
Layout and Semantics: Combining Representations for
Mathematical Formula Search

Kenny Davila

Rochester Institute of Technology

1 Lomb Memorial Drive

Rochester, New York 14623

kxd7282@rit.edu

Richard Zanibbi

Rochester Institute of Technology

1 Lomb Memorial Drive

Rochester, New York 14623

rlaz@cs.rit.edu

ABSTRACT
Math-aware search engines need to support formulae in queries.

Mathematical expressions are typically represented as trees de�ning

their operational semantics or visual layout. We propose searching

both formula representations using a three-layer model. �e �rst

layer selects candidates using spectral matching over tree node

pairs. �e second layer aligns a query with candidates and com-

putes similarity scores based on structural matching. In the third

layer, similarity scores are combined using linear regression. �e

two representations are combined using retrieval in parallel indices

and regression over similarity scores. For NTCIR-12 Wikipedia

Formula Browsing task relevance rankings, we see each layer in-

creasing ranking quality and improved results when combining

representations as measured by Bpref and nDCG scores.
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1 INTRODUCTION
Math-aware search engines deal with information needs where

documents containing particular math expressions are sought a�er,

or where document similarity is de�ned by text and formulae. An

expression can be represented semantically by its operations using

an Operator Tree (OPT) or visually by a Symbol Layout Tree (SLT)

[16]. Figure 1 shows an SLT and OPT for x − y2 = 0.

Many researchers in Mathematical Information Retrieval (MIR)
assume OPTs provide be�er formula retrieval results than SLTs, but

each has limitations for retrieval. For SLTs, mathematical notation
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(a) Symbol Layout Tree (b) Operator Tree

Figure 1: Tree representations for x − y2 = 0

can change meaning based on context - a symbol may be an operator

in one context, and a variable in another, for example. In contrast,

well-formed OPTs are mathematically unambiguous. Online, most

write math expressions using SLT representations (e.g., LATEX). SLTs

can be converted to OPTs using parsers, but semantics are o�en

unde�ned or ambiguous, producing errors [3].

Our previous work (Tangent-3
1

[1, 17]) uses a two-stage SLT

model for formula retrieval. First, top-k candidates are identi�ed

using a bag-of-words model, using symbol pairs in SLTs as ‘words.’

�en, the top-k candidates are re-ranked a�er aligning query and

candidate SLTs. Candidates are re-ranked using the harmonic mean

of symbol and relationship recall (the Maximum Subtree Similarity)

and two tie-breakers: symbol precision a�er uni�cation, and symbol

recall without uni�cation.

We present an extended model, Tangent-S, that works with

OPTs and uses a stricter uni�cation model to avoid matching func-

tions to variable names. A third stage is added using a linear com-

bination of the structure similarity scores for re-ranking. Stronger

formula retrieval results are obtained by retrieving SLTs and OPTs

independently, and then linearly combining their similarity scores.

�is supports the view of OPTs and SLTs as complementary for

formula retrieval.

2 BACKGROUND
Approaches to formula search may be classi�ed by the primitives

used for indexing as text-based, tree-based, and spectral [17]. De-

tailed analysis of existing methods can be found elsewhere [3].

Text-BasedApproaches. Formulae are converted to a sequence

of tokens using linearization of formula trees. To increase the like-

lihood of �nding matches, some methods use canonicalization to

simplify expressions, and to identify commutative operators and

equivalences [8, 12]. It is also common to enumerate identi�ers to

support generalized variable matching and/or uni�cation [2, 12–14].

1
h�ps://cs.rit.edu/ dprl/So�ware.html#tangent
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Converting math to text allows use of existing optimizations in text

search engines, such as ranking by TF-IDF [10], topic modeling,

and word embedding [13].

Tree-Based Approaches. �ese approaches index formulas as

complete SLTs or OPTs. Typically, the hierarchical structures in

formulae are mapped directly, and organized within tree-based in-

dexing structures [4, 6, 18]. In these approaches, all subexpressions

in formulae are indexed to support partial matching, with common

subexpressions labeled and shared to reduce index sizes [6].

Spectral Approaches. Here paths in OPTs/SLTs or features

extracted from trees are used as retrieval primitives. Simpler prim-

itives allow more partial matches, increasing recall. Path-based

methods store sets of paths from the root to internal nodes [5] and

leaves [18]. Paths may re�ect operator commutativity by inserting

symbols [18] or using unordered paths [7]. Some use hashing to

encode subtrees [7, 11]. In Tangent-3 SLT symbol pairs along with

their relative paths are used to index math expressions [1, 17].

In this work, we extend the Tangent-3 system [17] to retrieve

formulae using both SLTs and OPTs, and make additional improve-

ments detailed below.

3 METHODOLOGY
Tangent-3 [17] retrieval model has two stages, one for fast candidate

selection using spectral matching, and the second for re-ranking

top-k candidates. We add a third stage, using a linear combina-

tion of similarity scores computed from the second layer to pro-

duce a �nal re-ranking of the top-k candidates. Rather than use

a learning-to-rank technique [9], a simpler model was chosen for

be�er understanding of the relevance of each similarity factor.

3.1 Formula Representation
To de�ne and constrain the behavior of matching and uni�cation

algorithms in SLTs and OPTs, we assign each symbol a type. Edges

between symbols are labeled by their order in OPTs, or by the

visual location of a child symbol with respect to its parent (e.g., for

superscript relationships) in SLTs (see Fig. 1).

Common Symbol Types. �ese include: Variables, Numbers,
Groups (matrices, vectors, sets, lists, …), Functions, Operators, Text,
White Space, �ery Wildcard and Error (e.g., for parsing errors).

Real data o�en provides strong clues for symbol types, but in some

cases symbol type can be hard to infer without context, leading to

incorrect symbol types and invalid uni�cations.

Symbol Layout Trees. �is representation is built around writ-

ing lines (baselines), leading to deep trees with few branches. �e

children of a node in this representation are assigned to a spa-

tial relationship class (edge label): Next, Above, Pre-above, Below,
Pre-Below, Over, Under, Within, and Element.

Operator Trees. �is representation is built around the hier-

archy of operators in a formula, resulting in shallow trees with

many branches. We distinguish between commutative operators

(e.g., ‘+’) and non-commutative operators (e.g., ‘-’). We ignore the

order of children for commutative operators. In Figure 1.b, all edges

to children of the equals sign have the same label.

3.2 Pair-based Index Model
A symbol pair is represented by the tuple (A,D,R) where A and D
are the ancestor and descendant symbols, and R is the sequence

of edge labels in the path from A to D. We use an inverted index,

with symbol tuples as keys, and each posting list storing references

to formulae containing the tuple. We use independent formula

indices for SLTs and OPTs. Two parameters control the symbol tuple

generation process: a window sizew and an End-of-Baseline (EOB)

�ag. Window size w de�nes the maximum path length between

an indexed symbol pair. If EOB is true, the system creates dummy

pairs between the last symbol on each baseline and null , to help

with matching small expressions (depth <= 2). Details may be

found elsewhere [17].

3.3 Formula Retrieval
Applying detailed similarity metrics can be prohibitively expensive.

For this reason, a three-layer retrieval process is used.

Layer 1: Initial Candidate Selection. Candidates are selected

by matching query symbol tuples in the index. For each candidate,

the harmonic mean of precision and recall of matched symbol tuples

is used to assign an initial score [17].

Layer 2: Structural Match Scoring. �e largest connected

match between the query and candidates is obtained using a greedy

algorithm, evaluating pairwise alignments between trees. Symbols

(nodes) of similar type are uni�ed, and query wildcards are matched

to subtrees. Connected matches may contain holes (unmatched

intermediate nodes) as long as edge labels between tree structures

always match. For SLTs, matching works mostly as de�ned for

Tangent-3 [1], except that we now restrict uni�cation to occur be-

tween single character identi�ers, or within identi�ers with two or

more characters, but not between these two groups. �is mitigates

the issue of spurious uni�cation matches between variables and

functions leading to bad candidates being ranked too high.

For OPTs, the order of arguments for commutative operators is

ignored to capture matches between equivalent expressions such as

x +y = 0 and 0 = y + x . However, testing all possible permutations

of children at matching time has a factorial time complexity. We use

a greedy pair-wise matching algorithm that considers all pair-wise

alignments between children of matching commutative operators,

and greedily chooses 1-to-1 matches between children maximizing

the predicted number of matches a�er uni�cation, breaking ties by

preferring alignments with more exact matches. While suboptimal,

this greedy approach can still be computed in polynomial time and

it allows us to match x + y = 0 and 0 = y + x perfectly.

�e output of matching is a subtree of the candidate formula

that has been successfully aligned to the query. For re-ranking, we

use the same three structural matching scores from Tangent-3 [17]:

Maximum Subtree Similarity (MSS), negative count of candidate

nodes matched with uni�cation, and negative count of query nodes

matched without uni�cation. To be�er support linear regression,

we replace the negative counts by the equivalent uni�ed precision

and recall without uni�cation, producing the same lexicographic

ordering as before using values in the range [0,1]. �e recall and

precision computed here di�er from those used by other formula

retrieval methods, in that they are computed from subtrees a�er

matching constraints are enforced.
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Table 1: NTCIR-12 optional MathIR Wikipedia Formula
Browsing Task. Average Precision@K per topic

Relevant Partially Relevant

Method P@5 P@10 P@15 P@20 P@5 P@10 P@15 P@20

MCAT [7] 0.4900 0.3900 0.3317 0.2825 0.9100 0.8400 0.8067 0.7687
Tangent-3 [1]

Core 0.4150 0.3150 0.2650 0.2200 0.8100 0.7450 0.7117 0.6737

Matching 0.4450 0.2925 0.2517 0.2200 0.8250 0.6825 0.6533 0.6100

SLT

Core 0.4000 0.3025 0.2567 0.2125 0.7900 0.7275 0.6950 0.6562

Matching 0.4550 0.3450 0.2817 0.2462 0.8350 0.7725 0.7400 0.6913

Regression 0.3900 0.2900 0.2450 0.2000 0.6300 0.5525 0.5117 0.4675

OPT

Core 0.3650 0.2550 0.2050 0.1700 0.6250 0.4825 0.4200 0.3662

Matching 0.3550 0.2475 0.2017 0.1787 0.5550 0.4400 0.3800 0.3425

Regression 0.3150 0.2475 0.2000 0.1700 0.6250 0.4975 0.4317 0.3850

Combined 0.4400 0.3150 0.2583 0.2162 0.7000 0.6075 0.5550 0.5112

Table 2: NTCIR-12 optional MathIR Wikipedia Formula
Browsing Task. Average Bpref per topic.

Core Matching Regression

Matches SLT OPT SLT OPT SLT OPT Comb.

Relevant 0.4207 0.4227 0.4786 0.4760 0.5240 0.5127 0.5530
Partially Relevant 0.5126 0.4241 0.5351 0.4206 0.5569 0.5492 0.5620

Layer 3: Linear Regression. Using relevance judgments data

from the NTCIR-12 Wikipedia Formula Retrieval task, we train

a least squares linear regressor to combine the three scores from

Layer-2 and produce a �nal rank score. While more complex func-

tions could have been used in this step, we choose a simple method

to avoid over-��ing the limited training data available, and to

clearly observe which re-ranking scores best predict relevance.

Combined SLT/OPT Retrieval Approach. We combine re-

sults from SLTs and OPTs in a simple way. First, we perform symbol

pair-based retrieval within a separate index for each representation.

�e top-k candidates obtained from each index are merged into a

single list. �en, for each candidate we apply the detailed matching
and scoring processes using both SLTs and OPTs representations,

and we concatenate the similarity scores into a single vector. Fi-

nally, a linear regressor assigns a relevance score for the formula.

In our experiments, we see that this simple combination obtains

be�er rankings than using scores from just SLTs or OPTs.

4 EXPERIMENTS
To evaluate our approach, we use data from the NTCIR-12 MathIR

competition [15]. Speci�cally, we use data from the optional MathIR

Wikipedia Formula Browsing Task which has a corpus of 319,689

articles from English Wikipedia with more than half a million for-

mulae. �e task has 40 topics for isolated formula retrieval: 20

are concrete (without wildcards) and 20 include wildcards. Each

wildcard query is a derived from a concrete query, with portions of

the concrete query replaced by wildcards.

At NTCIR-12, the top-20 results for each topic from 8 submis-

sions were evaluated for relevance. Each result was assessed by

two human evaluators who scored them from 0 (irrelevant) to 2

(relevant). �ese scores were combined and each formula has a

�nal relevance score between 0 and 4. A total of 2687 relevance

assessments were produced by this method.

We evaluated the ranks produced by the model for each represen-

tation (SLT, OPT) at each retrieval stage (Core, Matching, Regression).

�e combined SLT/OPT approach (Section 3.3) is also considered,

for a total of seven conditions. At the �rst stage, we select the

Table 3: Average nDCG@K of ranks per topic for judged
NTCIR-12 Wikipedia Formulae.

All Topics Concrete Only Wildcard Only

Condition @5 @20 @5 @20 @5 @20

SLT

Core 0.7109 0.7002 0.7991 0.7727 0.6236 0.6277

Matching 0.7534 0.7218 0.8033 0.7776 0.7036 0.6659

Regression 0.7943 0.7723 0.8031 0.7958 0.7855 0.7488

OPT

Core 0.6978 0.7184 0.7889 0.7891 0.6066 0.6478

Matching 0.7459 0.7446 0.7889 0.8018 0.7028 0.6874

Regression 0.7519 0.7331 0.8008 0.7773 0.7031 0.6888

Combined 0.8136 0.7908 0.8131 0.8088 0.8141 0.7728

top 1000 candidates for each query using w = All (all tuples) and

EOB = True . Given the limited number of relevance assessments

available, for conditions using Linear Regression we grouped each

concrete query with its corresponding wildcard version, and cre-

ated 20 data folds. We then used cross-validation, repeatedly using

one fold to test and the remaining 19 folds to train a linear regressor,

until all queries have been processed.

Table 1 compares our three-stage ranking systems, and systems

participating in the NTCIR-12 competition. We used the TREC eval

tool to compute the values of Precision@K with K in {5,10,15,20}.

Unlike the Tangent-3 submissions at NTCIR-12 [1], we ensured that

the lexicographic order used for ranking a�er structural matching

(the Matching conditions) was preserved by the TREC eval tool,

by computing the ranks produced by the �xed-order MSS and tie

breaker scores, and then using the reciprocal rank (1/r ) of each

score vector as the �nal score. Formulae with identical score vectors

are re-ranked by the TREC eval tool based on document id.

Mainly because of a large number of unrated formulas that are

unfairly assumed to be irrelevant, Precision@K scores for the pro-

posed conditions, specially the OPT-based, are lower than those for

systems in the competition, with the exception of SLT Matching

which are higher than Tangent-3 Matching. However, Tangent-S is

simpler and faster than MCAT [1, 7], the best performing system

in the competition.

�e binary preference (Bpref) metric ignores unrated matches,

and quanti�es the ability of the ranking method to keep judged

relevant matches ranked higher than irrelevant ones. Table 2 shows

a comparison of Bpref values across di�erent conditions of our

own method. Unfortunately, Bpref values are not available for the

original systems in the competition.

In terms of Bpref, we can see that in most cases the values in-

crease at each layer of the retrieval model. For partially relevant

results, with SLTs Bpref goes from 0.4207 in the initial set of can-

didates to 0.5240 a�er using linear regression, and from 0.4227 to

0.5127 for OPTs. When SLT and OPT scores are combined, Bpref

increases to 0.5530. �is con�rms that each step of the pipeline

improves the quality of the produced ranks, and that combining

representations helps.

As the number of expressions judged per topic is relatively small,

and given that our new conditions produce many unrated results in

the top-20, we have used a di�erent approach to further analyze the

rankings produced. We re-ranked all judged formulas for each topic

using each stage of our retrieval model, and we compared these

ranks against the ideal rankings using nDCG@K with K = {5,20}

as shown in Table 3. Consistently, the Matching stage improves the
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Table 4: Top-5 formula results for�ery-12 for each ranking stage for each representation

�ery-12: O (mn logm)
Symbol Layout Trees Operator Trees Combined

Core Matching Regression Core Matching Regression Regression

1. O (mn logm) O (mn logm) O (mn logm) O (mn logm) O (mn logm) O (mn logm) O (mn logm)
2. O (mn) O (V E logV ) O (mn logp ) = O (n logn) O (mn) O (nk log (n)) O (mn logp ) = O (n logn) O (mn logp ) = O (n logn)
3. O (mnp ) O (V E logV log (VC )) O (mn) = O

(
n3

logn
)

O (mnp ) O (V E logV ) O
(
mnr 2

log
1

ϵ
)

O
(
M (m) log

2 m
)
= O (M (n) logn)

4. O (m + logn) O (Tm) = O
(
n2m logn

)
O
(
d5n log

3 B
)

Θ (mnp ) O (n logn) O (pn (m+n logn)) O
(
mnr 2

log
1

ϵ
)

5. O
(
m
√
n logn

)
O (nk logk ) O

(
mnr 2

log
1

ϵ
)

O (mr ) O (nk logk ) O (Tm) = O
(
n2m logn

)
O (mn) = O

(
n3

logn
)

ranking quality produced by the initial spectral symbol pair match-

ing for both representations. While linear regression consistently

increases nDCG for SLTs, it produces a small decrease for OPTs

compared to the lexicographic order of the same scores from the

Matching stage. �is may be due to a greater collinearity between

Recall of nodes and MSS in the OPT space. In general, nDCG values

for Concrete topics are higher than for the Wildcard topics. In

the current matching procedure, we have observed that allowing

Wildcards to match subtrees in the presence of poor uni�cations

can cause bad partial matches to be ranked high.

An analysis of relevance against similarity scores reveals that

while the means of MSS and node recall increase with the relevance

of judged matches on both representations, node precision a�er

uni�cation is not well correlated with relevance and might hurt

linear regression predictions and even re-ranking in general. �is

is not surprising since some bad partial matches have low recall but

high precision. For example, a single query wildcard can be matched

to an entire arbitrary expression tree with perfect precision.

Table 4 illustrates the di�erences in the Top-5 ranks for each

stage of the model for the query O (mn logm), for both SLTs and

OPTs. Di�erences in structure for each representation change the

initial set of candidates extracted from the collection. �e Matching
columns show how the uni�cation process helps in increasing the

rank of partial matches that become exact a�er uni�cation. �is

query illustrates how linear regression can sometimes produce

less intuitive rankings than the simpler lexicographic match score

ordering. It also shows how the OPT representation can give be�er

rankings to equivalent expressions that have a slightly di�erent

layout like the candidate O (nk log (n)) a�er uni�cation.

It is important to acknowledge noise in the NTCIR-12 formula

data. Many expressions are incorrectly but consistently converted

into Content MathML from LATEX. For example, the sub expression

f (x ) is almost always converted to the tree corresponding to f × x .

Such errors in the source can lead to many undesirable partial

matches for OPTs at retrieval time.

5 CONCLUSIONS
We have presented a comparison of the performance for two math

expression representations using a three-layer retrieval model. We

also presented a simple way to combine Symbol Layout Tree (SLT)

and Operator Tree (OPT) representations into a single retrieval

model. Overall, this combined model produced be�er rankings

than the individual representations. Our results suggest that addi-

tional restrictions are needed for uni�cation, to prevent undesirable

matches and resulting rankings. In this study, we simply used the

similarity scores proposed in the original retrieval model that we

extended. However, the method proposed here may be used to in-

corporate and study additional similarity scores that may be be�er

predictors for relevance (e.g., symbol and structure recall before

uni�cation). Similarity scores can also be combined with non-linear

models for more accurate candidate selection and relevance predic-

tion, while maintaining fast retrieval.
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