
Balancing Security and Usability
in a Video CAPTCHA

Richard Zanibbi1 and Kurt Kluever2

November 19, 2008

1 Assistant Professor, Department of Computer Science
 Rochester Institute of Technology, USA
2 Google, New York

First Things First:
Some Definitions

C ompletely
A utomated
P ublic (data, alg’s)
T uring Test, to tell
C omputers and
H umans
A part

2

 Secure Test
 Machines fail frequently
 (few false positives)

 Usable Test
 People pass frequently
 (many true positives),
 comfortable task

CAPTCHA Tasks:
AI and Pattern Recognition Problems

Natural Language Understanding

Filling in missing words in sentences, pronoun
disambiguation

Audio-Based

Transcribe text in a (noisy) audio file

Image-Based

Distorted characters, image region/content
labeling, etc.

3

4

Distorted Text Tests

Other Image-Based Tests

5

Motivation for New Tests

Distorted Text CAPTCHAs most prevalent

• Many people report finding these frustrating
(significant distortion needed for security)

• Becoming vulnerable, e.g. Microsoft text CAPTCHA
recently broken with a 60% pass rate (Yan & Ahmad,
CCS 2008)

...a more secure but user-friendly task is
needed

6

The ESP Game
(Von Ahn et al., CHI 2004) http://gwap.com

A Video CAPTCHA

8

Properties of our Video
CAPTCHA

Almost Completely Automatic

May need to check appropriateness of video content

Public

Algorithms, data (e.g. YouTube) open

Security

Comparable to existing methods against submission of three
most frequent tags. Additional attacks (e.g. CBIR) need study

Usability

Equal/better pass rates than for existing methods, small majority
of users in study preferred task to “distorted text” tasks 9

Test Generation
and Grading

Public Video Data Set:
YouTube.com

Data Set

• ~150 Million Videos (August
2008)

• Individuals upload videos with
‘tags’ in a120 character field

Sampling YouTube

• Random generation of
video id’s impractical

• Limits on number of
accesses per day 11

Solution: Use dictionary word
to ‘seed’ a random walk

Generating Tests
1. Select random dictionary word, query database

2. Random walk of [1,100] steps, return video reached

3. From ‘related videos’ add n additional tags (list
sorted by cosine similarity of tags to test video)

4. Remove tags estimated to be more frequent than a
threshold t

5. Normalize tags: Remove stop words (‘the,’ ‘a’ etc.),
convert to lower case, remove punctuation

12

Comparing Tag Sets:
Cosine Similarity Metric

Let A and B be binary vectors of the
same length (represent all tags in A&B)

13

While there are often additional words to be obtained from
a video’s title [7], in our preliminary user study we found
that adding titles did not substantially increase the usability
of the system (e.g. we observed a decrease in security of 5%
and only an increase in usability of 0.3% relative to matching
against only author-supplied tags). In addition, we could not
estimate the security impact of adding title words using our
tag frequencies (which are calculated over tag space, not title
space), and so we decided to not allow title words.

Sorting Related Videos by Cosine Similarity
To select tags from those videos that have the most similar
tag set to the challenge video, we performed a sort using
the cosine similarity of the tags on related videos and the
tags on the challenge video. The cosine similarity metric is
a standard similarity metric used in Information Retrieval to
compare text documents [20]. The cosine similarity between
two vectors A and B can be easily computed as follows:

SIM(A, B) = cos θ =
A · B
‖A‖‖B‖

The dot product and product of magnitudes are:

A · B =
n∑

i=1

aibi

‖A‖‖B‖ =

√√√√
n∑

i=1

(ai)2

√√√√
n∑

i=1

(bi)2

In our case, A and B are binary tag occurrences vectors (i.e.,
they only contain 1’s and 0’s) over the union of the tags in
both videos. Therefore, the dot product simply reduces to
the size intersection of the two tag sets (i.e., |At ∩ Rt|) and
the product of the magnitudes reduces to the square root of
the number of tags in the first tag set times the square root of
the number of tags in the second tag set (i.e.,

√
|At|

√
|Rt|).

Therefore, the cosine similarity between a set of author tags
and a set of related tags can easily be computed as:

cos θ =
|At ∩Rt|√
|At|

√
|Rt|

Tag Set Occ. Vector dog puppy funny cat
At A 1 1 1 0
Rt B 1 1 0 1

Table 1. Example of a tag occurrence table.

Consider an example where At = {dog, puppy, funny}
and Rt = {dog, puppy, cat}. We can build a simple ta-
ble which corresponds to the tag occurrence over the union
of both tag sets (see Table 1). Reading row-wise from this
table, the tag occurrence vectors for At and Rt are A =
{1, 1, 1, 0} and B = {1, 1, 0, 1}, respectively. Next, we
compute the dot product:

A · B = (1 ∗ 1) + (1 ∗ 1) + (1 ∗ 0) + (0 ∗ 1) = 2

The product of the magnitudes can also easily be computed:

‖A‖‖B‖ =
√

3
√

3 = 3

Thus, the cosine similarity of the two videos is 2
3 = 0.6̄.

Adding Related Tags
Once the related videos are sorted in decreasing cosine sim-
ilarity order, we introduce tags from the related videos into
the ground truth. The maximum number of characters al-
lowed in a YouTube tag set is 120. In the worst case, the
tag set could contain 60 unique words (each word would
be a single character), separated by spaces. The maximum
number of related videos which YouTube provides is 100.
Therefore, adding all of the related tags could potentially
add up to 6000 new tags. We chose to limit the upper bound
by adding up to n additional unique tags from the related
videos (sorted in decreasing cosine similarity order). Given
a challenge video v, a set of related videos R, and a num-
ber of related tags to generated n, the following algorithm
generates up to n related tags.

RELATEDTAGS(A, R, n)

1. Create an empty set, Z ← ∅.
2. Sort related videos R in decreasing cosine similarity order

of their tag sets relative to the tag set A (for a challenge
video v).

3. For each related video r ∈ R:
(a) If the number of new tags on the related video r is

≤ n− |Z|, add them all to Z.
(b) Otherwise, while the related video r has tags and

while |Z| < n:
i. Randomly remove a tag from the remaining tags

on the related video r, and add this tag to Z.
4. Return Z.

This technique will introduce up to n additional tags to the
ground truth set. In the case where we have already gener-
ated n − b related tags and the next related video contains
more than b new, unique tags, we cannot add all of them
without exceeding our upper bound of n tags. For example,
consider the case in which we wish to generate 100 addi-
tional tags (n = 100) and we have already generated 99 tags.
If the next related video has 4 new tags, we cannot include
all of these in the new tag set, and so we randomly pick one
to avoid bias.

Rejecting Frequent Tags
Security against frequency-based attacks (an attack where
the three most frequent tags are always submitted) is main-
tained through the parameters F and t in the challenge gen-
erating function VIDEOCAPTCHA (see earlier in this sec-
tion). F is a tag frequency distribution (see Figure 2) and
t is a frequency rejection threshold. During challenge gener-
ation, after author-supplied tags and tags from related videos
have been added to the ground-truth set, tags with a fre-
quency greater than or equal to t in F are removed.

REJECTFREQUENTTAGS(S, F , t)

4

While there are often additional words to be obtained from
a video’s title [7], in our preliminary user study we found
that adding titles did not substantially increase the usability
of the system (e.g. we observed a decrease in security of 5%
and only an increase in usability of 0.3% relative to matching
against only author-supplied tags). In addition, we could not
estimate the security impact of adding title words using our
tag frequencies (which are calculated over tag space, not title
space), and so we decided to not allow title words.

Sorting Related Videos by Cosine Similarity
To select tags from those videos that have the most similar
tag set to the challenge video, we performed a sort using
the cosine similarity of the tags on related videos and the
tags on the challenge video. The cosine similarity metric is
a standard similarity metric used in Information Retrieval to
compare text documents [20]. The cosine similarity between
two vectors A and B can be easily computed as follows:

SIM(A, B) = cos θ =
A · B
‖A‖‖B‖

The dot product and product of magnitudes are:

A · B =
n∑

i=1

aibi

‖A‖‖B‖ =

√√√√
n∑

i=1

(ai)2

√√√√
n∑

i=1

(bi)2

In our case, A and B are binary tag occurrences vectors (i.e.,
they only contain 1’s and 0’s) over the union of the tags in
both videos. Therefore, the dot product simply reduces to
the size intersection of the two tag sets (i.e., |At ∩ Rt|) and
the product of the magnitudes reduces to the square root of
the number of tags in the first tag set times the square root of
the number of tags in the second tag set (i.e.,

√
|At|

√
|Rt|).

Therefore, the cosine similarity between a set of author tags
and a set of related tags can easily be computed as:

cos θ =
|At ∩Rt|√
|At|

√
|Rt|

Tag Set Occ. Vector dog puppy funny cat
At A 1 1 1 0
Rt B 1 1 0 1

Table 1. Example of a tag occurrence table.

Consider an example where At = {dog, puppy, funny}
and Rt = {dog, puppy, cat}. We can build a simple ta-
ble which corresponds to the tag occurrence over the union
of both tag sets (see Table 1). Reading row-wise from this
table, the tag occurrence vectors for At and Rt are A =
{1, 1, 1, 0} and B = {1, 1, 0, 1}, respectively. Next, we
compute the dot product:

A · B = (1 ∗ 1) + (1 ∗ 1) + (1 ∗ 0) + (0 ∗ 1) = 2

The product of the magnitudes can also easily be computed:

‖A‖‖B‖ =
√

3
√

3 = 3

Thus, the cosine similarity of the two videos is 2
3 = 0.6̄.

Adding Related Tags
Once the related videos are sorted in decreasing cosine sim-
ilarity order, we introduce tags from the related videos into
the ground truth. The maximum number of characters al-
lowed in a YouTube tag set is 120. In the worst case, the
tag set could contain 60 unique words (each word would
be a single character), separated by spaces. The maximum
number of related videos which YouTube provides is 100.
Therefore, adding all of the related tags could potentially
add up to 6000 new tags. We chose to limit the upper bound
by adding up to n additional unique tags from the related
videos (sorted in decreasing cosine similarity order). Given
a challenge video v, a set of related videos R, and a num-
ber of related tags to generated n, the following algorithm
generates up to n related tags.

RELATEDTAGS(A, R, n)

1. Create an empty set, Z ← ∅.
2. Sort related videos R in decreasing cosine similarity order

of their tag sets relative to the tag set A (for a challenge
video v).

3. For each related video r ∈ R:
(a) If the number of new tags on the related video r is

≤ n− |Z|, add them all to Z.
(b) Otherwise, while the related video r has tags and

while |Z| < n:
i. Randomly remove a tag from the remaining tags

on the related video r, and add this tag to Z.
4. Return Z.

This technique will introduce up to n additional tags to the
ground truth set. In the case where we have already gener-
ated n − b related tags and the next related video contains
more than b new, unique tags, we cannot add all of them
without exceeding our upper bound of n tags. For example,
consider the case in which we wish to generate 100 addi-
tional tags (n = 100) and we have already generated 99 tags.
If the next related video has 4 new tags, we cannot include
all of these in the new tag set, and so we randomly pick one
to avoid bias.

Rejecting Frequent Tags
Security against frequency-based attacks (an attack where
the three most frequent tags are always submitted) is main-
tained through the parameters F and t in the challenge gen-
erating function VIDEOCAPTCHA (see earlier in this sec-
tion). F is a tag frequency distribution (see Figure 2) and
t is a frequency rejection threshold. During challenge gener-
ation, after author-supplied tags and tags from related videos
have been added to the ground-truth set, tags with a fre-
quency greater than or equal to t in F are removed.

REJECTFREQUENTTAGS(S, F , t)

4

While there are often additional words to be obtained from
a video’s title [7], in our preliminary user study we found
that adding titles did not substantially increase the usability
of the system (e.g. we observed a decrease in security of 5%
and only an increase in usability of 0.3% relative to matching
against only author-supplied tags). In addition, we could not
estimate the security impact of adding title words using our
tag frequencies (which are calculated over tag space, not title
space), and so we decided to not allow title words.

Sorting Related Videos by Cosine Similarity
To select tags from those videos that have the most similar
tag set to the challenge video, we performed a sort using
the cosine similarity of the tags on related videos and the
tags on the challenge video. The cosine similarity metric is
a standard similarity metric used in Information Retrieval to
compare text documents [20]. The cosine similarity between
two vectors A and B can be easily computed as follows:

SIM(A, B) = cos θ =
A · B
‖A‖‖B‖

The dot product and product of magnitudes are:

A · B =
n∑

i=1

aibi

‖A‖‖B‖ =

√√√√
n∑

i=1

(ai)2

√√√√
n∑

i=1

(bi)2

In our case, A and B are binary tag occurrences vectors (i.e.,
they only contain 1’s and 0’s) over the union of the tags in
both videos. Therefore, the dot product simply reduces to
the size intersection of the two tag sets (i.e., |At ∩ Rt|) and
the product of the magnitudes reduces to the square root of
the number of tags in the first tag set times the square root of
the number of tags in the second tag set (i.e.,

√
|At|

√
|Rt|).

Therefore, the cosine similarity between a set of author tags
and a set of related tags can easily be computed as:

cos θ =
|At ∩Rt|√
|At|

√
|Rt|

Tag Set Occ. Vector dog puppy funny cat
At A 1 1 1 0
Rt B 1 1 0 1

Table 1. Example of a tag occurrence table.

Consider an example where At = {dog, puppy, funny}
and Rt = {dog, puppy, cat}. We can build a simple ta-
ble which corresponds to the tag occurrence over the union
of both tag sets (see Table 1). Reading row-wise from this
table, the tag occurrence vectors for At and Rt are A =
{1, 1, 1, 0} and B = {1, 1, 0, 1}, respectively. Next, we
compute the dot product:

A · B = (1 ∗ 1) + (1 ∗ 1) + (1 ∗ 0) + (0 ∗ 1) = 2

The product of the magnitudes can also easily be computed:

‖A‖‖B‖ =
√

3
√

3 = 3

Thus, the cosine similarity of the two videos is 2
3 = 0.6̄.

Adding Related Tags
Once the related videos are sorted in decreasing cosine sim-
ilarity order, we introduce tags from the related videos into
the ground truth. The maximum number of characters al-
lowed in a YouTube tag set is 120. In the worst case, the
tag set could contain 60 unique words (each word would
be a single character), separated by spaces. The maximum
number of related videos which YouTube provides is 100.
Therefore, adding all of the related tags could potentially
add up to 6000 new tags. We chose to limit the upper bound
by adding up to n additional unique tags from the related
videos (sorted in decreasing cosine similarity order). Given
a challenge video v, a set of related videos R, and a num-
ber of related tags to generated n, the following algorithm
generates up to n related tags.

RELATEDTAGS(A, R, n)

1. Create an empty set, Z ← ∅.
2. Sort related videos R in decreasing cosine similarity order

of their tag sets relative to the tag set A (for a challenge
video v).

3. For each related video r ∈ R:
(a) If the number of new tags on the related video r is

≤ n− |Z|, add them all to Z.
(b) Otherwise, while the related video r has tags and

while |Z| < n:
i. Randomly remove a tag from the remaining tags

on the related video r, and add this tag to Z.
4. Return Z.

This technique will introduce up to n additional tags to the
ground truth set. In the case where we have already gener-
ated n − b related tags and the next related video contains
more than b new, unique tags, we cannot add all of them
without exceeding our upper bound of n tags. For example,
consider the case in which we wish to generate 100 addi-
tional tags (n = 100) and we have already generated 99 tags.
If the next related video has 4 new tags, we cannot include
all of these in the new tag set, and so we randomly pick one
to avoid bias.

Rejecting Frequent Tags
Security against frequency-based attacks (an attack where
the three most frequent tags are always submitted) is main-
tained through the parameters F and t in the challenge gen-
erating function VIDEOCAPTCHA (see earlier in this sec-
tion). F is a tag frequency distribution (see Figure 2) and
t is a frequency rejection threshold. During challenge gener-
ation, after author-supplied tags and tags from related videos
have been added to the ground-truth set, tags with a fre-
quency greater than or equal to t in F are removed.

REJECTFREQUENTTAGS(S, F , t)

4

Grading Tests
User Provides Three Non-Stop Words

Normalization: set tags to lower case, punctuation stripped

Pass if a ‘valid’ test tag is submitted

‘Usability’ Parameters

• Stemming: add word stems (Porter alg.; max +3 tags) e.g.
running ⇒ run

• Edit distance: accept submitted tags within normalized similarity
of ‘valid’ test tags (≥0.8; 1 edit for strings length 5-9)

14

1. Initially, GT ← S.
2. For each tag g ∈ GT :

(a) If F (g) ≥ t, remove g from GT .
3. Return GT .

GRADING FUNCTION
The generation of a Video CAPTCHA (as described above)
returns a challenge video v and a set of ground truth tags GT .
Given the challenge video v, the set of ground truth tags GT ,
the set of user response tags U , and binary variables s and l
controlling whether to perform stemming (s) or use inexact
matching (l), we grade responses as follows:

GRADE(v, GT,U, s, l)

1. Preprocess the user supplied tags: P ← PREPROCESS(U).
2. If s = TRUE, P ← P ∪ STEM(P).
3. If l = TRUE,

(a) If ∃t ∈ GT and ∃p ∈ P such that
NORMLEVENSHTEIN(t, p) ≥ l, return PASS.

(b) Otherwise, return FAIL.
4. Otherwise,

(a) If GT ∩ P '= ∅, return PASS.
(b) Otherwise, return FAIL.

Preprocessing
A stop word list is a list of frequent words which are fil-
tered prior to processing because they are unlikely to add
additional information or context. It has been shown that
over 50% of all words in a typical English passage can be
constructed using a list of only 135 words [11]. We chose
to utilize a list of 177 stop words provided in the popular
Snowball string processing language developed by Martin F.
Porter. Users are prevented from submitting stop words as
tags.

Prior to grading, all tags are preprocessed using the func-
tion PREPROCESS, described here. The tags are converted to
lowercase and punctuation is stripped to remove the effects
of inconsistent capitalization or punctuation. Additionally,
only the first three tags are used in grading. For example,
given the input string “George Bush U.S.A. man”, the pre-
processor will output the set: {george, bush, usa}.

Expanding User-Supplied Tags through Word Stemming
To increase the likelihood of passing challenges, the user-
supplied tags U may be expanded through word stemming
using the STEM function. A stemmer is an algorithm for
reducing inflected or derived words to their root [15]. The
root of a word is the word minus any inflectional endings,
such as ‘s’, ‘ing’, etc. The Porter Stemmer1 is frequently
used in information retrieval systems; it uses a deterministic
set of rules to recover word roots [17].

For example, if we allow stemming and if “dogs” ∈ U and
“dog” ∈ T , the challenge is passed (where as it otherwise
1Online at http://tartarus.org/˜martin/PorterStemmer/

might not be, depending on the set of related tags). A signifi-
cant benefit of this type of expansion is that it is a repeatable,
algorithmic technique which, at most, doubles the cardinal-
ity of U . If a response tag is already in the stemmed form,
for example “dog”, the stemmer will simply return the same
tag. Therefore, stemming adds between 0 and 3 tags to U .

Chew suggested the use of a thesaurus to accept synonyms
in the image-based naming CAPTCHA [5] where the task
was to guess the common subject of six images. For exam-
ple, a video about carbonated soft drinks might be tagged as
“soda” by one user and “pop” by another; using synonyms
we might identify a match. However, in our first user study
we found that that the addition of synonyms drastically com-
promised security and only marginally improved usability,
so we decided not to use this technique. When allowing
synonyms, we observed a decrease in security of 50% and
only an increase in usability of 2% in our control condition
(exact matching of author-supplied tags only). To obtain
synonyms, we used the freely available thesaurus from the
Moby Project2.

Allowing Inexact Matching
Many users may make spelling or typing mistakes when com-
pleting a challenge. Therefore, we can also boost usabil-
ity by performing inexact matching between user tags and
ground truth. We utilized the well known string edit dis-
tance, or Levenshtein distance [14]. The Levenshtein dis-
tance is the minimum number of operations (insertions, dele-
tions, or substitutions) required to convert one string into the
other. After computing the Levenshtein distance, we nor-
malize it into the interval [0.0, 1.0], using the length of the
longer string. Given the two strings, s1 and s2, we compute
the normalized Levenshtein distance as follows:

NORMLEVENSHTEIN(s1, s2) = 1−LEVENSHTEIN(s1, s2)
MAX(|s1|, |s2|)

As per Chew’s recommendation in [5], we have chosen to
define a match as a minimum normalized similarity of 0.8.
This means that the larger of two strings of length 1 ≤ l <
5 are allowed no edits, strings of length 5 ≤ l < 10 are
allowed one edit, strings of length 10 ≤ l < 15 are allowed
two edits, etc. More generous or conservative approximate
matches could be used with corresponding usability/security
tradeoffs (i.e., a higher threshold will improve security and
decrease usability where as a lower threshold will improve
usability but decrease security).

ATTACK SIMULATION
The best way to attack a Video CAPTCHA (using tag fre-
quency data alone) is to submit the three tags which label
the largest set of videos (the union of the video sets is the
largest). Increasing usability by extending the ground truth
tag set (as explained in the previous sections) will typically
result in decreasing security because it allows an attacker a
larger set to match against. Given the size of the ground
truth tag set and the tag frequency rejection threshold t, we
2Online at http://www.gutenberg.org/etext/3202

5

Experiments

Three Experiments

1. Tagging (Design/Training)

• 143 participants (online)

• 20 videos, selected
manually

2. Video CAPTCHA

• 184 participants (online)

• 20 videos, selected via
random walk

3. Attack Simulation

• 5146 videos, selected via
random walk

16

Tag Frequency Distribution

Tags with ≥0.1% frequency

Random Walk,
86, 368 unique

videos

Tags with ≥0.5% frequency

Tags with ≥1.0% frequency

17

18

Random Walk reaching
86,368 Unique Videos

Random walk revealed tags
not in our dictionary (*)

Frequency-Based Attacks

Most Frequent Tags Below Threshold t:

19

Human Rates Exp 1: 20 Videos, Manual Selection

Attack Rates Exp 1: 20 Videos, Manual Selection

Attack Simulation: 5146 Videos, Random Walk

Experiment 1 (Tagging):
Summary of Results

23

Human Rates Exp 2: 20 Videos, Random Walk

Attack Rates Exp 2: 20 Videos, Random Walk

Video CAPTCHA (Exp 2) and
Attack Simulation Results

Completion Times and
User Preferences

Completion times (in seconds)

• Tagging Exp: median = 20.6 seconds (μ = 29.7, σ = 34.7)

• CAPTCHA Exp: median = 17.1 seconds (μ = 22.0, σ = 23.6)

Which task is faster?

• 16%: neither 64%: text 20%: video (Tagging Experiment)

• 13%: neither 60%: text 27%: video (CAPTCHA Experiment)

Which task is more enjoyable?

• 23%: no pref 15%: text 62%: video (Tagging Experiment)

• 22%: no pref 20%: text 58%: video (CAPTCHA Experiment) 27

Comparison with
Other Methods

28

across samples. In general, the human success rates are
slightly lower in the second user study than in the first user
study. This can be explained by the sampling method used:
the videos used for the first user study were manually se-
lected while the videos used in the second user study were
generated randomly with manual filtering. The trends and
patterns of the human success rates are uniform across both
samples as seen in Figure 4 and Figure 5.

In the first user study, we were able to out perform the con-
trol by including as few as 5 additional related tags. How-
ever, in the second user study, we must include 10 or more
related tags for all t < 1.0. In the first user study, we were
able to reduce the attack success rate to nearly 1.2% (adding
5 related tags, pruning at 0.003, using stemming and exact
matching). However, in the second user study, the best secu-
rity level which we can achieve while maintaining the con-
trol pass rate for humans is 2.1% (adding 25 related tags,
pruning at 0.002, using stemming and exact matching).

As shown, the CAPTCHA can be parameterized to allow for
different tradeoffs between usability and security. We also
observed that it is indeed possible to out-perform the control
by adding related tags and pruning frequently occurring tags
during challenge generation.

COMPARISON WITH EXISTING CAPTCHAS
The results of our attack estimate and second user study sug-
gest that our Video CAPTCHAs have comparable usability
and security to existing CAPTCHAs (see Table 7). These
results are encouraging and suggest that Video CAPTCHA
might be a viable alternative.

CAPTCHA Name Type Pr(H) Pr(A)
Microsoft [3] Text-based 0.90 [3] 0.60 [23]
Baffletext [4] Text-based 0.89 [4] 0.25 [4]
Handwritten [19] Text-based 0.76 [19] 0.13 [19]
ASIRRA [6] Image-based 0.99 [6] 0.10 [8]
Video [13] Video 0.90 [13] 0.13 [13]

Table 7. A comparison of human success rates (Pr(H)) and attack
success rates (Pr(A)) for our Video CAPTCHA (for our most usable
condition) against several other well-known CAPTCHAs.

CONCLUSION
We have proposed the first CAPTCHA that uses video un-
derstanding to distinguish between humans and machines. It
has nearly all of the desirable properties outlined in the in-
troduction: challenges can be semi-automatically generated,
graded automatically, the challenge design and data are pub-
licly available, and challenge generation and grading may
be parameterized in order to achieve a desired balance be-
tween usability and security. Using a video database known
to be free of inappropriate content, our Video CAPTCHA
has all four desirable properties (no human in the loop is then
needed, and generation becomes fully automatic). Based on
data from an attack simulation and user study, the usabil-
ity and security of our Video CAPTCHA is also compara-
ble to many well-known CAPTCHAs (see Table 7). Also,
more than half (60%) of the participants that participated in

our second user study indicated that they found the Video
CAPTCHA more enjoyable than CAPTCHAs in which dis-
torted text must be transcribed.

In this first investigation, the security of the Video CAPTCHA
was only tested with a frequency-based attack. We acknowl-
edge that other attacks may perform better. For example,
computer vision could be used to located frames with text-
segments in them, OCR them, and submit these as tags.
Content-based Video Retrieval systems could be used to lo-
cate videos with similar content (and then submit their tags).
Audio analysis might give an indication as to the content of
the video.

It would be interesting to compare the usability of the Video
CAPTCHA under all combinations of audio and video be-
ing present or absent. Such a study would help us under-
stand how this would affect individuals using only a video
or audio feed, and individuals with limited vision or hear-
ing. The current CAPTCHA was tested only for English-
speaking users in America, trying to match English tags.
Another interesting experiment would be to see if using dic-
tionaries from other languages to seed random walks dur-
ing generation would yield usable challenges for other geo-
graphic regions and cultures.

Finally, the tag-based challenge generation technique pre-
sented is not video-specific. We can imagine CAPTCHAs
being developed which utilize social structure in other types
of tagged data, for example using images from the Flickr.com
database.

REFERENCES
1. H. S. Baird and K. Popat. Human Interactive Proofs

and Document Image Analysis. In Proc. IAPR DAS
2002, ACM Press (2002), 507–518.

2. M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and
S. Moon. I Tube, You Tube, Everybody Tubes:
Analyzing the World’s Largest User Generated Content
Video System. In Proc. IMC 2007, ACM Press (2007),
1–14.

3. K. Chellapilla, K. Larson, P. Y. Simard, and
M. Czerwinski. Building Segmentation Based
Human-friendly Human Interaction Proofs (HIPs). In
Proc. HIP 2005, LNCS (2005), 1–26.

4. M. Chew and H. S. Baird. Baffletext: A Human
Interactive Proof. In Proc. DRR 2003, IST/SPIE
(2003), 305–316.

5. M. Chew and J. D. Tygar. Image Recognition
CAPTCHAs. In Proc. ISC 2004, LNCS (2004),
268–279.

6. J. Douceur, J. Elson, J. Howell, and J. Saul. Asirra: A
CAPTCHA that Exploits Interest-Aligned Manual
Image Categorization. In Proc. CCS 2007, ACM Press
(2007), 366–374.

9

[13] K. Kluever and R. Zanibbi. (2008) Video CAPTCHAs: Usability vs.
Security. Proc. IEEE Western New York Image Processing Workshop,
Rochester, NY (USA) (extended abstract).

Conclusion

Summary

• First attempt at using video for CAPTCHAs

• Meets CAPTCHA criteria; semi-automated

• Usability & security comparable to existing
techniques

• Small majority of participants report preferring
video to text CAPTCHAs (altern.?)

29

To do....

Other attacks

e.g. CBIR; adapting task for these

Accessibility

Effect of audio/video only?

Localization

Use different dictionaries to ‘seed’ random walks, different
video databases

Other domains

Tag generation mechanism is not video-specific
30

Document and Pattern
Recognition Lab, RIT

Primary Aims

Improve theories and tools for constructing
recognition systems (e.g. Rec. Strategy Lang.)

Document recognition applications (online and offline)

31

DPRL: Members
Master’s Students

Ling Ouyang (OCR for math symbols)

Ramesh Muraleedharan (CAPTCHAs)

Amit Pillay (Combining structural pattern recognizers/RSL)

Li Yu (Content-based image retrieval for math)

Collaborators

Matthew Casey

Research Assistants

Adam Risi, Ben Hughes 32

Thank You.

Acknowledgements
Xerox corporation (UAC grant)

• Bill Stumbo, XWRC

Matthew Casey, U. Surrey Dept. CS

Online Demonstration:

http://sudbury.cs.rit.edu/
33

34

Evaluating the Usability and Security of a Video CAPTCHA

August 28th, 2008Kurt Alfred Kluever

Video CAPTCHA Design

Ask a specific question about the video

• “What color shirt was the man wearing?”

Ask which set of tags best matches

Ask for tags about the video

• “man shirt green”

