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Abstract

A revision of Recognition Strategy Language (RSL), a domain-specific lan-
guage for pattern recognition algorithm development, is in development. This lan-
guage provides several tools for pattern recognition algorithm implementation and
analysis, including composition of operations and a detailed history of those oper-
ations and their results. This research focuses on that history and shows that for
some problems it provides an improvement over traditional methods of gathering
information.

When designing a pattern recognition algorithm, bookkeeping code in the
form of copious logging and tracing code must be written and analyzed in order
to test the effectiveness of procedures and parameters. The amount of data grows
when dealing with video streams; new organization and searching tools need to be
designed in order to manage the large volume of data. General purpose languages
have techniques like Aspect Oriented Programming intended to address this prob-
lem, but a general approach is limited because it does not provide tools that are
useful to only one problem domain. By incorporating support for this bookkeeping
work directly into the language, RSL provides an improvement over the general
approach in both development time and ability to evaluate the algorithm being de-
signed for some problems.

The utility of RSL is tested by evaluating the implementation process of a
computer vision algorithm for recognizing American Sign Language (ASL). RSL
history is examined in terms of its use in the development and evaluation stages of
the algorithm, and the usefulness of the history is stated based on the benefit seen
at each stage. RSL is found to be valuable for a portion of the algorithm involving
distinct steps that provide opportunity for comparison. RSL was less beneficial
for the dynamic programming portion of the algorithm. Compromises were made
for performance reasons while implementing the dynamic programming solution
and the inspection at every step of what amounts to a brute-force search was less
informative. We suggest that this investigation could be continued by testing with a
larger data set and by comparing this ASL recognition algorithm with another.
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Chapter 1

Introduction

1.1 Thesis objective

Hypothesis Recognition Strategy Language (RSL) history will provide informa-

tion useful for evaluating decisions that would be more difficult to obtain

using traditional logging methods.

1.2 Problem statement

In ”White-Box Evaluation of Computer Vision Algorithms through Explicit

Decision-Making”, Zanibbi et al. [27] show that a decision history from table recog-

nition algorithms can be used to evaluate and improve those computer vision algo-

rithms. The history was created using a domain specific language (DSL) called

RSL to script the table recognition algorithms and grab history data at each deci-

sion point. This research examines how historical information gathered from an

updated RSL can be used for another computer vision algorithm [1].

Historical information from a computer vision algorithm decision point may

require large datasets of images, videos, keyframes, object boundaries, etc. Each

interpretation of an image or series of frames often requires its own version of all

this data. After running the algorithm, examining this historical data for accuracy,
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precision, historical accuracy, and historical precision [26] may reveal useful infor-

mation about the algorithm that was run. It is important that the history be captured,

but managing the history (its creation, storage, and exploration) is not the primary

concern of the computer vision algorithm developer. In addition to being a distrac-

tion, this logging code can be complex and repetitive and have bugs of its own.

Complex data structures need complex storage and access. It would be better to let

this bookkeeping work be handled automatically by a tool set. To the best of our

knowledge, there are presently no tools for recording history to examine fitness or

usefulness of particular steps. The closest work is related to logging and tracing of

code for debugging purposes.

Debugging tools and approaches are an active area of research, and many

ideas can be found [20, 14, 6, 15, 5]. Unfortunately, when using the tools, much of

the work still remains with the programmer to manage logging information, and that

management is time consuming. A common problem is that the general-purpose

languages require general-purpose logging, so any work specific to decisions, im-

ages, video, or other domain-specific concepts must be added by the developer.

In addition, tools commonly used in the computer vision field have not embraced

the logging technologies and instead rely on developers to implement their own

approach. This approach is generally the ad hoc tracing or breakpoint-based ex-

amination of state, as seen in the original implementation of the American Sign

Language algorithm examined in this research [22]. Here, nested loops have spe-

cial cases as seen in Listing 1.1 in order to mark a point of interest for examination,

likely using debugger breakpoints.
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Listing 1.1: Special case code to examine state

if (v==5 && i==7 && l==1) {
/ / ppp i s a w r i t e−o n l y v a r i a b l e ( n e v e r used )
/ / i t e n a b l e s s e t t i n g a b r e a k p o i n t t o examine
/ / a l g o r i t h m s t a t e
int ppp=0;

}

By providing history specific operations, a DSL may have an advantage

over general-purpose languages and logging. This research examines RSL to test if

RSL’s history is beneficial in evaluating computer vision algorithms.

1.3 Solution approach

RSL provides several tools for pattern recognition algorithm implementa-

tion and analysis:

• Composition of operations on interpretations.

• History of those operations - what operations were applied and what results

were returned.

• Annotation of decisions - Information not included in the result of a decision

is kept and examined at a later date.

A computer vision algorithm is implemented using RSL to drive the algo-

rithm decisions. Decision history is captured and used to debug and evaluate the

algorithm. The evaluation of the RSL language along with generation and useful-

ness of the history is based on guidelines provided by Mernik et al. [17], Bentley
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[2], Hudak [12], and Elliot [7]. This research focuses on criteria laid out by Mernik

et al. [17]:

• Data structure representation - History information tends to be full of special

cases and conditionals in traditional logging based implementations. RSL

should avoid this problem.

• Domain-specific constructs - Special attention is paid to the automatic traver-

sal of interpretations and history.

Data structure representation and domain-specific constructs are examined

to understand how history is created, traversed, communicated, stored, and exam-

ined. For some problem types, RSL support for these operations provides signif-

icant improvement over the existing logging or tracing methods by doing all the

common domain-specific work.

RSL history is considered across the operations of two stages of computer

vision strategy implementation:

• Development - the implementation of the algorithm, scripted from RSL, in-

strumented for recording the history

• Evaluation - examination of the history across the data sets and steps to de-

velop insight into the algorithm and its implementation

Use of history is judged in comparison to general-purpose logging currently

used in computer vision algorithm development. Comparisons are made by writing

general-purpose logging code to get similar or identical information.
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1.3.1 Development

Development and debugging are inseparable steps and are considered to-

gether here. During algorithm development the RSL operations provided for his-

tory are creation (how history is generated), communication (how history is moved

from source to destination), and storage (how history is persisted for later exami-

nation). Since development is not central to the use of the history, supporting this

thesis hypothesis only requires that developing with history is roughly equivalent

to traditional logging methods. Refuting the hypothesis requires that development

with history is prohibitively difficult since a slight increase in difficulty could be

worth extra effort if the evaluation stage shows improvement over general-purpose

logging methods. For example, the historical precision and historical accuracy data

that RSL was designed to collect is gathered in the evaluation phase [26].

History is Creation Communication Storage
Easier Support Support Support
Same Support Support Support
Harder
Much Harder Refute Refute Refute
than logging

There is no quantitative measurement of easier or harder for a program-

ming language, but there are guidelines available. In ”When and How to Develop

Domain-Specific Languages”, Mernik et al. [17] extract from their survey a set of

reasons to create domain-specific languages. Those reasons for creating languages

become the goals of those languages and the criteria by which they are judged. For
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the development stage I considered these goals [17]:

• ”substantial gains in expressiveness and ease of use” - RSL development

should substantially improve how the creation and examination of history

is expressed over general purpose logging tools.

• ”task automation” - RSL should eliminate the tedious, repetitive work of cre-

ating and examining history, leaving only the problem specific work.

• complex ”data structure representation” - History information may be com-

plex, and dealing with this complexity should be handled by RSL. The algo-

rithm developer should have to do little work to generate and navigate history

other than the work specific to the problem.

1.3.2 Evaluation

Evaluation is the stage where RSL history should show some benefit, and

the operations for examination (how the history is viewed) and traversal (how the

history is searched or explored) are key to this stage. The evaluation stage must see

improvement over traditional logging to support fully the hypothesis. If examining

the history is no easier, the thesis hypothesis is not refuted. Much of the examina-

tion operation may be specific to a particular problem: for example, interpreting a

hand in an image as a sign. However, the traversal operation must improve in or-

der to support the hypothesis that RSL history is valuable to algorithm evaluation.

Traversal is important because computer vision algorithms may be considering sev-

eral possible interpretations for a given video or image. The ability to record the

6



decisions for each interpretation is a key requirement of the language. The traver-

sal concept can also be applied to a range of values such as thresholds. Computer

vision algorithms will sometimes search over thresholds or parameters to find the

best solution, and RSL aims to simplify that work.

History is Examination Traversal
Easier Support Support
Same Refute
Harder Refute Refute
than logging

The evaluation stage is considered using criteria from Mernik et al. [17] as

well:

• complex ”data structure representation” - Evaluation will require access to

the history generated during development. The initialization of this history

should be easier than with general logging tools.

• ”data structure traversal” - Accessing the items of history should be done

more naturally than it would be with general purpose tools.

• ”interaction” - According to Mernik et al. [17], interaction with the applica-

tion should be made easier. In this case, that means interacting with history

and extracting information. Questions addressed during the evaluation stage

are:
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– Is new information readily apparent that would not be noticed with gen-

eral purpose tools?

– Is it possible to produce new types of analysis that would be too difficult

or time consuming with general purpose tools?

– Are methods for visualizing the data accessible and informative?

1.4 Contributions

This research considers two subproblems: hand-detection and nested dy-

namic programming of an ASL recognition algorithm. For the hand-detection algo-

rithm, a clear advantage in using RSL is demonstrated according to our evaluation

criteria. For the dynamic programming algorithm, the advantage of using RSL for

history storage and traversal is shown, but the utility is not.

Additionally, this research provides insight to the designers of RSL with

regard to the usability of RSL history. As noted by Mernik et al. [17], ”DSL de-

velopment is not a simple sequential process”, and each stage of language develop-

ment may provide new insight or questions into previous stages. By implementing

computer vision algorithms in RSL, this research becomes an integral step in the

domain-specific language development process [17]. Specifically, the language is

changed in the following ways at least in part through the feedback from this work.

The annotations language feature and supporting functions are included in RSL as

a result of observations made during this work. Minor compiler changes were made

to allow recursive functions. RSL extensibility is demonstrated through the creation
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of a computer vision specific API. A design structure for RSL is proposed and im-

plemented to create a clear distinction in responsibilities between RSL scripts, and

the called decision functions.

Through replicating the ASL recognition algorithm, several steps not called

out in the original paper are made clearer, in addition to the identification and partial

correction of errors in the dataset.
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Chapter 2

Background

This chapter will cover the background and related material for this re-

search. The history and use of RSL is explained in Section 2.1, and alternatives

to generating history information are discussed in Section 2.2. Criteria for evalu-

ating domain specific languages such as RSL are discussed in Section 2.3. Section

2.4 describes the algorithm implemented as part of this research to evaluate RSL.

2.1 RSL

RSL is presented by Zanibbi, Blostein, and Cordy in ”White-Box Evalua-

tion of Computer Vision Algorithms through Explicit Decision-Making” [27] and

”Decision-Based Specification of Table Recognition Algorithms” [26]. Both pa-

pers deal specifically with table recognition algorithms and note that the black-box

nature of table recognition algorithms [27] make it difficult to compare algorithms

or evaluate individual decisions [26]. RSL is presented as a tool for solving these

problems by providing a mechanism to ”measure the accuracy of individual recog-

nition decisions, and the accuracy of sequences of recognition decisions” [26]. Us-

ing these measures, Zanibbi et al. [26] make new observations about an algorithm

under analysis [10] and introduce the concepts of historical recall and historical
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precision. ”Recall is the percentage of ground truth hypotheses present in an in-

terpretation, whereas precision is the percentage of accepted hypotheses that match

ground truth.” [27]. The historical versions of recall and precision take into account

the hypothesis created and rejected throughout the algorithm, not just the final hy-

pothesis at algorithm completion.

RSL is a domain specific scripting language designed to provide a tool set

and common approach to the task of developing algorithms for pattern recognition.

It is important to remember that the domain of this scripting language is not pattern

recognition but pattern recognition strategy development. Therefore, the work done

by the language is meant to help inform the analysis and refinement of a pattern

recognition algorithm.

An interpretation represents a single possible understanding by the algo-

rithm of the data to be tested. RSL accomplishes its goals by organizing algorithms

into traceable decision functions about interpretations. For example, in the hand

detection portion of the American Sign Language recognition algorithm used in

this research, an interpretation may contain the processed images for a frame. List-

ing 2.1 shows an RSL program fragment that finds keyframes for a series of video

frames as an early first step in detecting hands. During hand detection, keyframes

represent a series of frames that have little change between them. The first frame

is selected as a keyframe automatically. Each successive frame is then compared to

the last keyframe, and, when the difference crosses a threshold, a new keyframe is

selected. These keyframes are compared to every frame again later to help deter-

mine where the motion in the frame is, since the signer’s hands are moving more

11



than other things in the frames. The GetFrames decision uses the munge oper-

ation to generate an initial set of interpretations, one for each frame. Subsequent

decisions labeled GetSkinMask and GetGrayScale perform image process-

ing operations on each frame to generate new images. Finally the KeyFrames

decision determines the keyframes of the video and marks only those interpreta-

tions for the key frames.

Listing 2.1: RSL call to find keyframes

interp:
frameId : int
keyframe : bool
frame : char vector * int * int * int
gray : char vector * int * int * int
skin : char vector * int * int * int

fn main(testDir) {
[GetFrames]
munge: getFramesImages(testDir)
[GetSkinMask]
update skin observing frame: skinMasks
[GetGrayScale]
update gray observing frame: grayScales
[KeyFrames]
update all keyframe observing gray, skin: keyframes(300)

}

The input and output of each decision function is, along with any addi-

tional arguments, an interpretation from the set that is under consideration by the

algorithm at this point. Iteration over the input set of interpretations is handled

transparently by the RSL environment. The decision function will process the input

interpretation and may accept or reject it or create a new set of interpretations to be

considered. Set operations on these interpretations are performed by the RSL en-

12



vironment so that each decision function only needs to manage the data specific to

the algorithm. For example, while implementing the hand detection portion for the

ASL recognition algorithm, an interpretation holds the hand candidates for a single

frame. The set of interpretations holds an interpretation for each frame. An RSL

programmer should not need to iterate manually over the set, sending each frame

to the decision functions, nor should it be necessary for the programmer to filter

out irrelevant fields and then reconstruct the new interpretation. This data manipu-

lation and inclusion of the interpretation into history should all be handled by the

language.

In addition to managing the operations over the sets of interpretations, RSL

also records the history of those operations. Each interpretation is kept along with

the information about which predecessor interpretation and decision generated the

interpretation. This history may be examined and used to determine the accuracy or

usefulness of particular steps in the algorithm. For example, in Listing 2.1 the result

of the GetSkinMask decision can be compared with ground truth to determine if

the generated mask actually represents the skin area in that interpretation’s image.

It is also possible to see which interpretations were selected as keyframes in the

KeyFrames decision, and, when this is added to the rest of the hand detection

algorithm, see if keyframe selection has any impact on algorithm accuracy.

In its original implementation [27, 26] RSL worked entirely with text and by

passing set deltas to and from the decision functions. New research is being done

to extend the work presented in these RSL papers [27, 26] and update the language.

The results of this work and our contributions are described in Chapter 3.

13



2.2 Program tracing and logging

Although no work related to evaluating history for usability or fitness of an

algorithm could be found, there is a lot of work dealing with general logging or

tracing for correctness (i.e., debugging). Much of the work around debugging is not

relevant because it seeks to isolate a code change that caused an error. The idea of

a set of code changes and their effect on the code does not map well onto RSL or

its history. The more relevant work has to do with creating a record of events in a

program and analyzing that record.

In ”Aspect-Oriented Programming and Modular Reasoning”, Kiczales and

Hilsdale [14] present a way to inject logging (as well as other ’aspects’) into code

without modifying the algorithm. The logging code is kept in external classes,

and the algorithm developer enables or changes logging for decisions whenever

different information is required. This allows a computer vision developer to create

history information and change it without modifying the decision, but Steimann

[23] claims that even this capability is limited because ”aspects are not domain level

abstractions and thus lack a significant source of diversity” (Steimann [23] admits

to overstating his case to make a point, which is that Aspect-Oriented Programming

(AOP) is limiting compared to other technologies).

RSL’s domain level abstraction is to treat the algorithm as a series of deci-

sion functions applied to a set of interpretations. AOP is applied at a lower level,

likely inside the decision functions, preventing the abstraction that RSL provides.

Additionally, while logging work is moved outside the algorithm to external code,

AOP certainly does not lighten the burden of the developer in designing and imple-
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menting logging mechanisms. Eaddy et al. [6] point out that ”aspect functionality

can drastically change the behavior and control flow of the base program, leading

to unexpected behavior and resulting in the same complexity that multi-threaded

programs are notorious for.” AOP does not offer the simplification or abstraction

that RSL is pursuing

Another debugging technique that offers some promise is Omniscient De-

bugging [20]. This technique uses an instrumented runtime environment that can

log every single event, assignment, function call, etc., to a database for later replay

and examination. Pothier et al. [20] demonstrate that omniscient debugging allows

some of the same root cause analysis that RSL hopes to achieve (e.g., what was

the origin of this interpretation). The storage demand of omniscient debugging is

enormous, but it can be reduced by carefully specifying what to store. While root

cause analysis is useful, omniscient debugging does not have much to offer when

we want to understand the accuracy of a vision algorithm decision. For example, it

would difficult to determine the accuracy of the skin mask generation or keyframe

selection decisions discussed in Section 2.1.

Query-Based Debugging [15] offers the ability to track and record events

in instrumented libraries (similar to the environment instrumentation of omniscient

debugging, but much less extensive) and query the data of those events postmortem.

Duca et al. [5] make good use of this technique to debug graphics routines using

the OpenGL pipeline. In that case, the OpenGL library is instrumented to record

state changes in the various parts of the pipeline which can later be queried us-

ing the domain specific query language GQL to help identify bugs. This is, in a
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way, an inversion of RSL. In GQL, history is recorded at the lowest level to mea-

sure correctness; in RSL, history is recorded at programmer-designated decision

boundaries, the highest level, to measure accuracy. It is interesting to note that in

both cases, history-based analysis goes hand-in-hand with the creation of a domain-

specific query language [5, 15].

While all of the above options are good for debugging in various environ-

ments, they all have shortcomings that limit their use for tracing accuracy or usabil-

ity of a decision in an algorithm. Looking at the current libraries and tools in the

computer vision field, like OpenCV [3] and Matlab [9], leads one to the conclusion

that the general approach to both debugging and tracing history is the tried and true

printf (or cout or writeLine, etc.) or file dump approach.

2.3 Domain-specific languages

Evaluating domain specific languages is a well researched but open problem

[2, 12], as described in ”When and How to Develop Domain-Specific Languages”

by Mernik et al. [17]. In this paper, Mernik et al. [17] present a cyclical process

for creating a domain-specific language such as RSL and discuss several criteria

for evaluating the language throughout the steps of the cycle. Unfortunately, the

criteria are not hard metrics that can be measured and reported easily. Rather, the

criteria are qualitative items like ”traversals over complicated data can be expressed

better” in a DSL.

The DSL development phases laid out and explained by Mernik et al. [17]

are ”decision, analysis, design, implementation, and deployment.” During the deci-
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sion phase the authors of the potential DSL consider pros and cons of developing

a new language versus using existing languages and tools. In the analysis phase,

the authors gather domain knowledge. This includes documenting terminology and

semantics. It is in the design phase that the language syntax and semantics are

described and the relationship to other languages is considered. During the imple-

mentation phase, the choices of compilation or interpretation and what tools will be

used are implemented and tested. The syntax and semantics are put to use and eval-

uated. Finally, in the deployment phase, the language is packaged and documented

for distribution and use. Mernik et al. [17] note that these phases are not necessarily

linear and the results of any phase will feed back to cause changes in the preceding

phase or even earlier. Most DSLs pass through these phases, and this includes RSL.

This research participated in the implementation phase as described in Section 4,

and, as a result, in the feedback and changes to the design as described in Section

3.

To help evaluate RSL against the criteria listed by Mernik et al. [17], guide-

lines for qualitative evaluation are provided in several papers. ”Little Languages”

by Bentley [2] provides a series of items to consider when evaluating a domain-

specific language. These include design goals, abstractions, simplicity, and a set of

”Yardsticks of Language Design” that are associated with ”tasteful” design. The

paper ”Domain-Specific Languages” by Hudak [12] discusses the need for ”more

natural ways to express the solution to a problem than those afforded by general

purpose languages”, a need for the language to capture only the semantics required

by the domain and the importance of powerful abstractions. In ”An Embedded
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Bentley [2] Hudak [12] Mernik et al. [17]
Parsimony: Are there un-
necessary operations?

Are the programs easy to
maintain?

Gains in productivity, re-
duced maintenance costs.

Can it be written quickly? Is application interaction
simplified?

Does it follow the KISS
(keep it simple, stupid)
principle?

Generality: Do operations
have multiple uses?

Is the language concise? Does the language of-
fer appropriate domain-
specific notations?

Orthogonality: Are unre-
lated features unrelated?
Completeness: Can the
language describe all ob-
jects of interest?

Expressiveness in the do-
main

Similarity: Is the language
as suggestive as possible?

Can the language be used
by non-programmers?

Availability and traversal
of domain-specific con-
structs and abstractions

Extensibility: Can the lan-
guage grow?

Are the programs easy to
reason about?

Offers analysis, verifica-
tion, optimization, etc. of
domain-specific constructs

Openness: Can the user
escape to related tools?

Is task automation al-
lowed?

Table 2.1: DSL Evaluation Criteria
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Modeling Language Approach to Interactive 3D and Multimedia Animation”, El-

liot [7] dwells on the need for composable operations in a language. This partic-

ular language characteristic has been demonstrated for RSL by Zanibbi et al. [26],

where decisions from multiple algorithms were composed together to make new

observations about the algorithm for that dataset. These evaluation guidelines are

qualitative rather than quantitative; however, they are the best we can do at this time

[17].

Table 2.1 lays out some of the criteria drawn from the sources mentioned.

Some of these criteria were originally expressed as language goals, so a language

would be evaluated according to the extent the goals are met. We have tried to

cluster related criteria from different authors together. No one uses the exact same

words or phrases for their criteria, but, when considered together, it is possible to

find some commonality. Table 2.1 is not an exhaustive list, and not every criterion

applies to every DSL. This research focused on a specific feature of RSL, the his-

tory, and a set of criteria based on RSL goals established during the analysis and

design phases. Section 1.3 discusses this in detail.

2.4 Recognition of continuous American sign language

In ”Handling Movement Epenthesis and Hand Segmentation Ambiguities

in Continuous Sign Language Recognition Using Nested Dynamic Programming”,

Ruiduo Yang [22] presents an algorithm for recognizing continuous American Sign

Language (ASL). That algorithm was implemented and modified as part of this

research in order to examine RSL’s utility in vision algorithm development.
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The ASL recognition algorithm is broken into two main stages for this

implementation. The first stage is feature extraction, specifically hand detection,

which finds likely hand candidates in each frame based on frame to frame move-

ment and skin filters. Hand detection is followed by the sign detection stage that

uses a nested dynamic programming algorithm to find the most likely sentence.

There were several reasons to use this algorithm to evaluate RSL. First, the

two stages of the ASL recognition algorithm are very different, allowing the use

of RSL in different ways on the same data set. Also, there were questions about

the suitability of RSL for a dynamic programming solution. RSL is intended to

enable the ”white-box evaluation” of algorithms [27], but dynamic programming

involves the examination of every possible solution, so the utility of RSL for a

dynamic programming algorithm is questionable. We have found in the past that

applying language to both suitable and unsuitable tasks can be valuable in learning

and evaluating that language, and the two stages provided that opportunity. Second,

this ASL recognition algorithm uses available datasets. As a result, less time would

be spent gathering data leaving more time for evaluating RSL. Finally, the ASL

recognition algorithm is explained in detail. A common problem with development

and evaluation of DSLs is that few people have knowledge of both the domain and

languages [2, 17]. We hoped the detail provided by Ruiduo Yang [22] would help to

compensate a lack of computer vision and pattern recognition domain knowledge.
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2.4.1 Hand detection

Keyframe selection The hand detection algorithm uses motion and skin detection

to find likely hand candidates. This process begins by selection of keyframes, a step

described in detail by Ruiduo Yang [22]. Keyframes represent series of frames that

have little change between the images. In other words, there is little motion across

these frames. The amount of change is determined by creating a difference image

between a frame and the last keyframe and finding the largest connected component

in that difference image. If the area of that largest connected component exceeds

a threshold (T1), then the image has changed a lot; i.e., there has been significant

movement between this frame and the last keyframe, and a new keyframe is marked.

The area of the largest connected components is supposed to be measured in

valid pixels, but ”valid” is not defined by Ruiduo Yang [22]. We assumed it to mean

skin pixels. The T1 threshold depends on the frame size of the video and needs to

be determined for a particular dataset. Image differences, connected component

detection and measuring, and almost all image processing done in this research

were done using the OpenCV library [3].

Hand candidate boundary generation Hand candidates are computed by find-

ing the boundaries of the moving skin pixels in the image. First, a difference image

for a frame is created by finding the average difference between that frame and

all the keyframes. This is masked with a skin likelihood image to create the dif-

ference image SD. An edge filter E is created by running edge detection on SD

and dilating those edges. Then E is removed from SD, and the small connected
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components are removed to eliminate any remaining noise. The resulting image is

called the ”motion-skin confidence map”. A boundary image is extracted from this

result image, and the bounded regions are the hand candidates. Figures 2.1(a) and

2.1(b) show the original frame and the final boundary image respectively.

(a) Original Frame (b) Boundary Image

Figure 2.1: Hand candidate boundary detection

Histogram and space of probability functions Hand candidates need to be rep-

resented in a way that is conveniently comparable. Given the boundary image for

a frame, a histogram is created from the horizontal and vertical distances of each

boundary pixel to the center of the image. Distance values are grouped into thirty-

two bins on each axis. The histogram is normalized to sum to one, and a space

of probability functions [24] is generated by performing principal component anal-

ysis on the histogram, keeping only the first seven components. This is the final

’comparison-ready’ format for the hand candidates. The algorithm is trained with

a similar space of probability function data for each known sign. The Mahalanobis

distance is used to measure distance between the hand candidate and the possible

sign match. Each known sign is compared to the hand candidate, and the sign with
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the lowest Mahalanobis distance is the most likely match to the hand candidate.

2.4.2 Sign-matching dynamic programming

Matching the sign in a sequence of test frames to a sign in a sequence of

model frames is more complicated than measuring the Mahalanobis distance be-

tween two histograms. A set of distances must be added to represent the distance of

the entire sequence. There are a couple factors that complicate this aggregation of

frame differences. First, the signing in test and model frame sequences may be done

at different rates, or even at an inconsistent rate (i.e., the signer’s hands may accel-

erate while signing). This means that the test and model frame sequences may be

a different length, and the number of frames for any particular hand position could

be different in each sequence. A second complicating factor is that the preceding

hand detection step is not certain to detect only hands, nor will it label which hand

is the left and which is the right.

Ruiduo Yang [22] addressed these complications with a dynamic program-

ming solution. The dynamic programming solves for a three dimensional array.

One dimension represents the frame sequence for the model sign being tested. An-

other dimension represents the frame sequence for the test video. The last dimen-

sion is for the hand-candidate pairs in the test frame. Any cell in the array can be

addressed by array[modelFrame][testFrame][handcandidate] and

contains the Mahalanobis distance of that hand candidate pair in that test frame

from the hands in that model frame plus the best (lowest) distance of all possi-

ble preceding frames. Ruiduo Yang [22] give the recursive formula for dynamic
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programming seen in Equation 2.1. This is the innermost of the nested dynamic

programming algorithms.

Cost(i, j, k) = d(Si
m, gk(j)) + min


min

r,m(gk(j),gr(j−1))≤T0
Cost(i, j − 1, r)

min
r,m(gk(j),gr(j−1))≤T0

Cost(i− 1, j − 1, r)

Cost(i− 1, j, k)
(2.1)

2.4.3 Level building dynamic programming

(a) Distances for start and end frames

(b) Distances for each sign at each frame

Figure 2.2: Mahalanobis distances for frames

Sign selection A level building approach [21] is used to find the best fit sentence

for a video by calculating the distance between every sign and every remaining

24



Figure 2.3: Best signs

frame subset at each level. For example, Figure 2.2(a) shows a possible set of dis-

tances calculated for some sign. For each starting frame, represented as rows, dis-

tances are calculated for all possible sequences up to an ending frame, represented

as columns. The value in the cell is the distance of the frame sequence (start frame

to end frame) from the sign being checked. This matrix is collapsed to represent

only the best possible start and end pair for each end frame, so in Figure 2.2(a), the

remembered distances would be (1:1), (2:2), (1:3), (1:4), and (3:5).

This distance computation and selection is done for every sign on a given

level, producing a matrix of signs as seen in Figure 2.2(b). Each row of this matrix

represents a set of sign scores with each column holding the score for a particular

end frame. For the level in Figure 2.2(b), the best sign for ending frame 1 would be

cat, frame 2 would be dog, and so on.

Finally, the costs are accumulated. At each level, the best possible ending
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frame score for each sign is added to the score for the predecessor - the best sign

ending in the previous frame on the previous level. The result is a best sign at

every level. Figure 2.3 shows a possible set of signs and levels. Each level finds

the next word in a sequence, or sentence, that ends at each frame. The best sign

ending at frame one in level one is dog. This is true for level one, frame two as

well. However, the best possible sign for level one, ending with frame three is the

sign for cat. Level one is complete when the best sign for every ending frame

is found, taking into account the grammar rules. For example, the sign for fish

may have had the smallest Mahalanobis distance, but if fish is not allowed to

be the first word according to our grammar, it is not selected as an option in level

one. Level two proceeds similarly, but now the score of the previous level is taken

into consideration when selecting the best sign for an ending frame. For example,

the distance for any interval (2:3) is that distance plus the distance of the best sign

ending in frame one at the previous level. Since the total cost to reach a particular

sign in a particular frame is accumulated through the algorithm, finding the best

matching sequence is a matter of finding the best sign for the final frame and tracing

its predecessors. The predecessor frame is stored for each selected end-frame and

sign pair throughout the algorithm in order to allow backtracing.

Grammar In order to improve the accuracy of the search, a trigram grammar

check is made for each sign. This check is based on a precomputed tree of legal

signs. When the distance of a frame sequence from a sign is calculated, that value

is used only if the sign can be found in the tree of valid sequences following the two
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previous signs. When the sign is not part of a valid sequence, the maximum distance

is used, effectively disqualifying the sign unless it is part of an extraordinarily good

sentence match.

Modeling Epenthesis One of the contributions of this ASL recognition algorithm

is the modeling of motion epenthesis. This is the movement between signs, a phys-

ical type of coarticulation. Along with measuring the distance between a sign and

a frame sequence, the algorithm assigns a distance to ”matching” motion epenthe-

sis. This distance, α, must be less than a non-matching sign, but greater than a

matching sign in order to prevent mislabeling signs as epenthesis or falsely match-

ing a sign. The actual distance depends on the training data. The cost of matching

an epenthesis frame increases each frame so that even a poor match will eventu-

ally be preferred to a long epenthesis. For an interval (b:e), this is computed as

cost = α ∗ ((b− e) + 1).

2.5 Summary

We considered the history and goals of RSL as introduced by Zanibbi et al.

[27] and compared RSL history to alternatives in general programming languages

such as omniscient debugging and aspect oriented programming. Criteria for eval-

uating DSLs such as RSL were described and compared in Table 2.1. Finally, we

described an ASL recognition algorithm that will be used to test RSL history.
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Chapter 3

Evolving RSL

This chapter discusses the changes made to RSL from the initial version to

the version used in this research. Some of those changes were made in response to

findings during this research, incorporated into the language, and evaluated again.

Table 3.1 summarizes the high-level changes made to RSL from the original version

[27]. These are covered in detail in the Programmer’s Guide to The Recognition

Strategy Language [8].

3.1 Syntax and semantics

The original implementation of RSL as described by Zanibbi et al. [26] was

quite different in both syntax and semantics from the current implementation. Previ-

ously, decision functions were broken into three categories: classification, segmen-

tation, and parsing [26], and interpretations had regions, relations, and parameters.

The current RSL syntax would not be described using these terms; however, the

original goals are still met, and the decision-based description of an algorithm is

still at the heart of RSL. Now the interpretation type is declared in a single block

and relationships are not explicitly declared inside the RSL program. The number

of operations on interpretations is down to a simpler six from the fourteen available
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Syntax and Semantics Significant syntactic and semantic changes have been
made to RSL.

Implementation RSL originally maintained all the interpretation data as
text. The current version uses Standard ML [18] and the
MLton compiler [19] to allow more powerful and effi-
cient complex data structures

Recursive Functions During this research we found that recursive functions
were necessary to group interpretations for reporting or
updating together. As a result, a small change was made
to the compiler to generate functions that could be called
recursively. The grouping technique is described in Sec-
tion 4.2.4.

Trace model An RSL program trace is stored in memory. This trace
represents the program execution and contains refer-
ences to the interpretations and annotations from every
step.

Annotations One of the contributions of this research was the observa-
tions that led to the creation of annotations. Using anno-
tations, at each decision point the developer may record
information relevant to that decision that does not belong
in the interpretation. Accessor functions were also added
to RSL to make traversing the trace graph and accessing
the data easier. This is covered in Section 3.2

Second entry point The first RSL implementation recorded its history to text
files that were later examined using other tools. RSL has
been changed and now has a second ”reporting” entry
point that allows full access to the program trace and all
history information from the first entry point.

Query operation A new hadd operation has been made available during
the second entry of an RSL program. The hadd opera-
tion allows the developer to add all interpretations or just
a selected set to the current set being examined by the
reporting function.

Layered design A layered design for RSL programs was developed as
part of this research that provides a clear boundary in
responsibilities for each piece of code, based on which
layer that code is in. This is described in Section 3.3.

Table 3.1: Changes to RSL
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in the first version of the language. An annotation type has been added that allows

the storage as history of relevant data that is not necessary in the interpretation.

Also, examination of RSL history happens during the second entry point of the pro-

gram instead of during post processing with separate tools as was required in the

original RSL. These changes allow for RSL programs that should be easier to read

and maintain.

The new syntax and functionality is enabled by a new RSL compiler that

compiles to Standard ML (SML) code, then to machine code via the MLton com-

piler. This move to SML from a fully text-file based implementation allows the

use of complex types in the interpretations and annotations, as well as enabling the

creation of a second entry point that can traverse the execution graph and examine

those complex types in the history. By coupling RSL with the MLton compiler

[19], the RSL programmer now has access to fast interaction with external func-

tions like those supplied by OpenCV [3] through the MLton foreign function inter-

face (FFI). Using ML Basis files allows programmers to develop in the large with

reusable components. For example, the hand detection decision functions used for

this research could be reused by another RSL program, possibly unrelated to ASL

recognition. As a result of these changes, the simpler syntax of the new RSL has

a more powerful type system, access to extensive libraries in other languages, and

the ability to grow its own set of reusable libraries and extensions.
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3.2 RSL Annotations

When this research began, an RSL script expected decision functions would

return only deltas from the input interpretations. For example, suppose a decision

function Inc would accept an interpretation as a set of numbers and increment

those numbers, each by a different amount. Inc may receive the set {1, 4, 7}

and create the result set {3, 7, 8}. In this case, the result from Inc would be

the set of differences between the new interpretation and the original interpretation,

or {2, 3, 1}. The delta that generates each interpretation would be stored in the

history and associated with the interpretation and decision function that generated

the delta.

An RSL script proceeds through its decision functions, feeding the elements

of the interpretation set to each function, collecting the resulting interpretation

deltas, recording them to history, and applying them to create new interpretations.

The new interpretation set is then fed to the next decision function.

This delta-based mechanism for updating interpretations was examined as

part of this research. While the deltas for an interpretation provide all the data

needed to trace the interpretation’s history, that data may not be informative in delta

form. Additionally information about why the change was made is completely lost.

For example, consider a decision function BCScale to scale a bounding circle for

some feature. BCScale accepts an interpretation containing a radius of 3 that is

scaled three times to a circle with radius 9. The delta returned from BCScale is

6, but the meaningful information that the circle was scaled by a factor of 3 is not

obvious. No information at all is available about why the bounding box was scaled.
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In order to populate the interpretation history with more contextually mean-

ingful data than deltas allow, and to provide information about the decision function

result that is not part of the interpretation, a language modification was suggested

that would allow recording of decision information that is meaningful to the deci-

sion function result but that does not belong in the interpretation. This modification

eventually saw light in the form of annotations. A decision function now has the op-

tion of returning an annotation in whatever format is desired with information about

what happened or why. As a result of this change, the decision functions no longer

return deltas from the input set; if simple delta information is desired, it can be put

in the annotation. Instead, the decision functions return the new interpretations. So,

in the case mentioned above, BCScale would return the new interpretation with

the circle with radius 9 and an annotation indicating that the circle was scaled by a

factor of 3.

Using annotations instead of deltas does not change the RSL script proce-

dure significantly. Iteration and set operations are still managed by RSL. History

records the decisions and interpretations and adds the annotations to the record in-

stead of the deltas. This change encourages the use of history to store and analyze

data that does not belong in the interpretation, simplifying and clarifying the inter-

pretation itself.

When the algorithm has completed, the entire history is available for ex-

amination and reporting. Each decision function can be studied to determine its

accuracy [26, 27], the interpretations can be traced through the program to see their

source, and the annotations can be referenced to see what influenced the interpreta-
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tion’s creation.

3.3 RSL Style and Organization

When using a language for the first time, the syntax is learned, and then

some time is spent learning to organize and partition a program in that syntax.

RSL is no different in this respect. Following principles to code to the problem

domain and to isolate complexity, RSL programs are separated into three major

layers (Figure 3.1).

Figure 3.1: Layers of an RSL program

• The top layer is the RSL program itself. The code for an RSL program is

in the language of the problem domain. In the case of ASL recognition in

video, this meant coding with terms like frame, hand candidate, and

gloss. The syntax of RSL dictates that this layer be limited to a high-level

description of the problem steps: the interpretation structure and the possible

annotations. While inlining Standard ML code is possible, it was found to be

distracting in large sections, especially when dealing with the interpretations,
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so this feature was used just to simplify certain initializations.

• Below the Problem Layer is the Interpretation Layer which is written com-

pletely in ML. This layer became necessary as the code to handle interpreta-

tions grew to be more complex. Listing 3.1 shows an invocation to a decision

function to detect and mark keyframes. This is an update all call be-

cause a frame’s state as a keyframe depends on the image difference from

the previous frame. So all frames must be seen when checking each frame.

In this case, the Interpretation Layer of the decision function in Listing 3.2

pre-computes all the keyframes with a call to keyframeDiffs t1, storing

the differences, and then keeps a list of the keyframe ids in keyIds. Both

functions used in keyframe calculation are defined in the Decision Layer, and

the body of this decision function is a single expression devoted to the con-

struction of an annotated function that accepts an interpretation and returns

an annotated list of annotated interpretations.

As you can see in Listing 3.2, the end of a decision function can look more

like Lisp than ML. The keyframes decision function updates the state of a

boolean in each interpretation. As the types in the interpretation grow in com-

plexity to include lists and tuples, this construction expression can become

quite complicated. To help mitigate this complexity, a style was developed

that pushed the work of a decision function to a separate decision layer, leav-

ing only the high-level steps and interpretation construction in the body of the

decision function itself. In addition to isolating complexity, this layer has the

effect of highlighting the content of the interpretations and annotations. The
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Listing 3.1: RSL call to update keyframe

notes:
FrameDiffs : real vector

interp:
frameId : int
keyframe : bool
frame : char vector * int * int * int

fn findKeyFrames(t1) {
[FindKeyFrames]
update all keyframe
observing frameId: keyframes(t1)

}

structure of the RSL layer, a high level description of the problem steps and

the data they manipulate, has been mirrored on a smaller scale inside the de-

cision function itself. This symmetry was satisfying even though the original

motivation for the Interpretation Layer was to solve a readability issue.

• The third layer of the design is the Decision Layer. It is in this layer that

the bulk of the decision function code resides. For the keyframe calculation

example above, the Decision Layer handles the work of passing the frames

to the OpenCV [3] library to calculate image differences, connected compo-

nent areas, and any other image processing work that needs to be done. All

the work of the algorithm happens in the Decision Layer, and when that is

complete, the intermediate and final results are returned to the Interpretation

Layer to be used in annotations and interpretations, respectively. The domain

of the Problem Layer is the domain of the algorithm. The domain of the Inter-
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Listing 3.2: Interpretation layer of keyframe decision function

fun keyframes t1 = fn _ =>
let

val diffArray = keyframeDiffs t1
val keyIds = keyframeIds()

in
(SOME (FrameDiffs diffArray),
fn ({keyframe, frameId}) =>
(NONE, [(NONE, { keyframe = (Vector.exists (fn i => i =

frameId) keyIds) } )] ))
end

pretation Layer is interpretations, annotations, decision function signatures,

and accumulation of Decision Layer results. The domain of the Decision

Layer is APIs and data transformations needed to calculate the results of the

overall algorithm.

This three-tiered design, when represented as ML code using MLton’s [19]

ML Basis files and ML source files, forced a structure to the code and an include

idiom on the RSL file itself. Decision functions are a large part of the code, with

many external dependencies. These were packaged together into a ML Basis file

as seen in Listing 3.3. ML Basis files must be self contained with no undefined

references, so the decision layer ML Basis file may not reference any interpretation

type, because that type is not known until the RSL compiler is run. This require-

ment forces the Interpretation Layer code into SML files because there are external

dependencies, and an include file ordering is mandated in order to have all the deci-

sion functions defined before the interpretation functions that use the decision layer.
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You can see the resulting programming idiom in Listing 3.4.

Listing 3.3: Decision Layer MLB file

local
(∗ i m p o r t B a s i s L i b r a r y ∗ )
$(SML_LIB)/basis/basis.mlb

in
$(DATAREAD_DIR)/aslio.mlb
$(CVSL_DIR)/cvsl.mlb

end

Listing 3.4: RSL including layer files

inc "decision-layer.mlb"
inc "interpretation-layer.sml"

3.4 Extension

This research touched on the extensibility of RSL through the use of a small

library that focuses specifically on computer vision.

3.5 CVSL

Computer Vision Strategy Language (CVSL) is an API based extension to

RSL created for this research that provides computer vision specific tools to exam-

ine history. These tools provide functions to treat history information as images

or histograms and to display or save these vision artifacts. The primary API for

examining a computer vision history is in the CVSL ML signature, seen in Listing

3.5. This signature provides the ability to reference different frames or images with
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a type id and a frame id. The type is meant to group frames or images with similar

characteristics such as keyframes or skin confidence maps in the ASL implemen-

tation. Each frame has an id associated with it allowing a developer to access the

twelfth frame of the skin confidence map, or the first keyframe, etc.

Every use of CVSL could potentially address a different computer vision

problem. To allow this, CVSL is implemented in terms of a lower level API written

in C since the image work is done with OpenCV [3]. Listing 3.6 shows the portions

of this lower level CVSL API that is provided by the computer vision algorithm

implementer. This API uses a type and id pair to identify each image. Both fields

are determined by the implementer and can change with the problem. OpenCV

image size and type information is made available about an image based on the

type and id information. It can be useful to think of the type and id pairs as the

tables and keys of an image database. The CVSL C API provides a way to access

that database and get the images. This approach was selected when we found that

algorithm decision operations would frequently access several image types at once.

Copying the same three or four versions of each frame around for several steps of

an image processing algorithm required a lot of management, so the database was

added inside the decision functions, and CVSL was modified to take advantage of

such a database. In the case that no database is required by the decision functions,

the CVSL API also provides getImage and showImage functions that work

with OpenCV cv::Mat data.
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Listing 3.5: CVSL.sig

signature CVSL =
sig

(∗ args : f rame t y p e and w a i t boo lean
∗ r e t u r n u n i t ∗ )

val displayAll : int -> bool -> unit

(∗ args : f i l e n a m e , f rame t y p e and i d
∗ r e t u r n s u n i t ∗ )

val saveImage : string -> int -> int -> unit

(∗ args : name , e x t e n s i o n , t y p e
∗ r e t u r n u n i t ∗ )

val saveAllImages : string -> string -> int -> unit

(∗ args : f rame t y p e and i d
∗ r e t u r n u n i t ∗ )

val displayImage : int -> int -> unit

(∗ args : f rame t y p e
∗ r e t u r n u n i t ∗ )

val displayAllImages : int -> unit

(∗ args : f rame t y p e
∗ r e t u r n u n i t ∗ )

val displayVideo : int -> unit

(∗ Takes a t ype , r e t u r n a v e c t o r o f i d s ∗ )
val getIds : int -> int vector

(∗ t a k e s a t y p e and id , r e t u r n s image , h e i g h t , wid th , cv
t y p e ∗ )

val getImage: int -> int -> (char vector * int * int * int)

(∗ t a k e an image , wid th , h e i g h t , and cv t y p e ∗ )
val showImage: char vector * int * int * int -> unit

end;
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Listing 3.6: CVSL.h

/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗
∗ These f u n c t i o n s are s p e c i f i c t o t h e problem domain and
∗ must be imp lemen ted by t h e CVSL u s e r
∗
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

extern "C" {
/∗
∗ Get t h e number o f f ra me s o f a p a r t i c u l a r t y p e
∗ I n i t A s l A l g ( ) must be c a l l e d f i r s t
∗ /

int numFramesC(int type);
/∗
∗ Get t h e i d s a s s o c i a t e d w i t h f r ame s o f a
∗ p a r t i c u l a r t y p e
∗ I n i t A s l A l g ( ) must be c a l l e d f i r s t
∗ /

void getFrameIdsC(int type, Pointer ids);
/∗
∗ Re tu rn t h e wid th , h e i g h t , cv image type , and s i z e o f
∗ a t y p e o f images
∗ I n i t A s l A l g ( ) must be c a l l e d f i r s t
∗ /

void getFrameInfoC(int type, Pointer width, Pointer height,
Pointer dtype, Pointer size);

/∗
∗ Re tu rn t h e image w i t h i d and t y p e
∗ I n i t A s l A l g ( ) must be c a l l e d f i r s t
∗ /

void getFrameC(int id, int type, Pointer img);
}
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Chapter 4

Evaluation of RSL History

This chapter examines the use of RSL in the algorithm development (Sec-

tion 4.1) and in the algorithm evaluation stage (Section 4.2).

4.1 Algorithm Development Stage

In this section, we describe how RSL was used in the development of the

hand detection and dynamic programming portions of the ASL Recognition algo-

rithm. We discuss the representation of each section and RSL’s utility in debugging.

We then evaluate RSL against the development criteria laid out in Section 1.3.1.

4.1.1 Representing the Hand Detection algorithm as RSL

As can be seen from Listing 4.1, the hand detection algorithm was imple-

mented clearly and naturally in RSL. The process was laid out by Ruiduo Yang [22]

in a way that allowed each step to be mapped to a labeled decision function. Using

CVSL library functions described in Section 3.5, images were processed at each

decision function and updated in the interpretation to be available for later analysis.
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Listing 4.1: RSL function to find hand contours

fn getHandContours() {

(∗ S e c t i o n 4 . 1 , s t e p 2a ∗ )
[DiffImage]
update all handImage
observing keyframe, frameId, gray: initialDiffImages

(∗ S e c t i o n 4 . 1 , s t e p 2b ∗ )
[SkinmaskDiff]
update handImage
observing frameId, skin: skinmaskDiffs

(∗ S e c t i o n 4 . 1 , s t e p s c and d ∗ )
[EdgeAndMask]
update handImage
observing frameId: edgeAndMaskDiffs

(∗ S e c t i o n 4 . 1 , s t e p e ∗ )
[RemoveSmallComponents]
update handImage
observing frameId: removeSmallComponents

(∗ S e c t i o n 4 . 1 , s t e p f ∗ )
[BoundaryImage]
update handImage
observing frameId, handImage: extractBoundary

}

4.1.2 Representing the Dynamic Program as RSL

Representing the dynamic program in RSL presented a problem. The ASL

recognition dynamic programming algorithm was defined recursively [22] and rep-

resented in the original source code as a single large array. Neither model mapped to

RSL interpretations in a satisfying way, so a new approach was developed that took
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advantage of the set tracking and iteration that RSL provides. Listing 4.2 shows the

state information stored in the original implementation of this algorithm to track the

algorithm’s progress. The arrays dist and prev hold the distances and sentence

to that point, and the rest of the variables track the current point in the algorithm,

what frame is under consideration, etc.

Listing 4.2: State kept by original dynamic program

alSigns* subSentence=0;

int sp1=0;
int sp2=0;
int ep1=minSignLen/2;
int ep2=maxSignLen*2;

int Nt=testData->len; / / l e n g t h o f t e s t da ta
int Nv=signlist->GetSize()+1; / / num o f t r a i n i n g t e m p l a t e

if (ep1>=Nt)
ep1=Nt-1;

if (ep2>=Nt)
ep2=Nt-1;

float * dist=new float[maxLevel*Nt*Nv];
int * prev=new int[maxLevel*Nt*Nv];

memset(dist,0,sizeof(float)*maxLevel*Nt*Nv);
memset(prev,-1,sizeof(int)*maxLevel*Nt*Nv);
int s,e;
float tdist;
float bestsofar=1000000000;

Rather than manage the iterations, array, and state explicitly, each element

of the array was represented as an RSL interpretation, seen in Listing 4.3

In the C++ implementation, the dist array tracks the distance for a sign at
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Listing 4.3: RSL interpretation for dynamic program

interp:
testFrames: int vector
level : int
word : int
score : real
interval : int * int
prevs : int list * real

a particular end point at a level. The prev array elements hold the predecessors

for the corresponding dist location. The prev array provides information about

the end frame of the previous sign match, so, between the two arrays, an interval

is created. This interval is represented directly in the interpretation, along with

the level that interpretation is being considered for, the word (sign) the interval

is measured against, and the distance for that word with that interval. Instead of

a linked array of prev, each interpretation holds the list of predecessors for that

particular word and interval.

Initially interpretations for each interval at every level were generated at

once, then gradually updated. This generated well over one-hundred thousand in-

terpretations in the first decision function, most of which did not contain any useful

information. That early version of the compiler did not perform as well as later ver-

sions, so waiting a long time for the creation of essentially worthless (at that point)

data did not make sense. The algorithm was revisited and adjusted so now only a

single level is created at a time. That level is scored (the distance from the train-

ing data is calculated), the best previous interpretation is found and added to the

prevs list, and all old interpretations are dropped. This keeps the interpretation
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count in the tens of thousands, about an order of magnitude less than the original

implementation. There were still performance problems associated with calculat-

ing the distance of all the frame intervals against all the training frames. This was

addressed by generating the interval and distance data separately and storing that in

a file. This is described in detail in Section 4.2.4.

Iteration over the intervals at each level is provided automatically by RSL’s

iteration over interpretations. Iteration over the words and the levels, the other two

dimensions of the outer dynamic program, are implemented explicitly in the RSL

code. This can be seen in Listing 4.4. The function levelbuildLoop uses a

while loop to repeat until some maximum level is reached. The body of the loop

makes a new level in the function makeLevel and then drops the old levels that did

not completely match the frames. This ensures that only the current level remains

in the active interpretation set. All interpretations, even those that are rejected, will

remain in RSL history so they can be examined during reporting. This will allow us

to see why each interpretation was rejected. Inside the makeLevel function, the

RSL munge operation is used to generate a new set of interpretations for the next

level. Then the previous level is filtered out and all the interpretations at the new

level are scored. After scoring, the best legal previous sign is selected and added to

the interpretation for each word. Each decision is labeled for later examination.

Listing 4.4: Iteration over levels in RSL

fn makeLevel(alpha, itemMap, grammar) {
[NextLevel]
munge: levelUpMunge(itemMap)
(∗ LevelUp j u s t c r e a t e d a s e t o f i n t e r p s a t new h i g h e s t

l e v e l , so o n l y l o o k a t t h o s e ∗ )
[InternalLevelCheck]
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if all observing level atMax {
[ScoreLevel]
update score observing interval,
level, word: scoreLevel(alpha, itemMap)
[KillHighScores]
if observing score scoredOut {

reject
}

}
[GetPrevs]
update all prevs
observing score, interval, level, word: updatePrevs(

itemMap, grammar, 3 )
[InternalLevelCheck]
if all observing level atMax {

[TrimToBest]
if all observing word,
interval, prevs notBest {

reject
}

}
}

fn levelbuildingLoop( alpha, numLevels, itemMap, grammar ) {
[LevelCheck]
while all observing level belowMaxLevel( numLevels ) {

print all observing level: prlevel
[OnlyHighestLevel]
if all observing level atMax {

makeLevel(alpha, itemMap, grammar)
(∗ Drop t h e o l d l e v e l ∗ )
[DropOldLevels]
if all observing level, interval,
testFrames oldIncompleteLevel {

reject
}

}
}

}

As with the hand detection algorithm, there was no need to explicitly man-

age the construction or storage of history. At various points in the algorithm, inter-

46



pretations can be rejected for being too distant from a sign representing an illegal

grammar, or for not being the best choice at this point. The history has the entire

record of creation and rejection of each interpretation, and, since these reasons are

all at separate decision points, the history shows the reason each interpretation was

rejected.

4.1.3 Debugging RSL Programs

RSL programs work as scripts stepping over a series of decision functions.

In this research the decision functions rely on a large body of algorithm functions

that depend on the OpenCV [3] library. The amount of code that needs to suc-

ceed in the decision and interpretation layers before RSL starts to receive and store

meaningful results in the history means that RSL has limited use during problem

debugging.

A common location of code errors during this research was in the use of

OpenCV. Unfortunately, the OpenCV library relies on runtime checks of type codes

and other image information to detect errors. These checks result in calls to abort,

preventing any information from being returned to the decision functions and the

RSL scripts. In order to get any result from the image processing functions, they

must all be provided with valid and appropriate data. Once all the input data and

parameters are correct so that the image processing functions can work correctly,

there are not many bugs left in the decision portion of the algorithm.

RSL was found to be of some help for the bugs that remained as a result of

the trace graph RSL makes available in verbose mode [8]. The dynamic program-
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ming loops were much more complex than the hand-detection portion of the ASL

recognition algorithm, and the program trace provided valuable information dur-

ing the later stages of debugging when all the lower level functions were behaving

correctly.

4.1.4 Results of development stage

Our criteria under consideration for the development stage are:

• ”substantial gains in expressiveness and ease of use” - RSL development

should substantially improve how the creation and examination of history

is expressed over general purpose logging tools.

• ”task automation” - RSL should eliminate the tedious, repetitive work of cre-

ating and examining history, leaving only the problem specific work.

• complex ”data structure representation” - History information may be com-

plex, and dealing with this complexity should be handled by RSL. The algo-

rithm developer should have to do little work to generate or navigate history

other than the work specific to the problem.

While structure and organization of code is nice, it is worth considering if

the layered structure for RSL gives RSL history an advantage over logging. We

believe that the first two criteria are met by our three-tiered design.

When implementing logging code for the C++ implementation of keyframe

selection, a coutwas added to the function calculating the image differences (List-

ing 4.5), and this line would be commented or uncommented to debug this portion
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Listing 4.5: Logging of diffs in C++

Frame AccumKeyframes::operator() ( Frame lastKey, Frame next )
{
double diff = calculateDiff( next, lastKey );
cout << "Diff: " << diff << endl;
if( diff > T1 ) {

keyframes.push_back( next );
return next;

}
return lastKey;

}

of the algorithm. Since this particular function is buried many functions and several

files deep into the hand detection algorithm, it is not easy to remember where to find

the function when changes are necessary; grep was used more than once. In con-

trast, the RSL decision function in Listing 3.2, isolated to the Interpretation Layer,

makes it clear where the annotation is being stored, offers options such as storing

each difference with the associated frame, and provides reporting as desired without

modifying the algorithm. Expressing what is being stored and the task of storing

it for examination are, for this research, simplified compared to C++ logging. Iso-

lating the annotation from the interpretation while automatically maintaining the

association between them satisfies all three of the criteria under consideration for

development. RSL provides a gain in expressiveness in creating history while at the

same time automating the creation and representation of the complex history data-

structure. The developer’s only task for history creation is to provide the problem

specific data.
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When implementing the dynamic program, a new way to represent dynamic

programming data had to be designed. RSL interpretations do not map intuitively to

the array based representation usually associated with dynamic programming. This

took some consideration; however, when an interpretation structure was selected,

the actual implementation of the level-building dynamic programming solution was

similar to dynamic programming solutions in other languages. Specifically, the

implementation was done by using nested loops. Representing a data structure

used in the domain in a non-intuitive way makes the implementation of dynamic

programming in RSL harder than in another language, but, since this impacts only

the creation of the history, not communication or storage that are the other elements

to consider for development, we do not consider the effort to be much harder.

4.2 Algorithm evaluation stage
4.2.1 Algorithm evaluation criteria

As mentioned in Section 1.3.2, algorithm evaluation is the intended domain

of RSL, and the area in which we must see improvement over traditional methods.

As with the development stage, there is no quantitative measure of easier or harder,

so we consider these qualitative measures from Mernik et al. [17]:

• complex ”data structure representation” - Evaluation will require access to

the history generated during development. The initialization of this history

should be easier than with general logging tools.

• ”data structure traversal” - Accessing the items of history should be done
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more naturally than it would be with general purpose tools.

• ”interaction” - According to Mernik et al. [17], interaction with the applica-

tion should be made easier. In this case, that would mean interacting with

history and extracting information.

– Is new information readily apparent that would not be noticed with gen-

eral purpose tools?

– Is it possible to produce new types of analysis that would be too difficult

or time consuming with general purpose tools?

– Are methods for visualizing the data accessible and informative?

4.2.2 Evaluating hand detection

Listing 4.1 shows the RSL code used to implement the hand detection algo-

rithm. Each step of the getHandContours() function calls a decision func-

tion to implement a specific step of the algorithm. The handImage field of

the interpretation stores the handCandidate image calculated to this point. The

structure of this function is very similar to the C++ version of the same function,

seen in Listing 4.6, with just a few important differences. In RSL, each call to

a decision function is labeled for later reference (DiffImage, SkinmaskDiff,

edgeAndMaskDiffs, RemoveSmallComponents, BoundaryImage). These

labels are used later in the RSL program when examining history.

A similar storage and retrieval mechanism was written for the C++ code

and used at the line setItem( setSD, cleaned ). The setItem and
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Listing 4.6: C++ function to find hand contours

void FrameDB::makeSDs() {
/∗ S e c t i o n 4 . 1 , S t e p 2a ∗ /
FrameSet init = generateInitialSDs();
/∗ S e c t i o n 4 . 1 , S t e p 2b ∗ /
FrameSet SDs = maskedSDs( init );
/∗ S e c t i o n 4 . 1 , S t e p 2 c ∗ /
FrameSet edges = getDilatedEdges( SDs );
/∗ S e c t i o n 4 . 1 , S t e p 2d ∗ /
FrameSet negated = negateAndMask( SDs, edges );
/∗ S e c t i o n 4 . 1 , S t e p 2 e ∗ /
FrameSet cleaned = removeSmallConnectedComponents( negated

);

/∗ S t o r e f o r l a t e r r e f e r e n c e ∗ /
setItem( setSD, cleaned );

/∗ S e c t i o n 4 . 1 , S t e p f ∗ /
FrameHandSet boundaries = getBoundaryImages( cleaned );
for( FrameHandSet::iterator i = boundaries.begin(); i !=

boundaries.end(); ++i ) {
db[i->first.id].boundary = i->first;
db[i->first.id].hands = i->second;
db[i->first.id].handCenters = centers( i->second );
db[i->first.id].histograms = generateHandHistograms( (i

->first).size(), i->second );
}

}

getItem calls allow storage and retrieval of images in a simple in-memory datas-

tore. The first argument is an accessor function for a field (in this case the SD field

which holds the images referred to as SD in the paper) and the second argument is

the collection of images to store. To store and examine a different step in the al-

gorithm, a different collection would be passed to setItem, and the data already

stored in the field would be lost.
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Listing 4.7: RSL report function on number of hands

hfn report() {
reject

hadd ["DiffImage"]
print "\n\nDiffImage\n"
print all: sNumHands
reject

hadd ["SkinmaskDiff"]
print "\n\nSkinmaskDiff\n"
print all: sNumHands
reject

hadd ["EdgeAndMask"]
print "\n\nEdgeAndMask\n"
print all: sNumHands
reject

hadd ["RemoveSmallComponents"]
print "\n\nRemoveSmallComponents\n"
print all: sNumHands
reject

hadd ["BoundaryImage"]
print "\n\nBoundaryImage\n"
print all: sNumHands
reject

}

To examine more than one algorithm step at a time, multiple fields would be

added to the in-memory data store and multiple accessor functions would be writ-

ten. Use of function pointers and C++ templates make this data access code fairly

extensible for new fields, but the development of that code was time consuming and

adding new, non-image, types was more difficult. As a result, each new step in the

algorithm presented the developer with a choice between the overhead of adding a
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data store field or reusing a field and losing the ability to compare results.

Listing 4.8: RSL report function on Hand Candidate Accuracy

hfn report() {
reject

hadd ["DiffImage"]
print "\n\nDiffImage\n"
print: sPrintDiffAccuracy
reject

hadd ["SkinmaskDiff"]
print "\n\nSkinmaskDiff\n"
print: sPrintDiffAccuracy
reject

hadd ["EdgeAndMask"]
print "\n\nEdgeAndMask\n"
print: sPrintDiffAccuracy
reject

hadd ["RemoveSmallComponents"]
print "\n\nRemoveSmallComponents\n"
print: sPrintDiffAccuracy
reject

hadd ["BoundaryImage"]
print "\n\nBoundaryImage\n"
print: sPrintDiffAccuracy
reject

}

RSL does the work of managing that data store for the programmer and

stores every intermediate state of each interpretation. This can be seen in Listing

4.7 and Listing 4.8. Both these reporting functions illustrate a programming idiom

used throughout the algorithm evaluation phase in which each interesting step of

the algorithm is presented to the same history function in order to examine the
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interpretations at that step. Step-by-step analysis is one of the design goals of RSL

[27], and this idiom achieved that goal in a way natural to the developer. In the

report function, interpretations for a decision point are added, the report is run

for each interpretation, those interpretations are cleared, and the process is repeated

for the next decision point.

Figure 4.1: Maximum number of hand candidates across all frames after each algo-
rithm step for the sign why

The dynamic-programming algorithm used for hand-candidate selection grows

in both time and space with the number of hand candidates in a frame sequence. As

a result, a benefit of the hand detection algorithm is to limit the number of hand

candidates. Listing 4.7 calls a history function that displays the maximum number

of hand candidates for a set of interpretations in a simple comma-separated-value

format. This report was imported into graphing software to show the effect of each

step of the algorithm on the number of hand candidates, and, as a result, the perfor-

mance of the later dynamic programming algorithm. Figure 4.1 shows the results

of the hand detection algorithm on the number of hand candidates.
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(a) Step 2a (b) Step 2b

(c) Step 2c and 2d (d) Step 2e

(e) Step 2f

Figure 4.2: Euclidean distances for the hand candidate with the lowest Mahalanobis
distance in every frame of the sign why

This research also examined the quality of hand candidates after each step

of the hand detection algorithm. The sPrintDiffAccuracy function calcu-

lates the distance from ground truth of the image in the provided interpretation.

This is done by finding the hand candidate in the image with the lowest Maha-
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lanobis distance from ground truth and measuring the Euclidean distance of that

hand candidate from the hand in ground truth.

The results were again printed to standard output as list of comma-separated

values, but could have as easily been written to file using write instead of print.

At every decision point there is an interpretation for every frame. Output from

report describes the accuracy of each algorithm step for each frame. This is

easily imported into graphing software (e.g., OpenOffice Calc, Matlab, or gnuplot)

as seen in Figure 4.2.

We found that during the early steps of the algorithm, a number of hand

candidates were detected that received a better (lower) Mahalanobis distance from

ground truth but were too far away in the image to be the true hand. Mistaking an

arbitrary background blob for a hand shape could throw off the accuracy of the sign

language recognition algorithm. The elimination of closely matching, non-hand

shapes was an interesting effect of the hand detection algorithm that may have been

assumed but was not called out by Ruiduo Yang [22]. It seems possible that the

removal of these hand-shape non-hand blobs could increase the accuracy of sign

language recognition and not just improve execution time. This type of observation

and potential route of investigation is what RSL is intended to enable.

Hand detection depends upon several thresholds [22] whose values are de-

pendent upon the input data. Since the threshold units are in pixels, changing video

size causes variations in algorithm behavior. This research examined how RSL his-

tory could assist in determining an appropriate threshold value for T1. T1 is the

threshold used to determine if a video frame should be used as a keyframe. If the
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area of the largest connected component in the difference image between image n

and the last keyframe, then image n is the next keyframe.

Listing 4.9: C++ function to select keyframes

Frame AccumKeyframes::operator() ( Frame lastKey, Frame next )
{
double diff = calculateDiff( next, lastKey );
diffs.push_back( diff ); / / Put d i f f e r e n c e s i n h i s t o r y
if( diff > T1 ) {

keyframes.push_back( next );
return next;

}
return lastKey;

}

Listing 4.9 shows the keyframe selection function that has been instru-

mented to collect the frame to keyframe differences. This collection is stored in

history as an annotation of the keyframe selection decision function as seen in List-

ing 3.2. The report function in Listing 4.10 prints the calculated differences at

request. Once the differences have been reported, we have the information needed

to select a range of values to examine.

Values from five thousand to eleven thousand were selected and tested to

examine the effect of T1 values on hand candidate quality for a short video of the

sign why. The results can be seen in Figure 4.3. As you can see, at T1 = 6000

hand candidate quality decreases for one frame of this dataset. That is, one of

the frames has a hand-blob with a smaller Mahalanobis distance from truth than

the true hand. Another drop in quality is seen at T1 = 8000 with more frames

with incorrect hands. Finally, at T1=11000, many of the frames have a best-hand-

58



Listing 4.10: SML code to access annotations for image differences

(∗ Outpu t a t t r i b u t e s ∗ )
fun noteToString (FrameDiffs ds) = (String.concatWith ","

(List.map Real.toString (
Vector.foldl op:: [] ds)
)) ˆ "\n"

| noteToString (FrameId id) = ("FrameId: " ˆ (Int.toString id
) ˆ "\n")

| noteToString _ = "Unexpected Note Value\n"

fun sHprintDiffs (is, ah, trace) =
let

val notesList = List.map (fn i => getar(Interp.rhcons i, ah
, trace)) is

val prFun = fn ns => List.app (fn (_,note,_) => print (
noteToString note)) ns

val _ = List.map prFun notesList
in

""
end

(a) T1=5000 (b) T1=6000 (c) T1=7000 (d) T1=8000

(e) T1=9000 (f) T1=10000 (g) T1=11000

Figure 4.3: Hand candidate quality for values of T1 for all frames of the sign why
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candidate that is too far from the true hand.

4.2.3 Results of evaluating hand detection

Evaluation of the hand detection portion of the sign-language recognition

algorithm allowed us to examine the qualitative measures of a domain specific lan-

guage laid out by Mernik et al. [17].

• complex ”data structure representation”

Storage and retrieval of history information was compared to an extensible

but problem specific data store written in C++. This data store is seen in

Listing 4.11. The image for every intermediate step that needs to be examined

later must be stored in a FrameData instance. This data store was useful for

the ASL recognition algorithm to access the intermediate images, like the

skinmask, that were used in multiple steps of the algorithm. However, when

possible, we preferred to reuse storage rather than create a new slot in order

to avoid the overhead of managing a new field.

This data store is a C++ std::map of a frame’s Id (frame number) to its var-

ious processed stages. Each decision function requires creating a new field in

the FrameData structure or reusing an existing field, which would lose the

information previously stored in that field. In comparison the RSL history is

more complex, containing a tree tracing the execution of the algorithm and

making the interpretations and annotations at any point available for exam-

ination. This eliminates the need to choose between creating extra storage
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Listing 4.11: C++ Datastore definition and accessors

struct FrameData {
int id;
Frame original,

skinMask,
gray,
SD,
boundary;

ContourSet hands;
CenterSet handCenters;
HistogramSet histograms;
ProjectionSet projections;
FrameData( int i, const cv::Mat &img );
/ / Don ’ t use . P r o v i d e f o r s t d : : map
FrameData() {}

};

typedef std::map<int, FrameDB::FrameData> DBType;
typedef DBType::value_type RowType;

std::vector<int> ids() const;
/ / A cc e s s f r am es o f v a r i o u s t y p e s
FrameSet originals() const;
FrameSet grays() const;
FrameSet skins() const;
FrameSet sds() const;
FrameSet keys() const;
FrameSet boundaries() const;

fields or reusing a field and losing the previous value.

The creation of this data store took time and testing, and extending it for

new types would require more work. Helper functions to access each data

member (not shown) were required. Those helper functions would also have

to be extended to support new items. RSL history is created and maintained

automatically, and new types are added on demand with no more work for
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the developer than declaring them. Accessing the fields of the interpretation

during reporting is done by running the hadd query function for the desired

decision function.

For the criterion of data structure representation, RSL provides a more pow-

erful data structure with less developer work than the C++ implementation.

This makes using RSL easier than using traditional logging methods and

gives RSL history the advantage in this case.

• ”data structure traversal”

Accessing history is done post execution as needed. C++ logging was able

to provide easy access to the image difference calculations for keyframe se-

lection. For this purpose, the logging was initially easier than accessing the

annotations in the history. As a result of this research, annotation access

helper functions were added so that the sHprintDiffs report function in

Listing 4.10 is able to extract and print all the annotations from the provided

interpretations. As you can see, traversing the execution graph to a particular

decision point and accessing the interpretations at that point is done with a

hadd query operation, making it easy to include or remove the image dif-

ference calculations from the report by updating the report function without

searching through the C++ code for the logging method.

The analysis of hand candidate quality across the algorithm steps was not

completed in C++, because managing the data store at that resolution required

too much code overhead. In comparison, storage and traversal of history at
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different decision points made the analysis of the algorithm steps easier, re-

quiring only the problem specific code (i.e., measuring hand candidate qual-

ity) be written by the developer. Simple access to annotations and support of

the more complex analysis and traversal by RSL where it was prohibitively

difficult in C++ means that RSL history is easier to use than traditional log-

ging.

If other implementations repeat the idiom of applying the same reporting

function to interpretations at various decision points, it may be worth in-

vestigating supporting this more succinctly, possibly with a mapping type

operation.

• ”interaction”

By applying RSL reporting mechanisms to history, we were able to examine

the effectiveness of the hand detection algorithm at every step and notice an

interesting elimination of false-positive hand candidates from the test image.

It was this type of examination that was intended by the original RSL [27]. As

mentioned above, the work required for this analysis using the C++ logging

was prohibitive, so use of RSL history is easier in this respect as well.

4.2.4 Evaluating the dynamic program

The level building dynamic programming algorithm was run against five

sentences listed in Table 4.1. These sentences were chosen from the data set pro-

vided by Ruiduo Yang [22] because they all share at least one word and span lengths
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Sign sequence Sentence
lipread can i I can lipread
lipread cannot i I cannot lipread
i understand not I do not understand
don’t-know i I don’t know
i need that i I need that one

Table 4.1: Sentences tested

of two to four signs. The various sentence lengths mean that truth is found at dif-

ferent levels while the reuse of words in different sentences may allow more than

one result to be considered by the algorithm.

The dataset we used included five instances of each sentence; however, the

ground truth data was not available for one instance of those five, so we were unable

to use it in training or testing. As a result, we trained with three sentences and tested

(tried to recognize) the fourth.

Our work broke the dynamic programming part of the algorithm into three

stages: Scoring, Level Building, and Reporting. This was done for two reasons.

First, the scoring portion of the algorithm is time consuming, with longer sentences

requiring more than a week of processing time with the current implementation

and hardware. Optimizing this stage would be the next obvious step in further

development of this solution now that it is shown to work. The second reason for

separating the stages is to allow aggregation of all the separate tests so they could

be considered together during reporting.
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Scoring stage Stage one, calculating the Mahalanobis distance or scoring, is im-

plemented in Listing 4.12. This script works by creating a single level of the level

building algorithm and finding the Mahalanobis distance for every legal interval

from every possible word. The call to print all: dumpScores(destFile)

creates a data file called allMahalanobisDists.dists in the directory be-

ing tested. Later, during the level building stage, this file will be loaded into mem-

ory and work as a memoized cache of scores so that stage can be run quickly and

separately.

Memoization and storage to disk was added late in the project as an opti-

mization. Many of the scores are discarded deep inside the decision function before

leaving the decision layer and becoming interpretations. As a result, using RSL his-

tory to cache and store these scores doesn’t make sense. It would require a custom

script that treated raw scores as interpretations just to write to file a data structure

that is easily written already. Furthermore, the level building RSL script would

need to read those scores in and pass them through all three layers to make the

scores available to the lowest level of the decision layer. These steps would have

nothing to do with the rest of the work of the level building RSL script or the in-

terpretation layer. For these reasons the function dumpScores is used to save the

calculated distances to file.

Level building stage As mentioned in Section 2.4.3, this ASL recognition algo-

rithm relies heavily on the distance value associated with motion epenthesis frames.

This value α is ”the optimal Bayesian decision boundary between match and non
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Listing 4.12: RSL script for scoring all intervals

interp:
testFrames: int vector
level : int
word : int
score : real
interval : int * int

fn main ( testDir, trainDir ) {
(∗ML∗ )

val _ = aslalgLoad trainDir testDir
val dumpFile = (testDir ˆ "/allMahalanobisDists.dists")

(∗ML∗ )

[Init]
munge: init
[LoadVideo]
update testFrames: getIds
print "Trained and loaded\n"

[LevelZero]
update level, word, interval, score
observing testFrames: levelZero()

[NextLevel]
munge: levelUpMunge()
[InternalLevelCheck]
if all observing level atMax {

print "Scoring "
print all observing level: len
[ScoreLevel]
update score observing interval, word: scoreLevel

}
print "Done scoring\n"

print all: dumpScores(destFile)
}

match scores”. The α value was found by running the scoring script against known

sign intervals. Since these scores were already dumped to a file for the level build-
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Figure 4.4: Probability mask function of match vs. Non match for all trained signs

ing stage, it was only necessary to load the correct intervals into a spreadsheet to

determine α. The result can be seen in Figure 4.4. The match versus non match

probability has not separated cleanly, probably as a result of too little data. If more

signs were being tested, we expect the decision boundary would be clearer. Based

on these results, we chose to test the level building algorithm with α values of 0.16

and 0.28.

The results of the level building algorithm can be seen in Table 4.2. This ta-

ble shows for each α value and sentence whether the ground truth sentence was the

best sentence detected (best) and if the ground truth was ever considered (found). In

this case, considered means that is the best sentence for some complete set of inter-

vals, but not necessarily the best sentence when compared to all possible sentences.

Overall the performance of our implementation leaves something to be desired. The

only consistent successes were with the two sentences ”lipread can i” and ”lipread

cannot i”. ”i need that i” was found by the level building algorithm, but it was never
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α = 0.16 α = 0.28
Best Found Best Found

lipread can i no yes yes yes
lipread cannot i yes yes yes yes
i understand not no no no no
don’t-know i no no no no
i need that i no yes no yes

Table 4.2: Level building results

the best score. ”don’t know i” was never considered when that sentence was tested;

however, it appeared in the considered list for other sentences. ”i understand not”

never appeared in the list of considered results for any test sentence. On considering

these results, we think the choice of the ”lipread can i” and ”lipread cannot i” sen-

tences, while an interesting test, may have been problematic. The sign for lipread

consists of small movements by the bottom of the chin and upper chest, and the

sign for i is also made up of small movements near the upper chest. This could lead

to confusion between the signs, especially when considering we were training with

only three-quarters of the training data used in the original implementation. Further

complications may have arisen because several of the signs (lipread, understand,

and don’t-know) cross the signers face, making hand detection more complicated.

Despite the relatively low accuracy of the implementation, we felt that the

results were consistent enough to move ahead with the evaluation of RSL for devel-

opment and evaluation of this ASL recognition algorithm.

Because the test video files are all stored separately, and we wanted to con-

sider all the results together during evaluation, the level building script’s report
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function pulls in the interpretations at the end of each level along with the final in-

terpretations and stores those to a file to be combined with all the other tests. This

can be seen in Listing 4.13 where levelbuildingLoop has an accept labeled

LevelEnd at the end of the leveling loop. This allows the report function to

use hadd["LevelEnd"] to add all the interpretations at the end of each level.

We ran the level building with three α values for each of the five sentences. The

interpretations were all written to files for aggregation during reporting.

Listing 4.13: RSL script for Level building

fn levelbuildingLoop( alpha, numLevels, itemMap, grammar ) {
[WhileLevel]
while all observing level belowMaxLevel( numLevels ) {

print all observing level: prlevel
[OnlyHighestLevel]
if all observing level atMax {

makeLevel(alpha, itemMap, grammar)
(∗ makeLeve l ( ) made a new , h i g h e r l e v e l . Drop t h e

o l d one ∗ )
[DropOldLevels]
if all observing level, interval, testFrames
oldIncompleteLevel {

print all observing level: prlevelAt( "
DroppingOld" )

reject
}

}
[LevelEnd]
accept

}
}

hfn report ( alphaStr, levels, testDir ) {
(∗ML∗ )

val ifilename = testDir ˆ "/levelbuilding-" ˆ alphaStr
ˆ "-ifile"

(∗ML∗ )
reject
hadd ["LevelEnd"]
hadd ["Finished"]
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write ifile to ifilename
}

Reporting stage Reporting is implemented with two scripts. The first script (List-

ing 4.14) holds a hard coded list of interpretation files from the level building stage

whose interpretations are added to the set using the RSL add function. Then the

ground truth for that interpretation file is loaded into the interpretations using the

loadTruth decision function so that the interpretation contains both the ground

truth and the level building results. All the interpretations are then written to a

user-provided output file. The script in Listing 4.14 shows only two files, but our

experiment required fifteen interpretation files (five sentences at three runs each)

which resulted in 92,015 interpretations.

Listing 4.14: RSL code to combine interpretation files

interp:
file: string
alpha : real
truth : (string * int * int) list
range : int * int
level : int
word : string
score : real
interval : int * int
prevs : (string * int * int) list * real

fn main( outfile ) {
(∗ ML ∗ )

val infile01 = "/path/to/interpfile01"
val infile02 = "/path/to/interpfile02"

(∗ ML ∗ )
add infile01
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile01)
}
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add infile02
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile02)
}
write ifile to outfile

}

With all the interpretations combined into a single large set, it is possible

to collect a series of reports using just RSL without falling back on external shell

scripts to manage files as would have to be done if all fifteen interpretation files

were to be processed separately. It is also possible to consider the performance of

the algorithm across all sentences or all α as desired. In order to report on groups

of interpretations, it was necessary to make a small change to the language to allow

recursive functions. The use of recursion for grouping can be seen in Listings 4.15

and 4.16

Listing 4.15: SML code to group interpretations

fun isNextGroup is =
let

val {truth = firstTruth, alpha = firstAlpha, level =
firstLevel} = hd is

in
(NONE, fn {truth, alpha, level} => (NONE, truth =

firstTruth andalso level = firstLevel
andalso Real.==(

alpha,
firstAlpha)))

end

Listing 4.16: RSL code to group interpretations

fn eachGroupStats( outfile ) {
if all observing truth, alpha, level isNextGroup {

write ++ all to outfile: prGroupReport
}
else {
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eachGroupStats( outfile )
}

}

fn main( interpfile ) {
add interpfile
eachGroupStats( "reportFile" )

}

SML function isNextGroup accepts a set of interpretations and returns

a predicate that returns true for every passed interpretation whose ground truth, α

value, and level building level all match those of the first interpretation in the set.

When called from the RSL script’s eachGroupStats function as the decision

function of the if expression, the set of interpretations is effectively partitioned

into those interpretations with the same ground truth, α value, and level building

level as the first interpretation and those interpretations with differences. This first

group is passed into the true branch of the if, where the reporting happens, while

the rest are passed to the else branch. The else branch makes a recursive call to

eachGroupStats with only the remaining set of interpretations. This continues

until all the groups are passed to the true branch of the if and only the empty set

remains for the else branch. In this example, there is no guarantee of what order

the interpretations will be handled by the reporting function. However, this could be

accomplished by sorting the interpretation set in isNextGroup before selecting

the first interpretation for comparison.

One of the items we investigated was to see if the error would change across

the levels with the number of true interpretations. The results for sentence ”i need

that i” are shown in Figure 4.5. These figures show the percent of interpretations
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that match ground truth with the purple bars. A match meaning the words appear-

ing in the interpretation are a prefix of the truth. The minimum, maximum, and

average edit distance error for all interpretations are shown as red, blue, and green

lines, respectively. Edit distance is computed as a percentage to allow comparison

between sentences of different lengths. An absolute edit distance of five for a sen-

tence ten frames long is a very different result from the same edit distance for a

one hundred frame sentence. Therefore we compare the results of the level building

dynamic programming algorithm to the known truth for each sentence to calculate

the edit distance, then divide that distance by the total number of frames in the test

video to determine the error. The sentence is labeled at every frame when com-

puting the edit distance. For example, if the signs in ”lipread cannot i” are all two

frames long with two frames of motion epenthesis in between the truth string pro-

vided to the edit distance function would be ”lipread lipread epenthesis epenthesis

cannot cannot epenthesis epenthesis i i”. All error rates are much higher for the

higher α value. Should we have more training data, we suspect this indicates that

the optimal α value would be closer to 0.16 than 0.28. Note that the percentage

of interpretations matching ground truth jumps about ten percent at levels 8 and 9

where the correct sentence (including motion epenthesis frames) is detected. This

led us to investigate if similar jumps could be seen with the other sentences being

tested. The other sentences in which the correct sentence was found did not display

similar behavior. Another item of interest is that level 10 shows no interpretations

that match ground truth (0%). Since ”i need that i” is the longest sentence in our

training base, and, with motion epenthesis frames, 9 levels is enough to find the
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entire sentence, no valid sentences exist with 10 signs. Initially we graphed only

the minimum, maximum, and average edit error for each level. The minimum error

increase with each level is as we expected; however, the average remains fairly flat.

This was an unexpected result and caused us to add variance to the graphs to have

more insight into what was happening in the algorithm.

We next considered the error rates of correct (true) interpretations versus

incorrect interpretations. These results are in Figure 4.6. These lines compare the

average edit error for all the interpretation that match ground truth to the average

edit error for the interpretations that do not match ground truth. The error rates

for the correct interpretations are high, indicating that the frame boundaries for the

signs are incorrect even if the words selected are correct. What we are probably

seeing is the effect of the grammar. A single good match on a unique word will

cause that sentence to be selected even if all the other intervals are far off. For

example, if the Mahalanobis distance for the word ”can” is very low for a frame

interval, the entire sentence ”lipread can i” will be selected even if the intervals for

the other sentences are from correct. This will result in a sentence match with a

large edit distance.

4.2.5 Results of evaluating the dynamic program

In this section we consider the use of RSL in the evaluation of the level

building dynamic programming algorithm in terms of our criteria from Section

1.3.2.

• complex ”data structure representation”
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(a) α = 0.16

(b) α = 0.28

Figure 4.5: Average edit errors for all interpretations and the percent of interpreta-
tions that represent ground truth across all levels for sentence ”i need that i”. Edit
error is the percent of the frame labeling that needs to change to make the inter-
pretation match ground truth. Levels with no bar for interpretations that represent
ground truth have no correct interpretations.
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(a) lipread can i (b) lipread cannot i

(c) i understand not (d) don’t-know i

(e) i need that i (f) Average across all sentences

Figure 4.6: Average edit errors for correct interpretations versus incorrect. Edit
error is the percent of the frame labeling that needs to change to make the interpre-
tation match ground truth.
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While both implementing and evaluating the level building algorithm, the

RSL trace graph was found to be useful. This is a graphical representation

of the program trace. Any time we have needed this type of information

for other projects, debuggers and trace statements were used to follow algo-

rithm progress. The visual graph along with information about what sets of

interpretations were created or re-created was both complicated and useful

information.

The level-building program tagged at a number of decision points throughout

development to determine what each level looked like at the end, to verify that

the appropriate interpretations were generated at level-up and that the gram-

mar was rejecting the correct interpretations. This was all achieved by small

changes to the RSL report function, with no framework or logging code

required other than the code needed for the program-specific interpretation

structure.

• ”data structure traversal”

As with hand-detection, accessing the level building algorithms history at

various points was fairly easy and intuitive. The only struggle encountered in

this area was a desire to group interpretations according to level or α value.

This was resolved by adding recursive functions to the language; if this needs

arises in other implementations, it may be useful to add a grouping function to

RSL. This would eliminate the need to write predicates and special recursive

functions for every group type.
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Unlike the hand-detection portion, the level building algorithm made use of

RSL’s ability to export and import interpretations from file to load multiple

files into a single set of interpretations. This required writing the toString

and fromStream functions, but, again, only the problem specific portions

of the code were provided by the author. RSL silently manages the meta data

that exists in the interpretation files.

• ”interaction”

The RSL report exposed an interesting artifact; the number of correct inter-

pretations increases suddenly for one of the sentences. Using the same report-

ing for other sentences, we were able to determine that this was not generally

the case and not an interesting behavior of the algorithm. While this result

is not particularly exciting, it is the type of observation and investigation that

RSL intends to enable.

As with the hand-detection, we found printing interpretations to simple comma

separated value files to be convenient ways to provide to graphing software

the algorithm’s data at any decision point.

4.3 Algorithm implementation difficulties

A series of minor problems were encountered while trying to replicate the

experiment described by Ruiduo Yang [22]. These problems do not cause us to

question those results, but made repeating the results quite difficult.

• Incomplete data - The dataset for this work was generously provided by the
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paper authors, but we found that ground truth was included for only 80% of

the data (four out of five sentence instances). This resulted in a significant

reduction in the amount of data to train the algorithm, likely reducing the

accuracy of our implementation.

• Inaccurate data - The ground truth data was found to have errors that cause

the hand contours to generally be twice as high as they should be. We tried to

compensate for these errors by carefully designing the truth loading algorithm

to detect and correct the ”jumps” in pixel positions, but the result is a ground

truth dataset that is not completely correct nor is it wrong by a known amount.

• Inaccurate implementation - The source code for the original paper was made

available for comparison during our work, and we found that the histogram

process was different from that described in the paper. The implementation

scaled every x value by two. The reasons for this were not clear to us. Possi-

bly the authors were trying to compensate for the improperly scaled ground

truth data? We duplicated this scaling in our implementation, but we are un-

certain of its importance.

• Missing information - We chose this algorithm because of the detailed infor-

mation in the paper about each step, and it was very helpful to us throughout

the work. However, we found that some more information was required.

When selecting hand pairs from the hand candidates, it wasn’t clear what

rules should be applied in every case. For example, the description says that

hands were limited to one hundred pixels of movement from frame to frame,
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but it wasn’t clear that this applied to each hand, or how to handle dropped

(undetected) hands. Another question arose regarding only face pixels being

selected in a frame. It may be better to try to match an empty frame rather

than try to match the face blob. It wasn’t clear what the correct approach

should be in this case.

• Undefined terms - The term ”valid pixels” was used by Ruiduo Yang [22] to

describe the hand detection algorithm, but no definition of valid was provided.

We assumed this meant skin pixels. If we were incorrect, this may have

impacted the accuracy of the algorithm.

• Non-standard implementation - In the original implementation, many of the

standard algorithms for detecting contours or computing Mahalanobis dis-

tance were fully implemented instead of calling out to a common library such

as OpenCV [3]. As is often the case, these implementations were tightly cou-

pled to the data structures and context of that program and not reusable by

others. This became a problem when we found that the algorithm thresholds

were very different from those described in the paper. We did not know if

there was difference in data (maybe the images were scaled), or if there was

a difference in the algorithm for the image processing steps, or if there were

a bug in one or both implementations.

The paper authors responded quickly and helpfully to our requests for as-

sistance, and in the end we believe we have approximated the algorithm laid out by
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Ruiduo Yang [22], but there are a few unanswered questions in the items above that

may harm the performance of this implementation.
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Chapter 5

Conclusion

This chapter presents the conclusions of our evaluation of RSL, lists contri-

butions made as part of this work, and presents possible future directions for this

ASL algorithm implementation as well as possible changes to the RSL language.

5.1 Summary of RSL evaluation

Hypothesis Recognition Strategy Language (RSL) history will provide informa-

tion useful for evaluating decisions that would be more difficult to obtain

using traditional logging methods.

In order to test our hypothesis we chose to consider RSL in two stages of

algorithm design, development and evaluation, for each of the two stages of the

ASL recognition algorithm.

Table 5.1 shows the criteria for the development stage. In the hand detection

portion of the algorithm, we found that RSL made the creation, communication,

and storage of history information easier compared to similar functionality in C++.

During the level building portion of development, RSL was found to make writing

the dynamic programming algorithm somewhat harder, but not much harder. As

we discussed earlier, this neither supports nor refutes the utility of RSL history for
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History is Creation Communication Storage
Easier Support Support Support
Same Support Support Support
Harder
Much Harder Refute Refute Refute
than logging

Table 5.1: Criteria to test the hypothesis in the development stage

History is Examination Traversal
Easier Support Support
Same Refute
Harder Refute Refute
than logging

Table 5.2: Criteria to test the hypothesis in the evaluation stage

evaluating decisions. For the development stage, we find that history is easier to

obtain using RSL than it is using traditional logging methods, and the hypothesis is

supported.

Table 5.2 restates the criteria for the evaluation stage. In the hand detection

portion of the algorithm, interesting behavior was noted that was not mentioned in

the original algorithm description [22]. This behavior was found using analysis that

would be prohibitively difficult without the history tools provided by RSL. The level

building portion of ASL recognition was less successful. A potential area of interest

was noted, but it did not turn out to be a consistent or interesting outcome of the

algorithm. Nevertheless, this examination was found to be easier than that allowed

by traditional logging mechanisms. For the evaluation stage, we find that RSL
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history provides information useful in evaluating the ASL recognition algorithm

that would be harder to obtain using traditional logging. This is the assertion made

in the hypothesis; therefore, the hypothesis is supported.

5.1.1 Contributions

We considered two subproblems: hand-detection and nested dynamic pro-

gramming of an ASL recognition algorithm. For the hand-detection algorithm, a

clear advantage in using RSL was demonstrated according to our evaluation cri-

teria. For the dynamic programming algorithm, the advantage of using RSL for

history storage and traversal is shown, but the utility is not.

Additionally, this research provides insight to the designers of RSL with

regard to the usability of RSL history. As noted by Mernik et al. [17], ”DSL de-

velopment is not a simple sequential process”, and each stage of language develop-

ment may provide new insight or questions into previous stages. By implementing

computer vision algorithms in RSL, this research becomes an integral step in the

domain-specific language development process [17]. Specifically, the language is

changed in the following ways at least in part through the feedback from this work:

A language feature, annotations, and supporting functions are included in RSL as a

result of observations made during this work. Minor compiler changes were made

to allow recursive functions. RSL extensibility is demonstrated through the creation

of a computer vision specific API. A design structure for RSL is proposed and im-

plemented to create a clear distinction in responsibilities between RSL scripts and

the called decision functions. Through replicating the ASL recognition algorithm,

84



several steps not called out in the original paper are made clearer, in addition to the

identification and partial correction of errors in the dataset.

5.2 Future work
5.2.1 Future RSL experiments

An area that we would have liked to investigate had time permitted is the use

of RSL history in a comparison between two algorithms used for ASL recognition.

It may be valuable to correct any errors in our implementation and then find another

ASL recognition that would allow such a comparison.

5.2.2 Possible changes to RSL

We found that, while not strictly necessary, a not keyword would be valu-

able for the if and while conditions. This would improve readability and simplify

the interpretation layer, just by reducing slightly the amount of duplicate code.

It may be useful to add a map-like function to the reporting section that

would apply a reporting function to a series of decision points. We found this

pattern useful in our work, and it would be worth determining if that need comes

up again.

Grouping by different interpretation fields was required for our evaluation of

the dynamic programming algorithm. This grouping was accomplished by writing

a series of predicates and a series of recursive RSL functions. It may be useful to

provide a more natural way to express this in RSL directly. For example: group

observing alpha, level { ... }.
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While not a change to the language itself, it would be useful if the RSL

compiler generated the IO code for interpretations and, ideally, history. We think

the ability to run an algorithm and share the history of that run with other researchers

would be a valuable feature.

5.2.3 Expansion of the ASL recognition algorithm implementation

Our implementation of the ASL recognition algorithm has several areas

where improvement can be made:

• The accuracy of the algorithm could be improved. It is possible there are still

bugs in the code that have not been found as well as the possibilities that the

open questions in Section 4.3 hold the answers to improved correctness.

• This algorithm was implemented with no regard for speed. Data is copied

regularly and unnecessarily. This was done in the spirit of making the code

complete, then correct, then optimized, but the optimized stage was never

reached. There is a lot of work here.

• Our inexperience with the computer vision domain may mean there are still

valuable investigations to be made into the level building dynamic program-

ming portion of the ASL recognition algorithm. It may be worth while to

have a researcher with more computer vision knowledge take a look at the

steps involved and the data available.
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Algorithm stage
History Hand Detection Dynamic Programming Supports/Refutes
Creation Easier Harder Undetermined
Communication Easier Easier yes
Storage Easier Easier yes
Examination Easier Easier yes
Traversal Easier Easier yes

Table 5.3: Hypothesis evaluation criteria for each algorithm stage. Only Creation
of history for the Dynamic Programming was not easier.

5.3 Summary

RSL history is extremely useful and informative for the hand detection por-

tion of the ASL recognition algorithm. We were able to compare the success of each

step of the algorithm using information that would have been prohibitively difficult

to obtain using traditional logging methods. RSL history is less useful for the dy-

namic programming, and we think some examination of the types of algorithms for

which RSL is applicable would be valuable. Table 5.3 summarizes the criteria we

tested and the results. It is important to note again that, while we approached this

work carefully, with clear criteria, the evaluation of a language is not a quantitative

process, and other researchers may look at this and come to different conclusions.

While the results of the dynamic programming algorithm were not what we

expected, the exercise provided insight into how RSL programs perform and offered

opportunities to improve the language performance and understand how to create

data structures using interpretations. For example, recursive grouping functions

were developed while reporting on this algorithm. We find these results encour-
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aging, and believe that applying RSL to more problems in the pattern recognition

domain will allow further refinement of the language.
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Appendix A

RSL Implementation Languages

A.1 Use of Standard ML

The RSL compiler uses TXL [4] to create Standard ML (SML) [18] code

which executes the strategy. This SML is compiled using the MLton compiler [19,

25]. There are several advantages to using SML as an implementation language.

The syntax of ML is terse and expressive and well suited to the math-intensive

nature of pattern recognition. Equation A.1 [22] describes the dynamic program

used in the ASL recognition algorithm to select the best match for a series of frames,

signs, and hand candidates.

Cost(i, j, k) = d(Si
m, gk(j)) + min


min

r,m(gk(j),gr(j−1))≤T0
Cost(i, j − 1, r)

min
r,m(gk(j),gr(j−1))≤T0

Cost(i− 1, j − 1, r)

Cost(i− 1, j, k)
(A.1)

The SML implementation of Figure A.1 in Listing A.1 closely follows, al-

most line-for-line, the mathematical expressions describing the dynamic program.

Contrast this with the C++ implementation in Listing A.2. C++ provides a few

functions in the standard library that allow application of certain kinds of functions

to elements in a collection. However, it required non-standard libraries to adapt the
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Listing A.1: ML implementation of Figure A.1

fun min vals = List.foldl Real.min Real.maxFinite vals

fun cost(i,j,k) =
let

val d = distance(i,j,k)
val allHands = handCandidates(j, j - 1)
val m1 = min (map (fn r => cost(i, j - 1, r)) allHands)
val m2 = min (map (fn r => cost(i - 1, j - 1, r)) allHands)
val m3 = cost(i - 1, j, k)

in
d + (min [m1, m2, m3])

end

cost(i,j,k) function as needed, and target containers for the std::transform(...)

call had to be manually allocated. It would be possible to implement the cost func-

tion in C++ using a more imperative style (e.g., using for loops), but this would

take the implementation further from the style of the definition in Figure A.1. The

base case of this recursive algorithm is not implemented in these listings in order

to compare their similarity to the definition. However, ML stands out in the base

case comparison as well because pattern matching in SML would allow the base

case to be added without modifying the existing definition. The C++ implemen-

tation would require the use of conditional statements and deeper nesting of the

algorithm.

SML’s strong static typing and extensible type system allowed the imple-

mentation to use data structures that match those described in the algorithm defi-

nition. Pattern matching provided a powerful tool for taking those data structures

apart in a type-safe way and ensured the various operations were performed on the
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Listing A.2: C++ implementation of Figure A.1

#include <vector>
#include <algorithm>
#include <limits>
#include <boost/bind.hpp>

double min( const std::vector<double> &costs ) {
if( costs.empty() )

return std::numeric_limits<double>::max();
return *( std::min_element( costs.begin(), costs.end() ) );

}

double cost( int i, int j, int k ) {
double d = distance( i, j, k );
std::vector<int> allHands = handCandidates( j, j - 1 );
std::vector<double> m1costs;
std::transform( allHands.begin(), allHands.end(),

std::back_inserter( m1costs ),
boost::bind( cost, i, j - 1, _1 ) );

double m1 = min( m1costs );
std::vector<double> m2costs;
std::transform( allHands.begin(), allHands.end(),

std::back_inserter( m2costs ),
boost::bind( cost, i - 1, j - 1, _1 ) );

double m2 = min( m2costs );
double m3 = cost( i - 1, j, k );
double allCosts[3] = { m1, m2, m3 };
return d + *(std::min_element( allCosts, allCosts + 3 ));

}

correct data. The usefulness of the SML type system was readily apparent dur-

ing this work when contrasted with the C/C++ language functions used from the

OpenCV [3] library. OpenCV operations usually accept a matrix structure (Mat)

that contains a type code indicating the type of data stored in the matrix. This type

code is checked at runtime and causes program failure when the wrong matrix type

is provided to a function. In Listing A.3, the function getEdges(...) accepts
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an OpenCV matrix type for edge detection and possible dilation. The OpenCV

function used for edge detection, cv::Canny(...), demands an 8-bit, single

channel (gray scale) image. However, the cv::Mat type is used to represent all

image types in OpenCV, and the type of an instance is determined by reading an

integer type code at runtime. OpenCV’s runtime type-checking model required fre-

quent testing of the C/C++ code to verify that the correct data type was being passed

to the functions. On the other hand, SML functions never needed testing to verify

that the correct data-type was provided because this was checked at compile time.

If the code compiled, the function had been given the correct data type.

Listing A.3: C++ edge detection helper functions

cv::Mat getEdges( cv::Mat toEdge ) {
cv::Mat edges = cv::Mat::zeros( toEdge.size(),

toEdge.type() );
cv::Canny( toEdge, edges, 200, 255 );
return edges;

}

This did not eliminate the need for testing, but it did eliminate a common

source of bugs. This research highlighted that type errors are especially common

when using an unfamiliar library where misunderstandings are easy or documenta-

tion is not complete, and when passing data between languages with slightly differ-

ent type representations. Early detection of these errors made use of SML a boon

to this research and, likely, to RSL in general.
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A.2 Calling C from SML

Several libraries used in this research were written in C or C++, and, as a

result, so was much of the implementation. However, since RSL is compiled to

SML [18], which is then compiled by the MLton compiler [19, 25], the implemen-

tation is driven by SML code. This required passing data and commands from ML

to C/C++ via MLton’s foreign function interface (FFI). MLton’s web site describes

the FFI in detail.

MLton provides a C header file defining the types that can be passed to C

functions. These include the basic numeric types of various sizes such as sixteen

bit integers or sixty-four bit floating point values. Additionally, MLton provides

a Pointer type that allows arrays or vectors to be provided to the C functions.

When passing any array from ML to C, the size must be included somehow. This

can be done as a separate parameter to the function, by adding the length to the

beginning of the array if the types are compatible, or by including some terminating

value at the end of the array. This rule applies to strings as well as arrays since

MLton’s strings are not null terminated.

Listing A.4 shows C++ code to make two functions available to ML. Both

showImageC and saveImageC take a vector of image data and a width and

height that can be used by the C++ code to calculate the vector size. Since all types

of array are passed from ML to C++ as the Pointer type, it is necessary to cast

to the correct data type in the C++ code. In Listing A.4, this is made possible by a

type code that the ML code in Listing A.5 can use to indicate if integers, characters,

or reals are being passed in the vector. In addition to the image data, saveImageC
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takes a filename parameter and a length that allows a string.

Listing A.4: C++ code to show or save an image

#include "export.h"
#include "ml-types.h"

extern "C" {
void showImageC( Pointer img, int width, int height, int

type );
void saveImageC( Pointer img, int width, int height, int

type, char *fname, int fnameLen);
}

Listing A.5: ML code to import and call C++

val showImage = _import "showImageC" : char vector * int * int

* int -> unit;
val saveImage = _import "saveImageC" : char vector * int * int

* int * char vector * int -> unit;

showImage( imageVector, width, height, dataTypeCode );
saveImage( imageVector, width, height, dataTypeCode, fileName,

(size fileName))

It is through the Pointer type that information is passed back to ML from

C code. ML must provide to the C function a reference to the allocated storage for

the data. This storage can be a single value, such as an integer, or a collection, such

as an array of color values for an image. In Listing A.6, two functions are provided.

getFrameInfoC provides information about the data type of the image data and

the amount of data to be returned. The C++ code puts the width, height, and type

information into the ML allocated memory referenced by the Pointers. ML uses
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this information to allocate storage for the image data, as seen in Listing A.7, and

then getFrameC is used to pass the image data.

Listing A.6: C++ code to return an image to ML

#include "export.h"
#include "ml-types.h"

extern "C" {
void getFrameInfoC( Pointer width, Pointer height, Pointer

dtype );
void getFrameC( Pointer img );

}

#endif

MLton’s FFI allowed for transitions between C++ and ML. Representing

the interface to C++ code as C is a fairly common requirement whenever writing

C++ because so many available libraries are written in C.
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Listing A.7: ML code to retrieve an image from C++

val getFrameInfoC = _import "getFrameInfoC" : int ref * int ref

* int ref -> unit;
val getFrameC = _import "getFrameC" : char array -> unit;

fun getFrameInfo (): int * int * int * int =
let val width = ref 0

val height = ref 0
val dt = ref 0
val _ = getFrameInfoC( width, height, dt )

in (!width, !height, !dt) end;

fun getImage (): char vector * int * int * int =
let val (width, height, dt) = getFrameInfo()

val img : char array = Array.array(dt * width * height,
Char.chr( 0 ) )

val _ = getFrameC( i, t, img )
in (Array.vector( img ), width, height, dt) end;
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Appendix B

RSL source listings

This appendix contains the complete RSL source for all the RSL scripts

referred to in this document. Other listings were modified to highlight the code

relevant to the section.

Listing B.1: Hand detection script

inc "detect.mlb"
inc "hd-decision.sml"
inc "hd-interp.sml"

notes:
FrameDiffs : real vector
FrameId: int

interp:
srcDir : string
frameId : int
keyframe : bool
truehand : int vector
frame : char vector * int * int * int
gray : char vector * int * int * int
skin : char vector * int * int * int
handImage : char vector * int * int * int

fn fShowFrames() {
print "Displaying frames (press any key to advance)"
print all: sNumFramesMsg
write all observing frame to "/dev/null": sDisplayFrames

}

fn fShowDifferences() {
print "Displaying difference images (press any key to

advance)"
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print all: sNumFramesMsg
write all observing handImage to "/dev/null":

sDisplayDifferences
}

fn fShowUnique() {
(∗ I d e n t i f y un i qu e f r ame s and d i s c a r d , k e e p i n g c u r r e n t

i n t e r p . s e t ∗ )
duplicate

{
[ Unique ] update: uniqueDiffImage
print "Unique frames:"
print all: sNumFramesMsg

reject
}
{

accept
}

}

fn getHandContours() {

(∗ S e c t i o n 4 . 1 , s t e p 2 . a ∗ )
[DiffImage] update all handImage

observing keyframe, frameId, gray:
initialDiffImages

(∗ S e c t i o n 4 . 1 , s t e p 2 . b p a r t 1 ∗ )
[SkinmaskDiff] update handImage

observing frameId, skin: skinmaskDiffs

(∗ S e c t i o n 4 . 1 , s t e p s c and d ∗ )
[EdgeAndMask] update handImage

observing frameId: edgeAndMaskDiffs

(∗ S e c t i o n 4 . 1 , s t e p e ∗ )
[RemoveSmallComponents] update handImage

observing frameId:
removeSmallComponents

(∗ S e c t i o n 4 . 1 , s t e p f ∗ )
[BoundaryImage] update handImage

observing frameId: extractBoundary
}
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fn main(test, train, minMaxPixelComponentSize) {
t1 = valOf(Int.fromString(minMaxPixelComponentSize))
(∗
p r i n t ” I n p u t f i l e :”
p r i n t t e s t
p r i n t ”\nT1 :”
p r i n t minMaxPixe lComponentS i ze
p r i n t ”\n”
∗ )

(∗ Cr ea t e i n i t i a l i n t e r p r e t a t i o n , a t t a c h d i r e c t o r y f o r
f rame images ∗ )

munge: initInterp
update srcDir: loadDir( test, train )

[GetFrames] update frameId, frame, truehand:
getFramesImages(test)

(∗ p r i n t ” Loading images \n” ∗ )

(∗ Get t h e s k i n , g r a y s c a l e , and key f r ame s used by o t h e r
s t e p s ∗ )

[GetSkinMask] update skin observing frameId: skinMasks
[GetGrayScale] update gray observing frameId: grayScales
[FindKeyFrames] update all keyframe observing frameId:

keyframes(t1)
if observing keyframe bIsKeyFrame {

print "Keyframe count: "
print all: sNumFramesMsg

}

getHandContours()

}

hfn report() {
reject

(∗
d i f f A c c u r a c y (” D i f f I m a g e ”)
d i f f A c c u r a c y (” S k i n m a s k D i f f ”)
d i f f A c c u r a c y (” EdgeAndMask ”)
d i f f A c c u r a c y (” RemoveSmallComponents ”)
d i f f A c c u r a c y (” BoundaryImage ”)
∗ )
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(∗
hadd [” D i f f I m a g e ”]
p r i n t ”\n\ n S t e p 2a\n”
p r i n t : s P r i n t C e n t e r A c c u r a c y
r e j e c t

hadd [” S k i n m a s k D i f f ”]
p r i n t ”\n\ n S t e p 2b\n”
p r i n t : s P r i n t C e n t e r A c c u r a c y
r e j e c t

hadd [” EdgeAndMask ”]
p r i n t ”\n\ n S t e p 2 c and 2d\n”
p r i n t : s P r i n t C e n t e r A c c u r a c y
r e j e c t

hadd [” RemoveSmallComponents ”]
p r i n t ”\n\ n S t e p 2 e\n”
p r i n t : s P r i n t C e n t e r A c c u r a c y
r e j e c t

hadd [” BoundaryImage ”]
p r i n t ”\n\ n S t e p 2 f \n”
p r i n t : s P r i n t C e n t e r A c c u r a c y
r e j e c t
∗ )

hadd ["FindKeyFrames"]
hprint all: sHprintDiffs
reject

}

Listing B.2: Scoring script

inc "aslalg.mlb"
inc "aslalg.sml"
inc "storeScores-interp.sml"
inc "levelbuilding-external.sml"

(∗
The i n t e r p r e t a t i o n i s an i n t e r v a l ( s t a r t f rame t o end frame )

f o r a word
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w i t h t h e d i s t a n c e f o r t h a t word and t h e s c o r e o f a
p r e d e c e s s o r . The

t o t a l d i s t a n c e o f t h e s e n t e n c e i s p r e d e c e s s o r d i s t a n c e +
i n t e r v a l d i s t a n c e

∗ )
interp:

testFrames: int vector
level : int
word : int
score : real
interval : int * int
prevs : int list * real

(∗ R e j e c t any s e q u e n c e s t h a t are i l l e g a l ∗ )
fn makeLevel( itemMap ) {

[NextLevel] munge: levelUpMunge(itemMap)
[InternalLevelCheck] if all observing level atMax {

print "Scoring "
print all observing level: len
[ScoreLevel] update score observing interval, word:

scoreLevel(0.0, itemMap)
}

}

fn finish( destFile ) {
print all: dumpScores(destFile)

}

fn levelAndScore( itemMap ) {
print all observing level: prlevel
print all observing level: len
[OnlyHighestLevel] if all observing level atMax {

makeLevel( itemMap )
}

}

fn main ( testDir ) {
test = testDir
train = "/home/secret/USF-ASL-Data-Set-v2"
t1 = 300
(∗ML∗ )

val _ = aslalgLoad t1 train test
val itemMap = itemIndexMap()
val dumpFile = (testDir ˆ "/allMahalanobisScore." ˆ ".

scores")
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(∗ML∗ )

[Init] munge: init
[LoadVideo] update testFrames: getIds
print "Trained and loaded\n"

[LevelZero] update level, word, interval, score, prevs
observing testFrames: levelZero(itemMap)

print "Level zero intervals created\n"

levelAndScore( itemMap )
print "Done scoring\n"

finish( dumpFile )

(∗
[ S i g n I n t e r v a l s ] i f a l l o b s e r v i n g i n t e r v a l

t r u t h I n t e r v a l {
a c c e p t

}
e l s e {

r e j e c t
}

[ MadeTheCut ] a c c e p t
∗ )

}

hfn report( testDir ) {
(∗ML∗ )

val itemMap = itemIndexMap()
(∗ML∗ )
(∗
r e j e c t

p r i n t ” H i s t o r y \n”

hadd [” MadeTheCut ”]
w r i t e o b s e r v i n g word , i n t e r v a l , s c o r e t o o u t F i l e :

w r i t e I n t e r p ( itemMap , t e s t D i r )
∗ )

}

Listing B.3: Level building dynamic programming script
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inc "aslalg.mlb"
inc "aslalg.sml"
inc "levelbuilding-external.sml"
inc "lb-report.sml"

(∗
The i n t e r p r e t a t i o n i s an i n t e r v a l ( s t a r t f rame t o end frame )

f o r a word
w i t h t h e d i s t a n c e f o r t h a t word and t h e s c o r e o f a

p r e d e c e s s o r . The
t o t a l d i s t a n c e o f t h e s e n t e n c e i s p r e d e c e s s o r d i s t a n c e +

i n t e r v a l d i s t a n c e
∗ )
interp:

testFrames: int vector
level : int
word : int
score : real
interval : int * int
prevs : (int * int * int) list * real

fn makeLevel(alpha, itemMap, grammar) {
[NextLevel] munge: levelUpMunge(itemMap)
print all observing level: prlevelAt( "NextLevel" )
(∗ LevelUp j u s t c r e a t e d a s e t o f i n t e r p s a t new h i g h e s t

l e v e l , so
o n l y l o o k a t t h o s e ∗ )

[InternalLevelCheck] if all observing level atMax {
[ScoreLevel] update score observing interval, word:

scoreLevel(alpha, itemMap)
print all observing level: prlevelAt( "ScoreLevel" )

}

[GetPrevs] update all prevs
observing score, interval, level, word:

updatePrevs( itemMap, grammar)
print all observing level: prlevelAt( "GetPrevs" )

[LevelCheckForTrim] if all observing level atMax {
[TrimToBest] if all observing word, score, interval,

prevs notBest {
print all observing level: prlevelAt( "ToTrim" )
reject

}
print all observing level: prlevelAt( "UnTrimmed" )
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}
}

fn finish(itemMap, grammar) {
[GetAtEnd] if observing interval, testFrames atEnd {

[AddEnd] update word, prevs, score, interval: addEnd(
itemMap)

}
else {

reject
}
[KillBadGrammar] if observing word, prevs badGrammar(

itemMap, grammar) {
reject

}
}

fn levelbuildingLoop( alpha, numLevels, itemMap, grammar ) {
[WhileLevel] while all observing level belowMaxLevel(

numLevels ) {
print all observing level: prlevel
[OnlyHighestLevel] if all observing level atMax {

makeLevel(alpha, itemMap, grammar)
(∗ makeLeve l ( ) made a new , h i g h e r l e v e l . Drop t h e

o l d one ∗ )
[DropOldLevels] if all observing level, interval,

testFrames
oldIncompleteLevel {

print all observing level: prlevelAt( "
DroppingOld" )

reject
}

}
[LevelEnd] accept

}
}

fn main ( alphaStr, levels, testDir ) {
test = testDir
train = "/home/secret/USF-ASL-Data-Set-v2"
t1 = 300
(∗ML∗ )

val alpha = valOf(Real.fromString alphaStr)
val numLevels = valOf(Int.fromString(levels))
val grammar = aslalgLoad t1 train test
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val itemMap = itemIndexMap()
val scoreFile = (testDir ˆ "/allMahalanobisScore." ˆ ".

scores")
val str = loadScores( scoreFile )
val _ = print str

(∗ML∗ )

[Init] munge: init
[LoadVideo] update testFrames: getIds
print "Trained and loaded\n"

[LevelZero] update level, word, interval, score, prevs
observing testFrames: levelZero(itemMap)

levelbuildingLoop( alpha, numLevels, itemMap, grammar )

print "Done leveling\n"

finish( itemMap, grammar )
[Finished] accept

print: i2s(itemMap)

[GetBest] if all observing score notBestScore {
reject

}

[OnlyBest] accept
print "The best interpretation:\n"
print: i2s(itemMap)

print "DONE DONE DONE\n"
}

hfn report ( alphaStr, levels, testDir ) {
test = testDir
train = "/home/secret/USF-ASL-Data-Set-v2"
t1 = 300
(∗ML∗ )

val alpha = valOf(Real.fromString alphaStr)
val numLevels = valOf(Int.fromString(levels))
val grammar = aslalgLoad t1 train test
val ifilename = testDir ˆ "/levelbuilding-" ˆ alphaStr

ˆ "-ifile"
(∗ML∗ )
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(∗ p r i n t : s P r i n t L e v e n s h t e i n D i s t a n c e ( itemMap , t e s t D i r ) ∗ )
reject
hadd ["LevelEnd"]
hadd ["Finished"]
write ifile to ifilename

}

Listing B.4: Script to combine interpretation files with truth

inc "itc-report.sml"

interp:
file: string
alpha : real
truth : (string * int * int) list
range : int * int
level : int
word : string
score : real
interval : int * int
prevs : (string * int * int) list * real

fn main( outfile ) {
(∗ ML ∗ )

val infile01 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-1.4-lipread-can-i/Full-Sentence/
s5c1lipreadcani/levelbuilding-0.16-ifile"

val infile02 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-1.4-lipread-can-i/Full-Sentence/
s5c1lipreadcani/levelbuilding-0.28-ifile"

val infile03 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-1.4-lipread-can-i/Full-Sentence/
s5c1lipreadcani/levelbuilding-0.30-ifile"

val infile04 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-2.4-lipread-cannot-i/Full-Sentence/
s5c2lipreadcannoti/levelbuilding-0.16-ifile"

val infile05 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-2.4-lipread-cannot-i/Full-Sentence/
s5c2lipreadcannoti/levelbuilding-0.28-ifile"

val infile06 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-2.4-lipread-cannot-i/Full-Sentence/
s5c2lipreadcannoti/levelbuilding-0.30-ifile"
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val infile07 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-3.4-i-understand-not/Full-Sentence/
s5c3youunderstand/levelbuilding-0.16-ifile"

val infile08 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-3.4-i-understand-not/Full-Sentence/
s5c3youunderstand/levelbuilding-0.28-ifile"

val infile09 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-3.4-i-understand-not/Full-Sentence/
s5c3youunderstand/levelbuilding-0.30-ifile"

val infile10 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-7.4-dontknow-i/Full-Sentence/s5c7idontknow/
levelbuilding-0.16-ifile"

val infile11 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-7.4-dontknow-i/Full-Sentence/s5c7idontknow/
levelbuilding-0.28-ifile"

val infile12 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-7.4-dontknow-i/Full-Sentence/s5c7idontknow/
levelbuilding-0.30-ifile"

val infile13 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-10.4-i-need-that-i/Full-Sentence/
s5c10ineedthatone/levelbuilding-0.16-ifile"

val infile14 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-10.4-i-need-that-i/Full-Sentence/
s5c10ineedthatone/levelbuilding-0.28-ifile"

val infile15 = "/mnt/raid/secret/USF-ASL-Data-Set-v2/
Sentence-10.4-i-need-that-i/Full-Sentence/
s5c10ineedthatone/levelbuilding-0.30-ifile"

(∗ ML ∗ )
add infile01
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile01)
}
add infile02
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile02)
}
add infile03
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile03)
}
add infile04
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile04)
}
add infile05
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if observing file nofile {
update alpha, file, truth, range: loadTruth(infile05)

}
add infile06
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile06)
}
add infile07
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile07)
}
add infile08
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile08)
}
add infile09
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile09)
}
add infile10
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile10)
}
add infile11
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile11)
}
add infile12
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile12)
}
add infile13
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile13)
}
add infile14
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile14)
}
add infile15
if observing file nofile {

update alpha, file, truth, range: loadTruth(infile15)
}
write ifile to outfile

}
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Listing B.5: Report generating script

inc "ir-interp.sml"
inc "ir-report.sml"

interp:
wordMap : (string * int) list
alpha : real
truth : (string * int * int) list
range : int * int
level : int
word : string
score : real
interval : int * int
prevs : (string * int * int) list * real
editDistance: int
editError: real

(∗−−−−−−−−−−−−−−−−−−−D i s p l a y Helpers
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ )

fn countAtAlpha( a ) {
if observing alpha atAlpha(a) {

print all: prForAlpha(a)
print all: prCount

}
}

fn threeCount() {
countAtAlpha( 0.16 )
countAtAlpha( 0.28 )
countAtAlpha( 0.30 )

}

fn statsAtAlpha( a ) {
if observing alpha atAlpha(a) {

print all: prForAlpha(a)
print "\n"
print all observing editError: prMinError
print all observing editError: prMaxError
print all observing editError: prAvgError

}
}
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fn threeStats() {
statsAtAlpha( 0.16 )
statsAtAlpha( 0.28 )
statsAtAlpha( 0.30 )

}

fn bests() {
if all observing score bestScore {

print "\tBest score\n"
print: interpToString
print "\n"

}
if all observing editError bestError {

print "\tBest edit distance\n"
print: interpToString
print "\n\n"

}
}

fn truthSoFarCount() {
if isTruthSoFar {

print "Truth so far "
print all: prCount

}
}
(∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ )

(∗−−−−−−−−−−−−−−−−−R e c u r s i v e g r o u p i n g f u n c t i o n s
−−−−−−−−−−−−−−−−−−−−−−−−∗ )

fn eachGroupStats( outfile ) {
if all observing truth, alpha, level isNextGroup {

(∗
p r i n t a l l o b s e r v i n g t r u t h , alpha , l e v e l : prOneGroup
p r i n t a l l : prCount
t r u t h S o F a r C o u n t ( )
b e s t s ( )
∗ )
write ++ all to outfile: prGroupReport

}
else {

eachGroupStats( outfile )
}

}

111



(∗
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
∗ )

fn writeReportLine( outfile ) {
write "Alpha\t Truth String\t Level\t Max Error\t Min Error

\t Avg Error\t NumTruth\t NumInterps\t pctTruth\t
Average Truth Error\t Average non-Truth Error\t
fullMatch\n" to outfile

}

fn main( interpfile ) {
(∗ ML ∗ )

oneSix = "cvsl_out/report-0.16-log"
twoEight = "cvsl_out/report-0.28-log"
threeOh = "cvsl_out/report-0.30-log"

(∗ ML ∗ )

add interpfile
update all wordMap observing truth, word, prevs:

makewordmap
update editDistance observing wordMap, truth, word, prevs,

range, interval : levenshteinDistance
[Error] update editError observing wordMap, truth, word,

prevs, range, interval: levenshteinError

(∗
i f o b s e r v i n g word atEnd {

i f i s T r u t h {
p r i n t ”\n\ nT ru th :\ n”
t h r e e C o u n t ( )
t h r e e S t a t s ( )
e a c h G r o u p S t a t s ( )

}
e l s e {

p r i n t ”\n\n\ n F a i l e d :\ n”
t h r e e C o u n t ( )
t h r e e S t a t s ( )
e a c h G r o u p S t a t s ( )

}
}
∗ )

if observing alpha atAlpha( 0.16 ) {
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writeReportLine( oneSix )
eachGroupStats( oneSix )

}
if observing alpha atAlpha( 0.28 ) {

writeReportLine( twoEight )
eachGroupStats( twoEight )

}
if observing alpha atAlpha( 0.30 ) {

writeReportLine( threeOh )
eachGroupStats( threeOh )

}

}
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