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ABSTRACT

This paper presents an unified recognition and retrieval system for isolated offline printed mathematical symbols
for the first time. The system is based on nearest neighbor scheme and uses modified Turning Function and
Grid Features to calculate the distance between two symbols based on Sum of Squared Difference. An unwrap
process and an alignment process are applied to modify Turning Function to deal with the horizontal and vertical
shift caused by the changing of staring point and rotation. This modified Turning Function make our system
robust against rotation of the symbol image. The system obtains top-1 recognition rate of 96.90% and 47.27%
Area Under Curve (AUC) of precision/recall plot on the InftyCDB-3 dataset. Experiment result shows that
the system with modified Turning Function performs significantly better than the system with original Turning
Function on the rotated InftyCDB-3 dataset.
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1. INTRODUCTION

Recognition of math expression can be used in a variety of contexts.1,2 For example, it can help convert math
formulas in scientific paper document into their corresponding electronic forms. Recognition of math expression
consist of two parts: symbol recognition and structural analysis. Many structural analysis methods assume
the symbol class is known and correct before the parsing, making symbol recognition is the basis of structural
analysis. Optical character recognition (OCR) for math symbols is difficult1 because: (1) the number of different
symbol classes is large; (2) in the same math expression, math symbols can have different fonts, such as regular,
roman, italic, bold and calligraphic; (3) math symbols can have different sizes in the same expression.

Content-Based Image Retrieval (CBIR)3,4 aims to locate images that are perceptually similar to the query-
based on visual content of the images in large databases without the help of annotations. Compared to search
engines based on text, CBIR is desirable when people’s information need is better expressed by images than by
words. Specifically, CBIR is preferred when people are looking for a specific object/scene or a narrow category
of objects/scenes that the instances belonging to this category are similar by appearance. The ’content’ in CBIR
refers to shape, color, texture or any other information which could be extracted from the image.5 This content
can be used as features for retrieval.3,4 The features used in math symbol retrieval also can be applied to the
offline math symbol recognition.

Image-based math symbol retrieval tries to locate symbols that are most visually similar to a query symbol.
It can be used to locate math symbols in document image corpora using CBIR. We can use an incremental
search or consult the index of the text to find a term. But this cannot be easily done for math symbol because
many math symbols are hard to be typed in. It is difficult to construct a text query for math symbol, as people
have to remember the name of the math symbol to use the text search. It would be very desirable that people
can locate or search an specific mathematical symbol in a large set of documents based on its appearance, and
also complete math expression.6 In recent years, work in mathematical information retrieval has begun, with an
emphasis on search within digital libraries for mathematics.1
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In this paper, we present an unified framework for math symbol recognition and retrieval for the first time
based on nearest neighbor analysis. Modified Turning Function (TF) and Grid Features are used to calculate the
distance between two symbols based on Sum of Square Distance (SSD). Turning Function7 is the tangent angle
as a function of arclength measured counterclockwise from the starting point. Grid feature is the feature vector
of the percentage of black pixels in each cell after we divide each binary symbol image into 5 by 5 rectangular
grids. We apply an unwrap process and an alignment to modify Turning Function to make it robust against
rotation and changing of starting point. Our system is simple but effective. Compared to existing methods, our
system achieves competitive recognition rate and better retrieval performance. The limitation of our system is
that it is slow due to the nearest neighbor scheme and large candidate library.

2. RELATED WORK

2.1 OCR for Typeset Math Symbols

A number of approaches have been proposed for offline math symbol recognition in the past two decades. Table
1 shows the summary of these methods.

Table 1: Existing Methods for Classification of Typeset Math Symbols

Paper Classifier Feature Dataset (Best)

Recognition
rate

Fateman et al.8 nearest neighbor Grid Features, aspect ratio
and absolute height

(unavailable) (unpublished)

Alvaro et al.9 nearest neighbor Euclidean distance between
pixel

InftyCDB-110 94.24%

Suzuki et al.11 cascading classifier aspect ratio, crossing fea-
tures, directions features,
peripheral features and Grid
Features

about 500 pages
of math docu-
ments

95.18%

InftyCDB-3 96.10%

Malon et al.12 cascading classifier11

+ binary SVM
directions histogram of con-
tour and bitmap-like feature

InftyCDB-3 97.70%

Garain et al.13 combination of 4
classifiers

stroke features, Grid Fea-
tures and crossing features

Garain’s corpus17 93.77%

Alvaro et al.14 •HMM Grid Features InftyCDB-110 92.7%

•nearest neighbor distance between pixel 96.7%
•weighted nearest
neighbor

distance between pixel 97.2%

•multi-class SVM (unpublished) 97.4%

Many methods are based on nearest neighbor classification. For offline character recognition, algorithms
based on nearest neighbor scheme can get high accuracy but is slow.18 Fateman et al.8 proposed a classifier
based on nearest neighbor classification in a space of 27 features. For each symbol, its bounding box is divided
a 5 by 5 rectangular grid and the percentage of black pixels in each cell will be extracted as a feature. The
other two features are aspect ratio and the absolute height in pixels of the bounding box. Euclidean distance is
calculated as the dissimilarity between two symbols. For Alvaro et al.,9 each bounding box was normalized to
a fixed size and the Euclidean distance between two images is calculated based on the difference of each pixel.
This method obtained a 94.24% symbol recognition rate in InftyCDB-1 database.10

Many have used Cascading classifiers. Suzuki et al.11 employ a three-step coarse-to-fine cascade. The first
classifier uses aspect ratio and crossing features. Crossing features are the number of horizontal and vertical
switches from black to white or from white to black when we scan through the rows and columns of a math
symbol image. Secondly, five candidates will be selected based on a histogram of 36-dimensional directional



features. The directional features specify the direction of the line between two consecutive points on the contour.
At the last step, three distances based on three sets of features, the above 36-dimensional directional features,
64-dimensional peripheral features and 64-dimensional Grid Features, will be calculated and used for ranking
the five candidates. We believe that the peripheral features are the peripheral shape information extracted from
along the contour of the symbol. This cascading classifier achieved 95.18% symbol recognition rate on their
own dataset. In order to improve the symbol recognition accuracy, Malon et al.12 adds binary support vector
machines (SVM) classifier to the pure Infty engine11 to distinguish symbols with similar appearance. Based on
the confusion matrix produced by the pure Infty engine, a confusion cluster is formed for each symbol class.
Assuming each row is the recognition result and each column is the ground truth in the confusion matrix, the
set of nonzero entries on each row represents a confusion cluster. The confusing pairs are used to train binary
SVM classifiers. Two sets of features: directional histogram of contour (different grid size for different symbol)
and bitmap-like feature are used in this classifier. It seems that the bitmap-like feature takes into account each
pixel pair’s difference and is the same as the feature used by Alvaro et al.9 This paper uses InftyCDB-3-A for
training, and InftyCDB-3-B for testing. Without SVM, the pure Infty engine11 gets 96.10% accuracy on this
testing data set. Using SVM, the recognition rates rises to 97.70%.

Garain et al.13 proposed a two-level system with four different classifiers. Classifier 1 is used at the first level
and employs stroke-based classification technique to recognize frequent characters with simple shapes. It can
recognize 83 symbols by looking for the presence of certain strokes. The second level combines three classifiers to
recognize the symbols which cannot be recognized by the first level. Classifier 2 uses run-number based feature
vectors. The run-number feature vectors are the number of row-wise and column-wise white-to-black transitions
and they are similar to the crossing features. Classifier 3 is a nearest neighbor classifier. Its features are the
same as the ones used by Fateman et al.8 Classifier 4 uses Daubechies wavelet transform. Three combination
techniques, highest rank, Borda count and logistic regression, have been used to combine those three classifiers
to achieve high recognition accuracy. There are 2459 expressions in their own dataset17 which is extracted from
different branches of science. The recognition rates for the combination by the highest rank method,, Borda
count and logistic regression are 93.26%, 92.03% and 93.77%. The combination of Borda count performs the
worst because it does not consider the individual classifiers’ different abilities.

Alvaro et al.14 presented another offline math symbol recognition method based on Hidden Markov Models
(HMM). The image is divided into 25 cells. For each cell, three features, normalized grey level, horizontal
gray-level derivative and vertical grey-level derivative, are extracted. The feature extraction is the same as
Espana-Boquera et. al.19 Columns of cells are processed from left to right and a feature vector is built for each
column by connecting the features computed in its cells. They compared four techniques, k-Nearest-Neighbor (k-
NN), SVN, weighted nearest neighbor (WNN) and HMM. k-NN uses the Euclidean distance between two images
taking into account the difference between each pixel. SVM is the multi-class SVM. The WNN technique is an
improvement of the classical 1-NN. By using the 1-NN rule with a training set, a discriminative technique is used
to learn a weighted distance. Both the prototypes and the features were weighted for each class. Experiments
are carried out on InftyCDB-1 data set. The best recognition rates for 1NN, WNN, SVM and HMM are 96.7%,
97.2%, 97.4% and 92.7% correspondingly.

We can find the nearest neighbor classifier and Cascading classifier are commonly used for the classification
of typeset math symbols. Because typeset symbols have small variation, the Euclidean distance between two
symbols in the feature space can show the difference between them (symbols from the same symbol class will
have very small distances while symbols from different symbol classes will have large differences). The number
of symbol class is usually large. While single classifier is not sufficient to distinguish all the symbols at one time,
cascading classifiers are used to speed up the classification and improve the recognition rate.

Grid features, crossing features and directional features are three sets of effective features for nearest neighbor
classifier. They are good at describing the shape of the symbol but cannot capture the difference between two
symbols if they are only different at a very small part.

2.2 Image-Based Math Symbol Retrieval

Math symbol retrieval can be done in two ways: (1) the symbol is recognized by OCR system and retrieval is
done subsequently based on the symbol class label; (2) the retrieval is based on symbol image. Content-based



math symbol image retrieval is a fairly new area of research and it can allow people to search a math symbol just
using the image of itself. Marinai et al.15 proposed an image-based math symbol retrieval method. They use Self
Organizing Map (SOM) to cluster Shape Contexts (SC) extracted from each symbol into 30 classes. The feature
vector is established based on the SC clusters by using ’bag-of-visual-words’ model. Modified Angle Distance is
used to calculate the difference between two feature vectors. Marinai et al.16 use Earth Mover Distance (EMD)
to achieve better accuracy. INFTYCDB-3 is used as dataset for experiment in.15,16 22,923 symbols are used for
SOM clustering. They select 392 symbols randomly as the queries for retrieval from 259, 357 symbols. The best
Area Under Curve (AUC) achieved in the system16 is 33.13%.

3. INFTY DATASET

InftyCDB-110 is a ground-truthed math character and symbol image database. It contains 467 pages of 30 pure
math articles in English. For each character, the ground truth, such as type, font, quality, link and so on, is
attached manually. All the characters belong to words or formula in the database. InftyCDB-2 has the same
structure as InftyCDB-1 and is a continuation of InftyCDB-1. InftyCDB-2 not only contains English articles but
also French articles and German articles. InftyCDB-3 contains the alphanumeric characters and math symbols,
but not word and math expression structure which are contained by InftyCDB-1. InftyCDB-3 is divided into two
parts: InftyCDB-3-A and InftyCDB-3-B, and it is used as dataset for math symbol recognition12 and retrieval
evaluation.16,20

InftyCDB-3-A contains 188,752 symbols scanned in 400 dpi resolution while InftyCDB-3-B contains 70,637
symbols scanned in 600 dpi. InftyCDB-3-A contains 384 symbol classes while InftyCDB-3-B contains 275 classes;
they share 266 classes. There are totally 393 symbol classes in InftyCDB-3-A and InftyCDB-3-B. Some classes
only exist in one of the two datasets. There are four types of English fonts (Roman, Italic, Calligraphic and
Blackboard Bold) and two types of numeric symbols (Roman and Italic). The number of classes is reduced to
279 in InftyCDB-3 if we ignore the fonts of English characters and numeric symbols. Table 2 gives the detailed
analysis of InftyCDB-3.

For symbol recognition, just like,12 we use InftyCDB-3-A for training and InftyCDB-3-B for testing. For
symbol retrieval, we will use the whole InftyCDB-3 as the candidate library. There are 393 queries, one for each
symbol class. Marinai et al.16,20 also use the whole InftyCDB-3 as the candidate library, but only 392 queries.
We are uncertain which symbol class was omitted.

Table 2: Symbol classes and instance numbers of InftyCDB-3. ”Fonts Ignored” means English character and
numeric symbol with different fonts are considered as belonging to the same class. ”Distinct Class” means the
symbol class which is in either InftyCDB-3-A or InftyCDB-3-B

InftyCDB-3-A InftyCDB-3-B Total
Class (Fonts Ignored) 384 (270) 275 (190) 393 (279)
Instances 188,752 70,637 259,389
Distinct Class 118 9 127
Distinct Class Instances 8,318 31 8,349
Common Class Instances 180,434 70,606 251,040

4. SYMBOL RECOGNITION AND RETRIEVAL METRICS

Metrics used for recognition and retrieval are different but are similar in some aspects.

Recognition rate is usually used as the metric for symbol recognition. Recognition rate is defined as the
percentage of correctly recognized symbols among total testing samples. Top-1 recognition rate is most often
used. Many systems use Top-N or N-best (N >1) recognition rate. These systems provide N candidates for a
given testing sample and the recognition is correct if the N candidates contain the target class. Combined with
top-1 recognition rate, top-N recognition rate can give a precise measurement for the classifier, especially the
cascading classifier. In cascading classifier, the result produced by the current level classifier will be the input



for the next level classifier. Therefore, the top-N (N usually is 5, 10 and so on) recognition rate achieved by the
current classifier is the best recognition rate the next classifier can achieve assuming the next classifier works on
the filtered results produced by the current classifier.

For retrieval, Precision and Recall are used.3 Precision is the fraction of retrieved instances that are relevant
and Recall is the fraction of relevant instances that are retrieved.21 Relevant instances can include inexact items.
Final evaluation often requires that people provide relevance feedback by indicating whether returned results
are relevant or irrelevant.1 Top-1 Precision is defined as the percentage of the first retrieved result which is
relevant and is highly related to the recognition rate produced by 1-Nearest Neighbor classifier. Top-N Precision
is defined as the percentage of the first N retrieved results which are relevant and is related to Top-N recognition
rate.

To measure the performance comprehensively, F-measure or F-score (the harmonic mean of Precision and
Recall) is used.4 F = 2PR

P+R , where F is F-score, P is Precision and R is Recall. Getting higher F-measure requires
reducing false positive and false negative simultaneously.

AUC of Precision and Recall is another important metric of retrieval. The Precision is plotted as a function
of Recall. The value range for Recall is [0, 1]. Interpolation is always used to plot the Precision-Recall curve.21

The area under the curve is computed by integral as the AUC. The larger the AUC is, the better performance
the system achieves. The metric, Receiver Operating Characteristic (ROC), is similar to AUC. ROC curve is
created by plotting the true positive rate against false positive rate. For retrieval, ROC can measure the system’s
ability to select the relevant instances as top candidates.

Another important measurement is Mean Average Precision (MAP). For a set of queries, MAP is the mean
of the average precision scores for each query. The average precision scores are the average of the top-1, top-2,
..., top-N precisions. MAP is inherently biased toward early returns. The earlier the relevant symbol is retrieved,
the higher value MAP will be.

5. METHODOLOGY

5.1 Turning Functions

Arkin et al.7 proposed a metric based on Turning Function (TF) to compare polygonal shapes. Assuming
ΘA(s) represents the Turning Function of polygon A, ΘA(s) is a function of the arclength s and measures the
counterclockwise tangent angle measured from the starting point O on A’s boundary.7 The main idea of Turning
Function is to transform a 2-D shape into a 1-D vector for comparing while preserve its shape information. Many
systems in medical imaging22,23 or CBIR24,25 show that Turning Function is good at distinguish simple polygonal
shapes. Our feature is also based on Turning Function and can distinguish the outer contours of math symbols
very well. We use Turning Function for math symbol recognition and retrieval.

5.2 Preprocessing

Contour Extraction: Getting Turning Function just needs the contour of each symbol. The image of each
symbol is binarized and boundary of the symbol is defined. We keep all the pixels along the contour counterclock-
wise but discard all other pixels. The starting point determines the order of Turning Function. It is important
to choose the starting point in the same way for all the symbols. We choose the pixel at the top of the leftmost
column on the contour as the starting point. This selection will be sensitive to rotation or noise. We will use an
alignment method to resolve the issue.

For symbols consist of more than one CCs, we extract the boundaries of each CC and concatenate their
contours. The CC contours are queued by CCs’ centroid positions from top to bottom and left to right, then
concatenated. This method will introduce error when test images have large rotational angles which is very rare.

Smoothing: Extracted contour above is not smooth. In order to reduce noise, we use a sliding window with
size five for smoothing. For each pixel, its coordinates after the smoothing are the average of the coordinates of
five pixels (the current one and its four neighbors).

Resampling: Arkin et al.7 used the original vertices of polygon boundary to calculate the Turning Function.
To deal with noise and ambiguous corners better, we resample 30 equally spaced points for each symbol’s



boundary, which is often used in handwritten math symbol recognition.26 This also makes comparing the
Turning Functions of two polygon boundaries easier.

5.3 Calculating Turning Function

In order to get the Turning Function, we compute the 1st order differences (δx and δy) of the coordinates of the
pixels along the symbol’s contour at first, and then the Turning Function can be computed as:

Θ(s) = arctan( δy(s)δx(s) ).

We use four-quadrant arctan to compute Θ(s), and signs of δx and δy are used to determine the quadrant.
Therefore, the value range of Θ(s) is [−π, π] (as shown in Figure 1) while the value range of regular arctan is
[−π/2, π/2]. The current Turning Functions have the same length (30 points for each symbol) and their value
range is [−π, π]. There are two problems with the current Turning Functions: (1) [−π, π] is not enough to contain
all the turn function value; (2) there is no alignment to deal with rotation and changing of starting point.

(a) Turning function of test sample (b) Turning function of train sample

Figure 1: Turning functions of test sample (Test TF) and train sample (Train TF)

Unwrap: We use a unwrap process to deal with the value range insufficiency. For a convex polygon A,
ΘA(s) is monotone increasing.7 The value range of ΘA(s) is [v, v+ 2π] where v is the Turning Function value at
the starting point O. The value of ΘA(s) can be arbitrarily large for a non-convex polygon. As we mentioned
above, tangent angle’s value range is restricted to [−π, π] by the method we used. Angle value jump will take
place while the absolute value of ΘA(s) is larger than π. For example, while previous point have an angle of 0.9π
and current point have an angle of 1.1π, the increment should be 0.2π. But current point is forced to be −0.9π
because of the value range, meanwhile increment becomes −1.8π. To deal with this problem, unwrap method is
introduced. Unwrap method is well-known in signal processing while dealing with phase angles. The difference
between current point and previous point is computed, if the absolute value of jump is greater than π, then the
current point value will add or subtract 2π to achieve the smallest value jump. After unwrap process, there is
no limit for the Turning Function’s value range. Figure 2 shows an example of unwrapped testing and training
Turning Function (TF).

Alignment: We propose an alignment to deal with rotation and changing of starting point. Turning function
is invariant under translation and scaling but dependent to the rotation and changing of starting point. Rotation
of A counterclockwise by θ causes a vertical shift of ΘA(s) and the new Turning Function is ΘA(s) + θ (as
shown in Figure 3 (a)). Changing the location of staring point O along the perimeter of A by an amount t
results in a horizontal shift of ΘA(s) and the new Turning Function is ΘA(s+ t) (as shown in Figure 3 (b)). In
practice, Turning Function usually has the horizontal and vertical shift simultaneously because of the rotation
and difference of starting point. For two Turning Functions, we propose a method to find their smallest distance
by searching horizontally and vertically. The time complexity of the searching method is O(m2), where m is
the length of Turning Function (30 in our system). Firstly, we concatenate two copies of one Turning Function
(Turning Function of test symbol in our system) to form a new function with double length. We call it duplicated
Turning Function, as shown in Figure 4. Then unwrap process is performed upon both the duplicated Turning
Function and the other Turning Function (Turning Function of training sample). Secondly, we will extract 30



(a) Unwrapped Test TF (b) Unwrapped Train TF

Figure 2: Unwrapped Test TF and Train TF

Turning Functions whose length is 30 by sliding along the horizontal axis of the duplicated Turning Function.
These 30 Turning Functions represent all the possible Turning Functions with different starting point. Computing
the Sum of Square Distance between each of the 30 Turning Functions and the Turning Function of training
sample could solve the horizontal shift problem caused by the changing of the starting point. Thirdly, before
calculating the distance between two Turning Functions, each of the two Turning Functions will be substracted
by the average angle in each Turning Function and this could mitigate the vertical shift caused by rotation.
Figure 5 shows an example of matching Unwrapped Train TF and duplicated Unwrapped Test TF.

(a) Vertical shift (b) Horizontal shift

Figure 3: Vertical and horizontal shifts in Turning Function (TF)

(a) Duplicated Test TF (b) Unwrapped duplicated Test TF

Figure 4: Duplicated Test TF and unwrapped duplicated Test TF

The main disadvantage of Turning Function is that it discards the symbol’s internal shape information which
is useful for symbol recognition. Grid features perform very well for noise free dataset. We would like to use
Grid Features to capture these information discarded by Turning Function to improve recognition rate. Here
we compute using 5 × 5 grid cells. Then each of the five most similar cells are divided by finer 5 × 5 grid to
get more detailed comparison. It is like a quad-tree style segmentation of images, but 5× 5 grid is used instead
of 2 × 2. The distances between those smaller cells are weighted, so when combined they still get the same
weights as other big cells. By using this quad-tree style finer grid cells and catching detailed information in



Figure 5: An example of matching Unwrapped Train TF and duplicated Unwrapped Test TF (Getting the
minimum SSD between Unwrapped Train TF and Unwrapped Test TF)

similar regions, we would get a improved recognition rate. Grid features are very sensitive to rotation and noise.
Although Turning Function is also sensitive to the rotation. We can estimate the rotation angle by using Turning
Functions. By comparing the vertical displacement between the Turning Functions of test symbol and training
symbol, the rotational angle can be calculated directly. In our system, given the test symbol, we find 50 symbols
in the training set with smallest distance to the test symbol based on Turning Function. In this way, we can get
50 rotational angles at most. Then we rotate the image back to its original position by using these rotational
angles. At last, Grid Features are used to do the classification among the top-50 candidates produced by Turning
Function. Here we call this Turn Function Alignment and Grid Feature Distance (TFA-GVD) method.

6. MATHEMATICAL SYMBOL RECOGNITION EXPERIMENT

We use InftyCDB-3-A for training and InftyCDB-3-B for testing. The use of dataset is the same as Malon et.
al.12 1-Nearest Neighbor classifier is used based on Turning Function and Grid Features. For two symbols, SSD
is calculated as the distance between them using the two feature vectors. Top-1 recognition rate is chosen as the
metric. Figure 6 shows the comparison of recognition rates by using different features.

Figure 6: Comparison of recognition rates and robustness against rotation by using different features.

Dataset InftyCDB-3 is clean and noise free. First, we just use Grid Features. Table 3 shows that Grid
Features achieve 97.04% recognition rate using quad-tree style finer grid comparison as discussed before, which
is higher than using pure 5× 5 grid cells by nearly 1%.

The pure Infty engine11 gets 96.10% accuracy. Malon et al.12 adds binary support vector machines (SVM)
classifier to the pure Infty engine and gets 97.70% recognition rate.

Secondly, Turning Function is tested. We did experiments with and without unwrap and alignment to show
the necessity of these processes. Experiment result shows that Turning Function with unwrap and alignment
perform better than without. With unwrap and alignment, Turning Function’s recognition rate is still lower than



Table 3: Recognition Rate and runtime using Grid Feature, Turning Function, and Turning Function alignment
plus Grid Feature Distance method (TFA-GVD) while rotating symbol images.

Grid Feature
TF

(w/o unwrap) TF TFA-GVD
Rotation Angle Recognition Rate(%)

0◦ 97.04 91.65 92.32 96.90
3(-3)◦ 81.71(81.54) 88.75(85.09) 91.20(90.04) 96.84(95.62)
5(-5)◦ 67.89(72.83) 83.22(78.57) 90.44(88.84) 94.58(94.66)

10(-10)◦ 24.99(40.27) 67.80(55.96) 90.41(88.89) 93.41(92.55)
15(-15)◦ 4.89(18.57) 43.28(44.65) 89.09(87.88) 91.35(92.67)
RunTime 02:02:26 02:06:20 03:29:27 09:31:18

Grid Features’. The reason is that Turning Function does not consider the symbol’s internal shape information.
For example, ’O’ and ’Θ’ are hard to be distinguished by Turning Function.

Compared to Grid Features, Turning Function is more robust against rotation. To test this, we perform
experiment with rotated images. The training images are not modified, while testing images are rotated by 3, 5,
10 and 15 degrees clockwise and counterclockwise. Experiment result shows that Turning Function with unwrap
and alignment is much more robust against rotation than Grid Features. The recognition rate of Grid Features
drops from 97.04% (no rotation) to 4.89% (15 degrees rotation counterclockwise). For Turning Function, the
decrease of recognition rate caused by rotation is much smaller.

By utilizing TFA-GVD method, we manage to take advantages from both methods. The Turning Functions
are used to contour rotation transformation by estimating angle displacement, while Grid Features are used to
get best recognition rate once the image is rotated back to its original position. The best recognition rate reaches
96.90% with no rotation and remains 91.35% with 15 degrees rotation counterclockwise.

Grid feature and Turning Functions without unwrap/alignment use similar runtime. However, Turning
Functions with unwrap and alignment cost more time because of the searching for alignment between test and
train functions. The searching is done within time O(m2) as we discussed before. The TFA-GVD will cost
more time, as we have to firstly find the most similar 50 samples using Turning Functions and rotate the image
accordingly, then use the Grid Feature to get the final classification result. Here, all experiments are processed
using InftyCDB-3-A (contains 188,752 samples) as training dataset and InftyCDB-3-B (70, 637 samples) as
testing dataset. Because of the exhaustive search, nearest neighbor classifier is slow. Clustering training dataset
would significantly reduce the runtime. Experiment shows sorted histogram of Turning Function shows great
potential for data clustering. We would to test this in the future work.

The experiments are run on our Linux server which has 24 CPU cores, 96 Gb of RAM. Matlab software is
utilized, parallel computing with 8 labs are used to reduce computation time. The average total runtime of each
method is provided in Table 3.

7. MATHEMATICAL SYMBOL RETRIEVAL EXPERIMENT

The recognition experiment results show that unwrapped Turning Function with alignment and Grid Features
perform the best. We use the same features and metric for the math symbol retrieval experiment. Turning
function is used to adjust the rotation and change of starting point between query symbol and target symbols.
After the alignment, Grid Features are used to calculate the distance based on SSD between query symbol and
target symbols. The retrieval results are ranked based on this distance.

For the retrieval experiment, we use the whole InftyCDB-3 as the candidate library and 393 queries, one for
each symbol class. Marinai et al.16,20 also use the whole InftyCDB-3 as the candidate library, but only 392
queries. We believe that they chose a query for each symbol class while ignored one symbol class because it is
too small. But we are uncertain which symbol class was omitted.



The whole retrieval experiment for 393 queries takes 432 seconds. Top-25 precision, Top-50 precision, Mean
Average Precision and AUC of Precision/Recall are computed and shown in Table 4. Marinai’s Shape Context
based method16 achieved (33.13%) AUC, our AUC is 47.27%. The standard deviations are small, which means
our system performs consistently for different kinds of symbols. To evaluate the average performance of our
retrieval algorithm, we plot Precision/Recall curve (Figure 7 (a)) and Receiver Operating Characteristic curve
(Figure 7 (b)). From Figure 7 (a), we can find that our Top-1 precision is almost 100%. Precision drop rate is
roughy constant with a tail at the end. Figure 7 (b) shows that ROC curve is very close to the point (0,1) at
one time which means our retrieval system can find the relevant symbols very early while discarding irrelevant
symbols.

(a) Precision/Recall curve (b) ROC curve

Figure 7: Precision/Recall curve and Receiver Operating Characteristic (ROC) curve

Table 4: Mean (µ) and standard deviations (σ) over 393 queries’ Top 25, Top 50 precision, Mean Average
Precision (MAP), and AUC of Precision/Recall.

Top 25 TOP 50 MAP AUCp/r

µ(σ) 76.35% 71.20% 6.43% 47.27%
(3.16%) (3.31%) (1.29%) (2.73%)

(a) Symbol image ‘A’ retrieval with different methods. (b) Different symbols with best method.

Figure 8: Top-10 retrieval results of queries. Left-most column shows the query symbol, here all queries are
rotated 15 degrees clockwise to test retrieval systems’ robustness. The following images in each row shows
corresponding retrieval result. (a) 1st row, Grid Feature; 2nd row, Turning Function; 3rd row, TFA-GVD.
(b)Different queries using TFA-GVD.

The example of Top-10 retrieval results are shown in Figure 8(a). Figure shows Top-10 results for testing
symbol A with rotational angle equals 15 degrees clockwise. The first row shows the SSD ranking using Grid
Feature Vector result. Here we could see, though Grid Feature performs outstandingly for noise free images (due
to the cleanness of Infty dataset), it gives totally wrong Top-10 retrieval result for a image with 15 degree of
rotation. The sensitivity to noise and deformation is the main weakness of Grid based features.

Meanwhile, the second row shows the Top-10 results using Turning Functions. The retrieved symbols are



mostly Blackboard Bold font instead of desired Roman font. Though the symbols are regarded as irrelevant if
we follow the INFTY symbol coding system, we get character symbol ‘A’ correct. The reason why we are not
getting the Roman A as we were expecting is missing of internal information of shapes.

The third row shows the Top-10 retrieval result while using Turning Function to estimate rotational angle and
Grid Feature to measure distance for restored test images. Here we could see, by compensating rotations using
Turning Functions alignment and catching internal information using Grid Features, we successfully retrieved
exactly correct symbols in the Top-10.

Some Top-10 retrieval examples are given in Figure 8(b), where Turning Function Alignment and Grid
Feature Distances are utilized (TFA-GVD). Here we could see, some images retrieved are with same character
but different fonts, e. g. symbol ‘B’, ‘n’ and ‘J’. Although, they are considered as false positive in our evaluation
system due to their different INFTY symbol codes, human would consider they are relevant. In information
retrieval, final judge of relevance could only be made correctly by human. To compare with previous work,16 we
follow the INFTY coding system and assume different fonts are irrelevant symbols. But if a human expert is
asked to evaluate the system, he/she will give a higher score of performance.

We see for symbols consist of two CCs, e. g. ‘;’, we could still manage to get the correct results. It supports
our contour concatenation method is good in this case.

We could see some symbols retrieved are different (e. g. we get symbol ‘<’ from query ‘∧’, and symbol ‘η’
from ‘u’), but only with a rotational transform. If a largest possible rotational angle of noise could be measured
(usually small), we could limit the Turning Function Alignment between such threshold values and avoid false
positive with rotational similarities, like ‘9’ and ‘6’.

8. CONCLUSION

The paper presents a system for recognition and retrieval of isolated offline printed mathematical symbols for
the first time. The system is based on nearest neighbor analysis and we use two features: modified Turning
Function and Grid Features. Both Turning Function and Grid Features are sensitive to rotation while Turning
Function is also sensitive to changing of starting point. We modify the Turning Function by using an unwrap
technique and an alignment method. The modified Turning Function can be used to get the rotation angle and
difference of starting points of two symbol images. Based on the rotation angle, we can rotate the image to its
original position. Grid features are extracted and used to calculate the distance based on SSD. The experiment
results show the modified Turning Function can deal with the rotation and changing of starting point very well.
Compared to results achieved by previous work, our system’s performance is quite competitive.
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