 6 presents a global view of min’s architecture. Users input keywords as
text, and math using a combination of LATEX, handwritten symbols and images.
There are two primary data structures that define the interpretation of a formula
on the canvas: a list of symbols and their locations, and the recognized symbol
layout tree for the formula. For clarity, we do not show the formula ‘deck’ in
Figure 6 (see Figure 4 for an illustration of the deck). When the user clicks
on the search button, keywords and the current expression shown in the deck
are concatenated in a query string, which is then sent to the currently selected
search engine.
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Fig. 6. min Architecture. Users interact with the symbol through loading images, drawing symbols, and typing. User interactions are
shown using dotted arrows, and solid arrows represent automated processing.

Fig. 7. Entering Formula in Figure 2 (from top-left, left-to-right). Symbols are entered through typing and drawing. At bottom-right the
‘Parse/Group’ button is pressed, symbol layout is recognized and symbols are gradually moved (‘morphed’) to ideal positions



Both automatic (solid arrows) and user operations (dotted arrows) are shown
in Figure 6. Users manipulate symbols through entry, deletion, moving, resizing
and merging (e.g. to combine two dashes into an ‘=’ sign). Users also invoke
the parser to update the symbol layout tree and produce LATEX. When the
‘Parse/Group’ button is pushed by the user, formula structure is visualized two
ways, by moving symbols on the canvas to ideal positions, and also by showing
the rendered LATEX in the formula ‘deck.’

Currently, operations for entering symbols and recognizing symbol layout are
independent of one another. In particular, layout analysis is not performed until
explicitly requested by the user. While it is beneficial to integrate classification,
segmentation and parsing for automatic recognition [37], this type of integration
may be unhelpful in an interactive system, such as when decisions previously
accepted by the user are modified (e.g. if handwritten symbols are re-segmented
and re-classified). Our parser only revises symbols when a compound token is
detected, such as replacing a horizontal line with ‘+’ above by ‘±.’ Our hope is
that this behavior is both convenient and predictable.

In the remainder of this section we discuss the recognition modules used in
min. The current recognition modules were designed with accuracy, speed, and
simplicity in mind. The symbol recognition and parsing modules run externally
to min on servers, with requests made and results transmitted back using simple
XML encodings. This allows recognition modules to be easily replaced by services
provided on other servers that accept and produce the same encodings. Despite
this network overhead, recognition is fast and most first-time users are unaware
that recognition is performed remotely.

3.3 Symbol Entry and Correction

For formula entry, the grouping (segmentation) of handwritten strokes and sym-
bols in images is performed using simple methods. It is assumed that handwritten
symbols are entered one-at-a-time, and recognition is invoked after a short delay
(e.g. 1-2 seconds), or when a drawn stroke intersects other strokes (in which case
the strokes are merged into a single symbol). For typeset symbols in images, each
separate region of connected black pixels (connected component) is treated as
a separate symbol. This results in many symbols being over-segmented initially
(e.g. ‘=’), but in many cases the DRACULAE parser can locate and correct this
by matching rewriting local structures in the symbol layout tree [40]. A pair
of parameters are used to control the location of the centroid used to repre-
sent symbol locations, and thresholds to define vertical spatial regions around
symbols (above, below, superscipt, subscript).

Handwritten symbol classification is performed by a Support Vector Machine
with a Gaussian kernel applied to modified off-line (i.e. image-based) features [7].
Previously we used Hidden Markov Models [9]. These worked well, but were
sensitive to the writing order of strokes. Our new features are insensitive to
stroke order and are more accurate as a result. Our classifier is trained using data



from the CROHME handwritten math recognition competitions.4 In the most
recent CROHME competition [19] our SVM classifier obtained a test accuracy of
88.7% for 101 symbol classes, and 83.6% when invalid symbols are included (102
classes). These rates are within 2-3% of those obtained by the winning system
from MyScript Corporation.5

Typeset symbols in images (especially digitally-born) tend to be clean and
regular, and so we use a simple nearest neighbor classifier. Connected compo-
nents are assigned to classes using a 10 x 10 histogram of pixel counts. We cur-
rently use a kd-tree implementation from the Python-based scikit-learn library6

for fast approximate nearest-neighbor classification. The classifier is trained us-
ing the Infty data sets [34]. An earlier version obtained recognition rates over
97% for 190 classes on 70,637 test samples in the Infty data set using pixel
histograms [43]. We do not yet support .pdf input [2, 16], but hope to in the
future.

In the current version of min, mis-segmented symbols from handwriting or
images are deleted and re-entered by users, for example using handwriting or
typing. Both of the handwritten and image-based symbol recognizers return a
ranked list of classes that can be selected from the symbol correction menu (see
Figure 5b). This menu also includes a list of symbols organized by type (e.g.
digits, latin letters, greek letters, operators, etc.).

3.4 Parsing Symbol Layout and Generating LATEX

Symbol layout in a formula written on the min canvas is parsed using DRAC-
ULAE [40], implemented in the TXL tree rewriting language [5]. DRACULAE
employs a compiler design, performing a series of tree rewriting passes that: 1)
produce an initial symbol layout tree, 2) replace compound tokens (e.g. replacing
two vertically adjacent dashes by ‘=’), 3) rewrite structures such as fractions,
and 4) translate the resulting tree to LATEX. DRACULAE also produces operator
trees where possible (i.e. a ‘semantic’ encoding), but this is unused in min. In the
initial layout analysis step, DRACULAE uses a fast greedy algorithm to recur-
sively locate symbols on the main baseline, and then assigns remaining symbols
to regions around baseline symbols (e.g. above, below, superscript, subscripts,
within for roots, etc.).

As shown in Figure 5, users can invoke DRACULAE to parse a subexpression
which is then grouped into a unit, ‘locking’ its interpretation [17] and preventing
modification by subsequent parses. Symbols and grouped subexpressions may
also be combined in a grid, e.g. to enter matrices. This operation uses simple
horizontal and vertical bounding box projections to identify gaps for rows and
columns - DRACULAE does not recognize matrix structure. Instead, we have
DRACULAE treat grouped subexpressions as individual symbols during parsing.
Matrix recognition remains a difficult open problem [19,37], but if accuracy can

4 http://www.isical.ac.in/~crohme/
5 http://www.myscript.com/
6 http://scikit-learn.org/



be increased, in the future it may be beneficial to recognize grid cells in addition
to rows and columns of predefined cells.

As described earlier, MathJax is used to visualize recognized symbols, and
define the ideal locations to which symbols on the canvas are repositioned (mor-
phed) after parsing.

Parsing errors (e.g. detecting an adjacent symbol as subscripted) are cor-
rected by some combination of moving symbols, undoing the previous parse op-
eration (which ‘morphs’ symbols back to their previous positions), and pressing
‘Parse/Group’ again.

4 Appearance-Based Math Retrieval

In this section we summarize a number of different search engines and models
designed to support math search using formula appearance. In particular, we
describe the Tangent search engine and its integration with the min math search
interface, along with methods for visual search of document images and videos.

4.1 Query-by-Expression for Symbolic Encodings (LATEX, MathML)

Approaches to query-by-expression may be categorized as text-based or tree-
based, as determined by the structures used to represent and retrieve expres-
sions. In text-based approaches, math expressions are linearized before indexing
and retrieval. These linearizations are normalized to reduce variability in repre-
sentation. Common normalizations include defining synonyms for symbols (e.g.
function names), using canonical orderings for spatial relationships and commu-
tative operators (e.g. to group ‘a + b’ with ‘b + a’), enumerating variables, and
replacing symbols by their mathematical type.

Linearized math expressions are often handled by term frequency-inverse
document frequency-based (TF-IDF) techniques from text retrieval [18, 30, 39].
While linearization loses some formula structure information, it allows text and
math retrieval to be carried out in a single framework (usually Lucene7). In a
different approach, the largest common string subsequence is used to retrieve
LATEX strings [31].

Tree-based approaches represent layout or operator trees for formulae di-
rectly. Methods have been developed that compress tree indices by storing iden-
tical subtrees in expressions uniquely [10], with exact matching and tree-edit
distances used for retrieval [11]. Substitution trees designed for unification have
been used to create tree-structured indices [12,27]. Descendants of an index tree
node contain expressions that unify with the parameterized expression stored
at the node (e.g. ‘f( 1 )’ unifies with ‘f(a),’ with substitution 1 → a). A
more recent technique adapts TF-IDF retrieval for vectors of subexpressions
and ‘generalized’ subexpressions where constants and variables are represented
by a single symbol [16]. Subtrees are normalized for commutative operators and
operator precedence, converting symbol layout trees to pseudo-operator trees.

7 https://lucene.apache.org/



Fig. 8. Original Tangent Formula Search Engine [32]. The ‘Edit query’ links send a
search hit to the min search interface for editing and re-submission to Tangent or
other search engines. The ‘Search for this’ link supports browsing by allowing hits to
be submitted as new queries. Queries maybe typed in LATEX into the text box shown at
top, or submitted from min (see Figure 2, where Tangent is the selected search engine)

An emerging class of ‘spectral’ tree-based approaches use sets of local struc-
tural representations rather then complete subtrees for retrieval. One system
converts sub-expressions in operator trees to words representing individual ar-
guments and operator-argument pairs [21]. A lattice over the sets of generated
words are used to define similarity, and a breadth-first search constructs a neigh-
bor graph traversed during retrieval. Another system employs an inverted index
over paths in operator trees from the root to each operator and operand, using
exact matching of paths for retrieval [8].

Over a number of years our group has developed a novel ‘spectral’ retrieval
model, and a search engine implementing the model [22,27,32]. We discuss these
in the next section.

4.2 The Tangent Math Search Engine

A screenshot of the Tangent search engine8 is shown in Figure 8. The query
‘g(z) = 0’ is shown along with the top four matched expressions and their
associated Wikipedia articles. The goal with this interface design was to make it
easy to use retrieved expressions for editing and search. At the bottom of each

8 http://saskatoon.cs.rit.edu/tangent



hit is a rank score, along with a link to send the hit to min for editing, and a
second link for using a hit to re-query the collection. This integration of min and
Tangent allows for both visual and textual editing of formula queries.

In Figure 8 we see that Tangent retrieves formulae with structure similar to
the query, even when different symbols are used (e.g. ‘g’ replaced by ‘h,’ ‘z’ by
‘x’, and ‘0’ by ‘z’). This is interesting, because here only exact matching is used
for retrieval [32]. Search results from this first version of Tangent often appear
to have performed unification of symbols, but no unification is carried out. This
is because the relative positions of symbols are used for matching.9

In Figure 8, all four hits contain parentheses that are one symbol apart,
with an equals sign at right. Matching additional symbol pairs lead to a higher
rank. In this example, the first hit is an exact match, with score 1.0 (all symbol
pairs are matched), while the remaining three hits have the same rank score,
differing by the identity of exactly one symbol relative to the query. This causes
relationships with the non-matching symbol to be treated as unmatched. In each
case, the five pairs associated with the unmatched symbol are ‘misses,’ out of
fifteen total symbol pairs (for six symbols,

(
6
2

)
= 15 symbol pairs, 10/15 = 0.667).

More concretely, the spectral model used in Tangent represents symbol lay-
out trees by the relative position of each symbol with its descendants in the tree.
This is a ‘bag-of-words’ model, with ‘words’ representing relative symbol posi-
tions. Note that tuples are not generated for all pairs of symbols when there is
branching in the layout tree, unlike the query and hits shown in Figure 8 which
lie on a single baseline. Tuple generation is illustrated in Figure 10a-c. The frac-
tion line has a relationship with every other symbol in the tree, each defined
by a pair of integers giving the path length from the line to the symbol in the
tree (shown as Dist. in Figure 10c, and change in baseline position. The base-
line position change is initially 0, increasing by one for each superscript/above
relationship and decreasing by one for each subscript/below relationship along
the path between two symbols (shown as Vert. in Figure 10c [32]).

Tuples in Tangent Version 2 [22]. Later, changes were made to the tuple
generation model, adding tuples for symbols in the leaves of layout trees. In
Figure 10c, we see that three tuples are defined for the symbols ‘2,’ ‘y’ and
‘z’ at the leaves of the tree shown in Figure 10b. This addition was made to
allow single-symbol queries to be represented in the index, particularly to allow
matching for matrix subexpressions comprised of a single symbol such as shown
in Figure 10d, where three of the matrix entries are a single digit.

A representation for matrices and grid/array structures was also added, such
as for expressions shown in Figures 9a and 10d. Each grid is represented by
a symbol named ‘matrix’ with its dimensions concatenated on the end (e.g.
matrix2x2 in Figure 10f. This ‘matrix’ symbol is then used to represent the
entire matrix contents. In Figure 10f the structure of the expression treating the
matrix as a unit is contained in rows 6-12 of the table.

9 This approach was motivated by a ranking function that used sets of matching
symbols and symbol pairs to greatly improve initial retrieval results [27].



Cells/subexpressions in a matrix or grid are represented as independent ex-
pressions; in Figure 10f these are the last five rows of the table, representing ‘x2,’
‘0,’ ‘0,’ and ‘1.’ The subexpression at each matrix location is represented by a
tuple giving a row and column location, with the subexpression represented by
its LATEX string (as shown in the top five rows of Figure 10f). The idea in this
case was to be able to detect when a particular subexpression is present, and
also whether the subexpression is located at the correct location in the matrix.

Finally, to support participation in the NTCIR-11 math retrieval tasks [1,28],
the Tangent inverted index for tuples was expanded to include entries where one
of the two symbols are undefined (e.g. ‘x2’ would be represented concretely, and
by ‘?2’ and ‘x?’, where ‘?’ represents a wildcard). Figure 9a shows an example
of a query containing wildcards. In both tasks, symbols could be replaced by
wildcard symbols, which our group interpreted as being any individual symbol.
Relationships between two wildcard symbols are not indexed, as in some cases
will match a vast number of entries in the index (for example, consider ‘something
next to something’).

Retrieval. Formula retrieval is performed using an inverted index over symbol
pair relationship tuples, mapping tuples to the expressions that contain them.
Expressions are represented uniquely, with a separate table recording which doc-
uments contain an expression [22].

Queries are first converted to a set of unique tuples with associated counts.
Unique tuples are then used to locate matching expressions from the inverted
index, and determine the number of instances from the query matched in each re-
trieved expression. Matched expressions are ranked by the harmonic mean of the
percentage of pairs matched in the query, and the percentage of pairs matched in
the candidate. This may be understood as the f-measure for recall of query tuples
in the candidate, and precision of tuples in the candidate. This ranking metric
prefers larger query set tuple matches, while penalizing unmatched tuples.

In the second version of Tangent, the engine was modified to support both
text and multiple formulae in queries. Lucene was used for text retrieval, and
formulae were retrieved using Tangent’s formula search engine. The formula
match score for a document was computed as the sum of the highest formula
match scores located for each query expression in a document, each weighted by
the relative size of each expression [22]. The final rank score for a document was
a linear combination of the Lucene-based keyword score and the formula match
score. With this, Tangent was now able to handle combined text and formula
queries.

Results. A human evaluation compared search results returned by the original
Tangent and a Lucene (text-based) retrieval model [32]. Precision-at-k is the
percentage of hits in the top-k results deemed ‘relevant’ to a query. In this
case, participants were asked to rate hits by their similarity to the query using
a 5-point Likert scale from ‘Very dissimilar’ to ‘Very similar,’ with ratings of
‘Similar’ or ‘Very Similar’ treated as relevant. The average precision-at-1 and
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Keyword: minkowski
Keyword: inequality

NTCIR11-Math2–39

Formula Query: P[ X � t ]  E[ X ]

t
Keyword: Markov inequality

NTCIR11-Math2–40

Formula Query: lim
n!1

P[| A
n
� E[ X ]| > e ] = 0

Keyword: weak law
Keyword: large number

NTCIR11-Math2–41

Formula Query: P[ lim
n!1

A
n

= E[ X ]] = 1

Keyword: strong law
Keyword: large number

6

µ(A) =

{
1 if 0 ∈ A

0 if 0 /∈ A.

a) Math-2 #39 b) Wikipedia #49

Fig. 9. Sample Queries from NTCIR-11. Query a) contains four wildcard symbols
(shown in boxes), and two keywords. Queries for the Wikipedia subtask were single
expressions. Query b) has no wildcards and includes a tabular/matrix layout

precision-at-10 values for Tangent were 99% and 60%, and 60% and 39% for the
text-based system. This confirms that using more tree structure produces search
results that are perceived as more similar, a result also confirmed in the recent
NTCIR math retrieval tasks [1].

The second version Tangent was entered in the NTCIR-11 Math Main Task
[1] and the NTCIR-11 Wikipedia formula retrieval subtask [28]. Queries from
each task are shown in Figure 9. The Main task had 50 combined formula and
text queries, for a subset of the arXiv containing 100,000 technical papers with
substantial mathematics broken up at paragraphs into 8.3 million segments,
treated as the documents for the task. Two human evaluators judged hits for
the main task to produce precision and related metrics. Tangent produced the
highest precision-at-5 measure (92%), using a 50%-50% weighting for combining
the text and formula match scores.

The Wikipedia subtask was a query-by-expression task with 100 queries for
35,000 articles from Wikipedia [28]. This task used an automated evaluation pro-
tocol, ranking system by specific-item retrieval measures (e.g. the rank at which
the article from which query expressions were located, and the number of exact
matches returned in the top-k hits), without measures for relevance or similarity.
For the Wikipedia task, the formula retrieval engine matched matched the high-
est top-1 score (68%, obtained by three systems), and overall was amongst the
best performing systems in the competition, hampered primarily by queries that
contained a large fraction of wildcard symbols (e.g. ?

? ). Considering the manner
in which keyword searches are often carried out using a small number of concrete
terms, to us it is unclear how frequently queries with a large number of wildcards
would be used in a practical setting vs. copying or creating concrete expressions
for inclusion in queries. That said, we believe that re-ranking initial results so
that variable-variable relationships are not ignored can be used to mitigate this
issue.



x2+y√
z FRAC

xABOVE

SQRT

BELOW

2
SUPER

+ADJ

zWITHIN

yADJ

Parent Child Dist. Vert.
FRAC x 1 1
FRAC 2 2 2
FRAC + 3 1
FRAC y 3 1
FRAC SQRT 1 -1
FRAC z 2 -1
x 2 1 1
2 None 0 0
x + 1 0
x y 2 0
+ y 1 0
y None 0 0
SQRT z 1 0
z None 0 0

a) Expression b) Symbol Layout Tree c) Symbol Pair Tuples
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Matrix Structure
Parent Child Row Column
matrix dimensions 2 2
matrix ‘x2’ 1 1
matrix ‘0’ 1 2
matrix ‘0’ 2 1
matrix ‘1’ 2 2

Subexpressions
Parent Child Dist. Vert.
A matrix2x2 1 0
A + 2 0
A 1 3 0
matrix2x2 + 1 0
matrix2x2 1 2 0
+ 1 1 0
1 None 0 0
x 2 1 1
2 None 0 0
0 None 0 0
0 None 0 0
1 None 0 0

d) Expression e) Symbol Layout Tree f) Symbol Pair Tuples

Fig. 10. Tangent: Symbol Pair-Based Layout Representation in for Two Expressions



Fig. 11. User Interface for Evaluating Image-Based Query-by-Expression using Hand-
written Queries [38]

4.3 Image-Based Formula Retrieval

For space we will cover this topic just briefly, but we believe that this is an
important future direction for research. Figure 11 shows an evaluation interface
for the first image-based handwritten math retrieval system [38].

In this system layout and contour features measured from an image of a
handwritten mathematical expression are used to search document images for
similar expressions. Formulae are indexed using X-Y cutting trees [20], with
Dynamic Time Warping of upper and lower image contours used to produce the
final ranking (adapting an earlier handwritten word spotting technique [24]). We
were very surprised that our first prototype allowed 10 participants to locate the
page from which handwritten queries were taken 63% of the time in the top 10
on average (20 queries). If the original query images were used, then 90% of the
original queries could be located in the top 10 results.

Related work is currently underway, using image-based retrieval of math in
lecture videos using snapshots [6] and handwritten queries [4].

5 Conclusion: Text + Diagram Search for the Masses

We have summarized our work on creating interfaces and search engines that
support math retrieval using the appearance of mathematical expressions. Our
aim in doing this is to help all persons, mathematical non-experts and experts, to
retrieve mathematical information naturally using the appearance of expressions,
in combination with keywords when appropriate.

A key direction for future research is the creation of intuitive, fast interfaces
for diagram copying, editing and inclusion in search queries. min has made a start
in this direction, but much remains to be done. Related to this, we believe that
an important future line of research is redefining the conventional text ‘search
box’ to include formulae directly.

Currently, spectral approaches to matching structure in trees appear to be
the most promising for appearance-based formula retrieval, such as that used



in Tangent. In addition to opportunities defined earlier, identifying ways to re-
duce index sizes and accelerate retrieval will be important for producing engines
that will scale to very large collections, and ideally, internet search engine-scale
collections.

In closing, there have been many advances in Mathematical Information Re-
trieval in recent years, and we believe that progress in searching for diagrammatic
notations will dramatically alter the way in which people search for technical in-
formation. It will allow queries to move from “documents with words similar to
these” to also include “documents with diagrams similar to these.”
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