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ABSTRACT

We describe a symbol classification technique for identifying
the expected locations of neighboring symbols in mathemat-
ical expressions. We use the seven symbol layout classes of
the DRACULAE math notation parser (Zanibbi, Blostein, and
Cordy, 2002) to represent expected locations for neighbor-
ing symbols: Ascender, Descender, Centered, Open Bracket,
Non-Script, Variable Range (e.g. integrals) and Square Root.
A new feature based on shape contexts (Belongie et al., 2002)
named layout context is used to describe the arrangement of
neighboring symbol bounding boxes relative to a reference
symbol, and the nearest neighbor rule is used for classifi-
cation. 1917 mathematical symbols from the University of
Washington III document database are used in our experi-
ments. Using a leave-one-out estimate, our best classification
rate reaches nearly 80%. In our experiments, we find that the
size of the symbol neighborhood, and number and arrange-
ment of key points representing a symbol affect performance
significantly.

Index Terms— shape contexts, document layout analy-
sis, character recognition, math recognition

1. INTRODUCTION

Recognizing mathematical notation is a challenging pattern
recognition problem due to the large number of math sym-
bols, and complexities in interpreting the two dimensional
arrangement of symbols and their intended semantics [1].
Much of the information in mathematical expressions is car-
ried by the relative spatial position between symbols, such
as superscript, subscript, adjacent and containment (e.g. in a
square root). Many methods have been proposed to extract
spatial relationships between symbols such as coordinate
grammars [2], Projection Profile Cutting [3], minimum span-
ning trees for penalty graphs representing alternative symbol
layouts [4], recursive baseline structure analysis [5], and
others.

We present an algorithm for classifying all mathematical
symbols into seven layout classes (see Figure 1 and Table 1),
which identify the expected locations of neighboring symbols

with a significant spatial relationship [6]. From these seven
classes, existing techniques (in particular, baseline structure
analysis [5]) may be used to identify the spatial arrangement
of symbols in an expression. Surrounding regions of a symbol
may include below, above, superscript, subscript, horizontal
adjacency and containment. Different classes have different
associated regions, as shown in Fig 1.

Successfully identifying the layout class of symbols may
permit symbol layout to be recognized without recognizing
the specific identity of characters (i.e. OCR-free structure
recognition), and may provide features for subsequent OCR.

We use a feature named layout context to describe the
arrangement of neighboring symbols relative to a reference
symbol. A number of key points sampled from the side and/or
interior of the symbol bounding box are used to represent
symbol locations. A circle placed at the reference bounding
box center with adjustable radius is used to define the neigh-
boring symbol region. We examine a variety of key point
models and neighborhood sizes, and use the nearest neighbor
rule for classification. Depending on the chosen parameters,
we obtain a classification accuracy between 43% and almost
80% on symbols taken from math expressions in the Univer-
sity of Washington III document database.

Fig. 1. Symbol layout classes [5]



Table 1. Class Membership [5]
Class Symbols

Ascender 0...9, A...Z
Descender g, p, q, y, r, η, ρ

Γ,∆,Θ,Λ,Ξ,Π
Open Bracket [{(
Non Scripted Unary binary operators

and relation (×, \,≥,÷,≡)
Root √

Variable Range
∑∏ ∫ ⋂ ⋃

Center All other symbols

2. METHODOLOGY

We make use of a new feature named layout context. The
inspiration for this feature comes the shape contexts of Be-
longie et al. [7]. Layout context is designed to depict the
spatial distribution of neighboring symbols relative to a refer-
ence symbol within a mathematical expression.

We represent the spatial location of a symbol using a key
points model. We assume that symbols are previously seg-
mented, and take key points from symbol bounding boxes.
We consider taking key points from three locations: from the
bounding box boundary, the interior of the bounding box, and
both the interior and exterior of the bounding box. For each
type of key point model, we use n to denote the total num-
ber of points for the instance. Fig 2 shows some example key
point models.

For the layout context, we also need to define the local
neighborhood area of the symbol. This neighborhood is de-
fined by a circle centered at the reference symbol center. Any
key points from symbols that lay in this area are included in
the layout context. We use r to denote the ratio between the
neighborhood circle radii and the unit length, which is half of
the reference symbol bounding box diagonal (from the cen-
ter to a corner). The larger r is, the larger the neighborhood
area is, and in turn the more symbols will be included in the
feature calculation.

After choosing a key points model and the radius of the
neighborhood area (r), a layout context is computed using the
three steps below. Figure 3 provides an example of computing
the layout context for the symbol ’+’ within an expression.

1. Compute the vectors connecting the neighboring sym-
bol key points to the symbol center o, and calculate the length
and angle of each vector.

2. Divide the neighborhood region into 60 bins, consisting

(a) (b) (c)

Fig. 2. Key points models. (a) key points sampled from the
bounding box sides, (b) key points sampled evenly from the
diagonals, horizontal and vertical center lines, and (c) key
points from both the bounding box interior and sides

of 12 equal angle bins and 5 distance bins. The ratio of the five
distance bins radii moving out from the center of the symbol
are 1

16 : 1
8 : 1

4 : 1
2 : 1, with the whole (1) being the radius of

the circle neighborhood (as determined by r).
3. Compute the histogram of key points by their distance

and angle relative to the reference symbol center over the 60
bins. Normalize the histogram by dividing each bin by the
total number of key points in neighborhood. The resulting
histogram is the layout context of the reference symbol.

Fig. 3. Example: Calculating layout context for ”+,” using
r = 4 and 5 key points (bounding box corners and center).
(a) Expression where the reference symbol ”+” lies. (b) Vec-
tors that connect other key points within the neighborhood to
the bounding box center. (c) 60 log polar bins of the circle
neighborhood area. (d) Visual representation of the layout
context of symbol ”+”. Darker bins contain more points.

After feature extraction, classification is performed us-
ing the Nearest-Neighbor algorithm (NN). The histogram
matching cost between the a reference symbol and training
instances is used as as the distance metric for the NN algo-
rithm. As layout context is represented by a histogram, it
is natural to use the χ2 metric [7] as shown in Equation(1)
(with Yates’ correction). Here pi and qi are symbols, and Cij

represents the cost of matching the layout context histograms
h(pi) and h(qi) for these two symbols.

CS =
1
2

K∑
i=1

[h(pi)− h(qi)]2

h(pi) + h(qi)
(1)

We use the leave-one-out (LOO) [8] method to estimate
recognition rates. LOO is the extreme case of k-fold cross
validation, where all data is used for training and validation.
A shortcoming of the approach is that the method may be
computationally expensive for large data sets.

3. EXPERIMENT

To evaluate the accuracy of our classification method, we per-
formed an experiment in which we examined different key



point models and neighborhood sizes. We used the Univer-
sity of Washington III database for training and testing data
(1917 mathematical symbols within 73 expressions). A sum-
mary of our results is provided in Table 2.

Table 2. Classification rates for combinations of neighbor-
hood sizes (r-radius) and key point locations (i: inside bound-
ing box, s: bounding box side). n is the number of key points
with the highest accuracy for each condition

Condition r n i s Accuracy
Control 1 1 • 0.420

1 1 121 • 0.707
2 2 25 • 0.721
3 4 57 • 0.740
4 8 25 • 0.670
5 16 57 • 0.571
6 1 128 • 0.689
7 2 128 • 0.739
8 4 128 • 0.733
9 8 16 • 0.662
10 16 4 • 0.559
11 1 89 • • 0.735
12 2 89 • • 0.792
13 4 89 • • 0.748
14 8 41 • • 0.662
15 16 249 • • 0.557

Our control condition is when the radius of the outermost
circle is just half of the bounding box diagonal (r = 1, en-
circling the bounding box) and the key point model uses only
bounding box centers (n = 1). As seen in Table 2, accuracy
ranges from 42.0% (control) to 79.2% (condition 12). Perfor-
mance is best when r = 2 and both inner and side points are
used with n = 89. The worst condition is when the r = 16
(55.7% ∼ 57.1%,), which includes key points from most or
all symbols in an expression.

Including key points from neighboring symbols very close
to the reference symbol, located within the circle whose ra-
dius is the twice the unit length for the reference symbol BB
(r = 2), gives the highest accuracy for all three sources of
key points (indicated by i and s). Accuracy decreases when
larger or smaller neighborhoods are used.

In addition, the number and type of the key points affect
accuracy. In general, using too few key points, or only one
location for key points (inner or side) degrades accuracy. This
may be because the layout context feature will not accurately
reflect the spatial distribution of symbols if the number of key
points included in the histogram is small.

A confusion matrix for the best condition in Table 2 (con-
dition 12) is shown in Table 3. The last row of Table 3 con-
tains the most frequent confusion for each layout class. Cen-
ter is the layout class that is most frequently confused with
other ones. This may be because of the definition of the Cen-
ter layout class (as shown in Table 1), which includes all sym-
bols that do not belong to the other six classes, including some
we may not have anticipated.

The Root class has the highest accuracy, possibly because

Table 3. Confusion matrix for best condition (12) in Table 2
Correct Class

Predict Open Non- Variable Predicted
Class Ascender Descender Center Bracket script Range Root Frequency

Ascender 82.8% 11.8% 12.0% 5.0% 6.3% 15.9% 0.0% 660
Descender 3.2% 69.2% 4.2% 2.1% 2.3% 2.2% 0% 144

Center 7.3% 13.3% 75.6% 10.0% 9.5% 4.5% 4.5% 501
Open

Bracket 0.9% 0.7% 2.8% 82.0% 0.7% 2.2% 0 139
Non-
script 5.3% 3.9% 5.0% 0 80.3% 9.0% 0 413

Variable
Range 0.4% 0.7% 0.4% 0.7% 0.7% 65.9% 0.0% 39
Root 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 95.4% 21

Actual
Frequency 657 127 500 139 428 44 22 694
Common
Confusion Center Center Ascender Center Center Ascender Center

the layout contexts for root symbols are quite distinct from the
other classes (see Fig 4). The neighborhood area for square
roots is usually larger than for other layout classes for a given
r, due to a longer bounding box diagonal. Consequently, there
are more symbols covered in the ring zone between the most
two distant circles from the bounding box center. For the Root
class, differences between the densities of the leftmost-upper
and rightmost-upper bins are much larger than that of other
layout classes; this is partly an artifact of our data set, where
roots are often located in the denominator of a fraction (see
Figure 3).

(a) Ascender (b) Descender (c) Center

(d) Nonscript (e) Var. Range (f) Open Bracket

(g) Root

Fig. 4. Average layout context histogram for each layout class

We also conducted an experiment to investigate the con-
tribution of reference symbol and neighboring symbols to the
classification performance. A comparison between the high-
est classification rates when using the reference symbol only,
using neighboring symbols only, and using both reference and



Fig. 5. Expressions in our dataset containing square roots

neighboring symbols (as used to produce Table 2), is shown
in Fig 6. In the results, classification performance is usually
better when using both reference and neighborhood symbols
key points than using either alone.

In the condition where reference symbol key points are
used alone, the classification rate is nearly constant (62%) for
all the r values. However, in the other two conditions where
neighboring symbols are used, the classification rates follow a
similar trend, in which accuracy arises when r changes from 1
to 2 and decreases when r continues to increase until r = 16.
This indicates that both the reference symbol and neighboring
symbols contribute to the classification performance but with
different effects. This again shows that selecting the size of
neighborhood area to cover closely surrounding neighboring
symbols improves classification accuracy. On the other hand,
including symbols that are too far away from the reference
symbol (when r = 16) may deteriorate performance.

4. FUTURE WORK

In order to improve classification accuracy, the layout context
feature might be enhanced by weighting key points, e.g. by
distance from the reference symbol center. We have used one
of the simplest classification techniques (nearest neighbor),
and the use of a well-designed neural network or support vec-

Fig. 6. Comparison of highest classification rates for key
points taken from the reference symbol alone, neighborhood
symbols alone, and both reference and neighbor symbols for
different neighborhood sizes (r)

tor machine, and/or boosting classifiers (e.g. via AdaBoost)
might also increase accuracy.

One might consider using a ‘global’ layout context, or set
of shape contexts sampled from an expression to identify the
layout context of mathematical symbols. One could also com-
bine layout contexts with other visual features such as aspect
ratio or (regular) shape contexts for the reference symbol. Fi-
nally, an obvious extension to our work is to take key points
from contours and/or foreground pixels of symbols directly,
rather than from bounding box locations.

This work provides a useful baseline for comparison with
these other approaches.
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