
Programmer’s Guide to
The Recognition Strategy Language (RSL)

Version 2.0 (DRAFT)

Richard Zanibbi1

March, 2011

1Wrote this document. RSL Language: Copyright (c) 2011, Matthew Fluet, Benjamin Holm and Richard Zanibbi



Note on the History of RSL
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R. Cordy at Queen’s University, Kingston, Canada in 2004. This document summarizes the re-design and
re-implementation of RSL produced at the Rochester Institute of Technology by Matthew Fluet, Ben Holm
and Richard Zanibbi during 2010-2011.
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Chapter 1

The Recognition Strategy Language

The Recognition Strategy Language (RSL) is a domain-specific language for pattern recognition. It is
implemented through translation and compilation in Standard ML (SML) using the MLton whole-program
optimizing compiler. This document summarizes the second version of RSL, which is a complete re-design
of the original language. This document summarizes the key features and use of the language from the
programmer’s perspective.

Pattern recognition applications include computer vision, speech recognition, time series analysis, and
many others. RSL was designed from the viewpoint that pattern recognition algorithms may be most easily
understood in terms of the decisions they make, and that they should therefore be defined in terms of decision
sequences. Generally speaking, given some data such as an image, these decisions are generally answers to
one or more of the following questions:

1. Where are the objects of this type? (Segmentation)

2. What are the type(s) of these objects? (Classification)

3. How are these objects of these types structured? (Parsing (relating objects))

For non-trivial applications, these questions are often easy to pose but difficult to answer. For example,
it is easy to ask, ‘Where are the faces in this image?’, but face recognition is not a solved problem in the
general case. However, if we refine our question just a little bit, instead asking: ‘Where are the bounding

boxes that contain faces in this image?’, the set of possible answers is well-defined and finite (though large).
RSL is designed to make it easy to express recognition decisions, and to change the functions that make
decisions. We refer to this as decision-based specification of recognition algorithms.

In the list of recognition questions above, we see that one must define a set of locations in the data
before they can be classified, that defining a set of (meaningful) locations requires a decision about the class
of objects sought after, and that relating (parsing) locations requires a set of locations with assumed types.
In addition, current information about structure (parsing) can be used to constrain the location and types of
objects. Machine-learning techniques may also be used to jointly optimize a group of decisions. Using our
face detection example, we might repeat a process of defining a set of candidate face rectangle locations,
and repeatedly change these to maximize the probability that each of the final set of rectangles contains a
single face, and that the region outside these boxes does not contain a face. To do this effectively, one needs
to address the following additional question:

4. Which is the best value for this/these decision model parameter(s)? (Machine Learning)

The often complex functions that make decisions are defined separately from the main RSL program.
These decision functions may be defined using different programming languages. For example, decisions
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based on logical inference might be expressed in Prolog, and decisions requiring image processing might be
expressed using Matlab, or C using the OpenCV library. These ‘external’ decision functions are functions
in the host language (Standard ML), which then interface with the other languages using the ML Foreign
Function Interface (FFI) or system calls. The current RSL implementation makes use of the FFI provided by
the MLton compiler. RSL makes it easy to express mapping a decision or output function over the current
set of interpretations, making it easier to create evaluation data, visualizations, or other useful information.
The re-implementation of RSL in ML allows decision functions to be implemented in a concise functional
style, with support for higher-order functions and automatic type inference (provided by SML, which is
strictly typed).

In addition to decision-based specification, another central feature of RSL is the automatic creation of
a history of the decisions made by a program, along with the ability to query this history. This makes
it possible to determine exactly which decisions select correct and incorrect alternatives (in our example,
bounding boxes for faces), and at what point(s) in the program’s execution. It also makes it possible to
evaluate the set of generated hypotheses within an RSL program, such as using the recall and precision of
this set (known as the historical recall and precision of generated hypotheses).

The revised RSL also permits annotations for decision to be recored in the history, and then observed
after the decision-making portion of an RSL program is complete. This is an important change, as it allows
the output of arbitrary computations to be stored separately from the interpretation data, without being
available to the decision process itself.

The remainder of this document briefly summarizes the use and key features of RSL.

1.1 Compilation and Execution

Figure 1.1 illustrates how RSL programs are compiled and executed using the rslc program. rslc is
itself a script which calls the RSL Parser (rslp, a TXL program), followed by the MLton Standard ML
Compiler. MLton is a whole-program optimizing compiler that produces efficient executables. Invoking
rslc without arguments produces the following:

RSL Parser -> MLton Compiler script
Copyright (c) 2010,2011

Usage: rslc [-v] <program.rsl> [mlton-compilation-flags] [.o/.c libs]

-v: generate verbose output (.dot graph file, .data output file)

NOTE: compiler flags and .o/.c libraries may be intermixed.
It is assumed that compiler flags do not have .o/.c
files as values.

At compile time, the user provides an .rsl program (program.rsl in Figure 1.1) which may include one
or more Standard ML files containing decision functions ( decFunctions.sml in Figure 1.1). Any
compiled C library files invoked by decision functions to the RSL compiler must be passed to rslc, which
simply passes them on to the MLton compiler.

Given an .rsl program, the RSL parser (rslp, implemented in the TXL language) generates files for
interpretation types and operations (shown as program-types.sml), the SML translation of the RSL
program (program.sml), and a MLton build file (program.mlb). An additional file with the extension
.lsrl is produced for reference (this is a modified version of the user’s program), but not used during
compilation with MLton.
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(a) RSL Program Compilation. Inputs and outputs are shown using solid liners; file dependencies are shown using
dashed lines. program.lrsl is an annotated RSL file produced before generating .sml code, and is produced for

reference only. Objects files for compiled C programs may be passed to MLton (their use requires the MLton Foreign
Function Interface). The rslc program invokes both rslp and MLton.
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(b) RSL Program Execution. An interpretation file (textfile in a format defined by the programmer) may be passed
on the standard input, and if provided will define the initial set of interpretations for the program (otherwise an empty

set is used). If rslc is invoked using the -v option, then in addition to text sent to the standard output (e.g. from
print statements), snapshots of the execution traces at the end of the main() and report() functions are

produced.

Figure 1.1: RSL Program Compilation and Execution

For the main RSL program, The main program translation maps RSL functions to ML functions, and
RSL operations to operations in Abstract Syntax Tree (AST) nodes, and performs some context-sensitive
syntax checking for the RSL program (e.g. insuring that ‘reporting’ operations are not used in the main
program). The output executable is produced by compiling the generated SML files with the RSL Core
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library, which includes code for interpreting the generated ASTs.1

An executable RSL program may be used with different input files, called interpretation files or ifiles
for short, that contain zero or more interpretations of the data to be recognized in the RSL program. These
files are simply a list of interpretations, where individual interpretations are in a format specified by the
programmer. A detailed description of interpretation files are provided below in Section 1.2. Running an
interpretation file through an RSL program produces data on the standard output. If rslc is run with the
-v (verbose) option, then the execution will also produce files summarizing the execution trace after the
main() function has completed, and after the report() function has completed. These output files are
produced only if the main() or report() functions are defined.

A Note on Sharing ifiles Between RSL Programs: An RSL program may use an ifile produced by
another RSL program, provided that the interpretation type definitions are the same. This allows RSL
programs to be built up from smaller programs, or for RSL programs to be broken up into a set of smaller
programs that can be chained together.

1.2 Interpretation Input and Output: ifiles and Related Functions

An interpretation file, or ifile is a text file representing a set of interpretations in a list. The format is very
simple, containing:

• The number of interpretations (first line)

• For each interpretation:

[ Interp (number) ]
((( Interp. data in programmer-defined format )))
blank line

Here is a simple interpretation file, containing three interpretations, with interpretations represented by
a single integer:

3
[Interp 1]
9

[Interp 2]
11

[Interp 3]
13

Note that RSL programs can automatically generate the number of interpretations, interpretation headings,
and invoke user functions to write an interpretation file such as the one shown above. Users may also
manually create or modify ifiles on their own (e.g. to quickly generate test cases, or try different inputs for
a given RSL program).

Figure 1.2 lists the functions used in RSL to read and write ifiles (each has a default definition in
rsl/trunk/rsl parser/AstTraceExec.sml that has no effect). The streamToInterp func-
tion is used to read interpretations below the “[Interp number]” headings from ifiles passed on the Standard

1dependencies on the Core RSL library (implemented in SML) are not shown in Figure 1.1. The set of RSL Core library files
may be found by looking at the .mlb file generated by the RSL parser (rslp).
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FUNCTION PURPOSE

streamToInterp:
TextIO.stream! Types.Interp.t Read single interpretation from a text stream (Standard

Input or text file)

interpToString:
Types.Interp.r! string Create string for single (raw: Types.Interp.r) interpre-

tation.
hcInterpToString:
Types.Interp.t! string Create string for single (hash-consed: Types.Interp.t)

interpretation.

annotToString:
Types.Annot.t! string Create a string representing an annotation.

Figure 1.2: Pre-defined Interpretation Input and Output Functions. Programmers may over-ride the default
implementations of these functions (e.g. in an included file decFns.sml). annotToString is used
when producing output for annotations in the execution trace, but not for reading/writing interpretations.

Input, or added to the current interpretation set from a file using the add operation. The output function
interpToString is used to implement the print ifile and write ifile <filename> com-
mands, which print an interpretation file for the current set of interpretations in an RSL program to the
standard output or an external file, respectively.

1.3 Example Programs

1.3.1 Hello World

As a first example, below is ‘Hello World’ in RSL. Note that an interpretation type must be defined (here
with a single integer field), but is not used. Note that comments begin with ‘(*’ and ending with ‘*)’.

(* Interpretation type declaration *)
interp:

field: int

(* This is the main function. *)
fn main() {

print "Hello World."
}

1.3.2 A More Complex Example

Figure 1.3 shows a more complex RSL program, which makes use of decision points. For simplicity, in-
terpretations consist of just an integer, and an integer set. The file containing decision and other external
functions (firstExampleExternalFns.sml) is shown in Figures 1.4 and 1.5. The first part of the
external function file re-defines a number of the built-in output functions described above in ML. The second
part of the file defines decision functions used to modify the current set of interpretations.

The execution trace graph corresponding to the firstExample.dot file produced on running the
program is shown in Figure 1.6.
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In the trace graph shown in Figure 1.6, nodes and edges are numbered in sequence (in hexadecimal),
with nodes corresponding to decision points with an associated set of interpretations (shown in boxes with
dashed arrows coming out of nodes). Edges are annotated with the operation performed, and the associated
decision point label. Note that rslp attaches a prefix D# to each label associated with a decision (given in
square brackets in the .rsl program), insuring that each decision point has a unique label.

The Init{INIT} operation coming out of the node N 0000 corresponds to reading interpretations
from the standard input; here no data was provided on the standard input. The conditional statement if is
broken up into nodes for the sets of interpretations for which the conditional test is true and false, and then the
interpretations produced in the true/false branches are merged in node N 0011. Note also that some nodes
share identical interpretation sets in the graph, for example the initial empty set of interpretations remains
empty when the program tries to read additional interpretations from the standard input (node IS 0000, the
empty set of interpretations).

The file firstExample.data illustrates the type of output produced in .data files. Note that this
provides additional information related to the interpretations and interpretation sets generated by the pro-
gram.

(* Include (SML) decision functions from another file *)
i n c "firstExampleExternalFns.sml"

(* Interpretation type. *)
i n t e r p:
IntField: int
IntSet: int set

(* Main function. *)
fn main() {
(* Add initial interpretationt using function initInterp. *)
[ I ] munge: initInterp

(* Update interpretations *)
[ A ] update: decA
[ B ] update: decB

(* Accept interpretations for which decC returns true *)
[ C ] i f decC {
accept

} e l s e {
reject

}
}

Figure 1.3: Example RSL file
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(* OUTPUT FUNCTIONS *)
v a l annotToString = fn (a : Annot.t) => case a of

NONE => ""
| SOME (Note (s)) => s

v a l intSetToString = fn (ms) =>
(* ’o’ used for function composition (right-to-left) *)
(String.concat o List.rev o ( fn l => "}"::l) o #2)
(* Argument to result of function composition. *)
(List.foldl ( fn (m,(b,acc)) =>

(true,
(Int.toString m)::
( i f b then ","::acc e l s e acc)))

(false,["{"])
ms)

(* Create a string for an interpretation. *)
v a l interpToString = fn (i) =>

l e t
(* Here we’re binding variables to field values. *)

v a l {IntField = n, IntSet = ms} = i
in

String.concat ["(",
Int.toString n,
", ",
intSetToString ms,
")"]

end

(* Use Interp.rvalue to obtain ’raw’ interpretation, then invoke
* interpToString *)

v a l hcInterpToString = fn (i) =>
interpToString( Interp.rvalue i )

Figure 1.4: firstExampleExternalFns.sml: Part 1 (Output)
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(* DECISION FUNCTIONS *)
(* Define a text note, which must be ’SOME’ *)
v a l note = fn (s) => SOME(Note(s))

(* Use with ’Munge’ operation to define initial interpretation *set* *)
v a l initInterp = fn i =>

l e t
in

( note("Munge"), [ ( note("Munge"), Interp.rhcons { IntField = 8, IntSet =
[] }) ] )

end

v a l decA = fn i =>
l e t

(* Returns the value: in the original example, a pair (n,ms) *)
v a l { IntField = n, IntSet = ms } = i
(* Syntax: define function to map, followed by list to map over. *)
v a l r = List.map ( fn j =>

l e t
v a l msU =

List.foldl ( fn (k,msU) => k::msU )
[]
(List.tabulate (j, fn k => k))

v a l i’ = { IntField = n, IntSet = ms @ msU }
in

(note("decA"), i’)
end)
(* Set over which to map:
* a list of integers, with j being the identity
* fn; maps from 0...n-1 ! f(0) ... f(n-1) *)
(List.tabulate (n, fn j => j))

in
(note("decA"), r)

end

v a l decB = fn i =>
l e t

v a l { IntField = n, IntSet = ms } = i
v a l r = List.map ( fn j =>

l e t
v a l msD = List.filter ( fn k => k mod j = 0) ms
v a l i’ = { IntField = n,
IntSet = List.filter

( fn el =>
not (List.exists

( fn e’ => e’ = el)
msD))

ms }
in

(note("decB"), i’)
end)

( i f n > 0
then List.tabulate (n - 1, fn j => j + 1)

e l s e [])
in

(note("decB"), r)
end

v a l decC = fn i =>
l e t

v a l { IntField = n, IntSet = ms } = i
v a l r = List.exists ( fn e => e = (n div 2)) ms

in
(note("decC"), r)

end

Figure 1.5: firstExampleExternalFns.sml: Part 2 (Decisions)
10
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  E_0002  
  Init{INIT}  

�������

������

  E_0004  
  Munge<D1_I>  

������

  E_0006  
  Update<D2_A>  

�������

�����	

  E_0008  
  Update<D3_B>  

������


������

  E_000B  
  IfS<D4_C,true>  

������

  E_000C  
  IfS<D4_C,false>  

�������

�����

  E_000E  
  Accept<D5>  

�������

������

  E_0010  
  Reject<D6>  

�������

������

  E_0012  
  IfJ<D4_C,true>  

  E_0013  
  IfJ<D4_C,false>  

Figure 1.6: RSL Trace for execution of firstExample.rsl
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Node ! InterpSet::
N_0000: IS_0000
N_0001: IS_0000
N_0003: IS_0001
N_0005: IS_0008
N_0007: IS_0015
N_0009: IS_0021
N_000A: IS_0023
N_000D: IS_0021
N_000F: IS_0000
N_0011: IS_0021

InterpSet::
IS_0000: {}
IS_0001: {I_0000}
IS_0008: {I_0000, I_0001, I_0002, I_0003, I_0004, I_0005, I_0006, I_0007}
IS_0015: {I_0000, I_0008, I_0009, I_000A, I_000B, I_000C, I_000D, I_000E, I_000F, I_0010, I_0011,

I_0012, I_0013, I_0014}
IS_0021: {I_0009, I_000B, I_000C, I_000D, I_000F, I_0011}
IS_0023: {I_0000, I_0008, I_000A, I_000E, I_0010, I_0012, I_0013, I_0014}

Interp::
I_0000: (8, {})
I_0001: (8, {0})
I_0002: (8, {0,1})
I_0003: (8, {0,1,2})
I_0004: (8, {0,1,2,3})
I_0005: (8, {0,1,2,3,4})
I_0006: (8, {0,1,2,3,4,5})
I_0007: (8, {0,1,2,3,4,5,6})
I_0008: (8, {5,3,1})
I_0009: (8, {5,4,2,1})
I_000A: (8, {6,5,3,2,1})
I_000B: (8, {6,4,3,2,1})
I_000C: (8, {5,4,3,2,1})
I_000D: (8, {6,5,4,3,2,1})
I_000E: (8, {5,3,2,1})
I_000F: (8, {4,3,2,1})
I_0010: (8, {3,1})
I_0011: (8, {4,2,1})
I_0012: (8, {3,2,1})
I_0013: (8, {2,1})
I_0014: (8, {1})

Figure 1.7: firstExample.data: output from execution of firstExample
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Chapter 2

Data Model

The central data structures in an RSL program are the current set of interpretations, the history of unique
interpretations, and the trace of executed decisions and their effects. We also discuss bindings of local
symbols in RSL functions, though these are not stored within the history of an RSL program.

2.1 Interpretations

The most important data structure in RSL is the current set of interpretations that are modified as an RSL
program executes. Roughly speaking, interpretations may be understood as a record type, or objects with
data fields but no methods.

2.1.1 Interpretation Declarations

Below is a simple interpretation declaration.

interp:
bbox: (int * int) * (int * int)
density: real

This defines an interpretation as a record consisting of two fields, the field bbox, which contains a pair of
integer pairs (x,y coordinates defining a bounding box), and a pixel density (percentage of foreground pixels
within the bounding box), given as a floating point number (in ML terminology, a real).

The interpretation declaration of an RSL program must precede all other RSL functions. Field types
may be any of those shown in Table 2.1.

2.1.2 Hash-Consing, Interpretations, Interpretation Sets, and program-types.sml

The central data structure in an RSL program is the current set of interpretations. Using a technique termed
hash-consing[1], all interpretation data is stored so that each unique interpretation is stored only once within
the data structures of an RSL program. This allows the set of unique interpretations produced to be stored
and recovered at the end of an RSL program, and makes it possible to determine when decisions produce
the same intepretation(s).

Put simply, hash-consing involves computing a hash value for every part of an interpretation, and then
providing a numeric signature (tag) for each unique value of the hash-consed type. Sets of interpretations are
hash-consed as well. Equivalence for two objects of a hash-consed type can then be tested using their tags,
rather than comparing the entire structure of interpretations. This requires some additional overhead for
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Table 2.1: Interpretation field types. See the rsl/trunk/hash-cons directory. Some types are defined
for different precisions (int, real, word)

Primitive Types (ML)
bool boolean

int integer
word memory word

real real number (floating point)
char character

string string
unit the empty tuple, () (analagous to void in other languages)

Data Structures (Note: element type precedes structure type)
type1 * . . . * typen Tuples (pairs (e.g. int * int), triples, 4-tuples supported)

list List (examples: int list ; (real * string) list)
vector Dynamic array (example: real vector)

set Set (example: ( int * (int list) ) set )
option Optional value (e.g. int option has type NONE or

SOME(int))

adding new elements to the hash tables (in order to define tags uniquely), but makes testing the equivalence
between two interpretations fast (in the ideal case with few hash-table collisions, O(1)).

In RSL hash-consing of interpretations is implemented using ML functors that map user-provided types
to hash-consed versions of those types. Hash-consed types are constructed recursively from primitive types,
ending with the outer structure type (e.g. the hash-consed interpretation set). Code used to implement
hash-consing may be found in the directory rsl/trunk/hash-cons.

The RSL parser (rslp) defines a structure RslTypes.Interp in the file program-types.sml
for program.rsl, which defines the interpretation type, including its hash-consed type information and
related functions. To produce the hash-consed type, each field of the interpretation record is given a separate
ML structure, that defines a hash-consed version of the user-provided type for the field. In the example
above, two structures for the fields bbox and density are generated, RslTypes.Interp.bbox S
and RslTypes.Interp.density S, where the types for each are hash-consed. The generated code for
RslTypes.Interp.t defining the hash-consed interpretation record type would look similar to:

...
type t = {
bbox_S : MkHashConsedTuple2(

MkHashConsedTuple2(structure H1 : HashedInt
structure H2: HashedInt)

MkHashConsedTuple2(structure H1 : HashedInt
structure H2: HashedInt)),

density_S: HashedReal }
...

The S suffixes are added to make the fact that the field types are hash-consed ML structures explicit, both
in the generated code, and in any code that manipulates hash-consed interpretations.

Individual interpretations as well as interpretation sets are also hash-consed and assigned to a structure
in a generated .sml types file (e.g. program-types.sml). To understand the generated file and some
RSL operations it is important to be aware of this translation to hash-consed types, but the programmer
need not manipulate hash-consed data directly, for reasons we’ll now discuss.
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Raw Types, rvalue, and rhcons

Simultaneously with the creation of hash-consed interpretation and interpretation set types, ‘raw’ types
which correspond to the field types provided by the programmer in the interpretation declaration are gener-
ated as part of the RslTypes.Interp structure in program-types.sml. For the example above, the
following will be created as the ML structure RslTypes.Interp.r:

...
type r = {
bbox : (int * int) * (int * int),
density: real }

...

This defines a type that is a regular ML record with two fields of the types specified in the RSL program
itself. ‘Raw’ interpretations and interpretation sets (defined as a list of ‘raw’ interpretations) may be obtained
from hash-consed data using the rvalue function, and hash-consed versions of ‘raw’ data may be produced
using the rhcons (recursive hash-cons) function.

Note that these field names match those given by the programmer. The expectation is that an RSL
programmer will work primarily with ‘raw’ interpretations in their programs.

2.1.3 Types and Functions for Hash-Consed Structures

Each hash-consed structure, including those produced for primitives, data structures, interpretations and
even interpretation sets themselves must define the types and functions listed below. Note that some of
these are not visible within a generated program-types.sml file, as some are defined in the functors
used to create hash-consed types; see rsl/trunk/hash-cons/mk-hash-consed.fun and other
mk-hash-consed-*.fun and related signature files (.sig) in the same directory.

1. Raw type (r): un-consed type, e.g. as given for interpretation declarations

(a) raw value (rvalue): un-consed value, e.g. of type for interpretation declarations

(b) recursive hash-consing function (rhcons): maps raw type to hash-consed type through recur-
sive bottom-up construction

2. Hash-consed type (t)

(a) hash-consed value (value): obtain the value of a hash-consed structure.

(b) hash function (hash)

(c) hash-consing function (hcons): create consed type from component types

(d) unique identifier (tag)

(e) equality test (equal): compare tags for hash-consed objects of the same hash-consed type.

Note: the ‘raw’ type for an interpretation set is a list of interpretations of ‘raw’ type.

2.1.4 Observation Specifications

Most RSL operations support the use of observation specifications. which specify what fields of the inter-
pretation records are to be visible to the decision function, and if applicable, which field(s) are updated by
the decision function. For operations that update interpretations, the syntax is:
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[field1], ..., [fieldn] observing [field_first], ..., [field_last]

where field1 ... fieldn are the fields to update, and field first ... field last are the fields to additionally
observe to determine the updates. All the named fields will be de-consed (that is to say, put in ‘raw’ format)
before being passed to the associated decision function. Note that munge does not support observation
specifications, as the operation is designed to manipulate hash-consed interpretations directly.

For control flow operations (if, while), the syntax is:

observing [field_first], ..., [field_last]

where here we only observe interpretations, as the boolean tests do not manipulate interpretations.
Operations that support observation specifications are indicated in Tables 3.1, 3.2, 3.3 and 3.4.
Observation specifications have two purposes: first, they are used for automatic un-consing of interpre-

tations, and to identify those fields that may be updated by a decision. By providing an explicit observation
specification, those fields identified will be un-consed, vs. the default where all fields are un-consed for
observing using Interp.rvalue. Similarly, for a number of operations the field(s) to update may be
idenfitied in an RSL operation, allowing a decision function to return records containing only the idenfitied
fields, rather than complete interpretations.

Generally speaking, it is a good idea to explicitly state fields to observe and modify, especially if only
one or two are needed, but interpretations contain many fields. This reduces the amount of un-consing
that needs to occur when passing interpretations to a decision function, and re-hash-consing when updating
modified interpretations. In addition, this assists makes dependencies between interpretation components
explicit in the RSL program (note that it is possible for a programmer to observe or not really manipulate
fields identified in an observation specification).

Examples: see rsl/trunk/tests/obs spec for simple examples of observation specifications,
and associated decision functions.

2.2 Annotations

Preceding the interp section, there may be an optional notes section of an RSL program, which defines
the set of legal annotations returned by decision functions. Annotations store information that may be useful
at the end of the program, but will not used by the algorithms interpreting the input data. The declaration
syntax is nearly identical to that for interpretations; here is an example.

notes:
Prob: real
IntensityHistogram: int vector
(* DEFAULT: Note: string *)

Here we have defined a probability annotation Prob, and an intensity histogram for greyscale images
IntensityHistogram, as a vector of integers, using one bin for each possible color (e.g. 0-255).
The Note: string type is always defined by default, and is only shown above for illustration.

Any of the types shown in Table 2.1 may also be used to define annotation types. Decision functions in
RSL may always return NONE (no annotation) in lieu of an annotation value. Defined annotations need to
be defined using a constructor, e.g. using Note(“My annotation”) to construct an annotation of type Note.1

Annotations will be discussed further in the context of decision functions and manipulating the RSL
history.

1in the implementation, all annotation types are defined as part of a single datatype note, with one constructor corresponding
to each annotation type provided by the programmer. The set of possible annotation types, RslTypes.Annot.t, is then defined
as a note option.
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2.3 RSL History

There are three types of data stored in the execution history: a record of unique interpretations and interpre-
tation sets, a record of which decisions were executed and what their inputs and outputs were, and a record
of decisions produced at decision points in the trace. These three different aspects of the history are stored
using execution trace graphs, with nodes representing decision points with an associated current interpre-
tation set, and edges representing decisions made. A decision record is represented in the attributes of an
edge. Additionally, some hash tables are constructed, as described below.

The execution trace graph is currently output as a .dot file, after completion of the main() and/or report()
functions.

During execution of an RSL program, the different history components are recorded as listed below.
History data is stored in a structure (see rsl/trunk/rsl/mk-rsl-trace.fun, and the associated
signature file rsl-trace.sig in the same directory). This trace is passed to external functions when
using ‘historical RSL operations,’ which we describe later.

1. The trace graph, including the data structures to record all nodes (Trace.nodes), all edges (Trace.edges),
the initial node (Trace.init), and final node (Trace.fini). The functions Trace.inEdges and Trace.outEdges
may be used to obtain incoming and outgoing edges for each node in the trace graph.

2. Interpretations. Trace.interpSetAtNode returns the interpretation set at a given node for a trace.
Trace.finalInterpSet will return the current set of interpretations at the end of the trace. ***All in-
terpretations may be obtained by folding over all interpretation sets in the trace (see the function
allInterpList, defined in mk-rsl-trace.fun).

3. Interpretation Edge Table. Trace.getInterpEdgeTable returns a hash table mapping hash-consed
interpretations to a list of all edges corresponding to operations that produced the given interpretation.
Annotations for decisions are stored on edges, including those for individual interpretations or
decisions, as well as interpretation sets.

4. Decision points reached. Trace.allDecisionTags will return a list of string labels for every decision
point reached during the execution of a program.

5. Decision Point Node Table. Trace.dpNodeTable returns a hash table mapping strings for decision
points to a list of all nodes produced correpsonding to the labeled decision point.

2.3.1 User Annotation Table

In the reporting portion of an RSL program, operations are modified so that in addition to an interpretation
or interpretation set being passed to external decisions, RSL makes the current execution trace available to
the decision function, along with a hash table from (hash-consed) interpretations to a list of triples of type
(string * Annot.t * DGraph.edge.t).

Currently, the hadd operation will return a hash table from (hash-consed) interpretations to triples
representing edges in the execution trace, and insert these into the current user annotation table. Each entry
in the list of triples for an interpretation has a string corresponding to the string label associated with the
edge, NONE for the annotation, and a reference to the edge itself. Note that edges store annotations for
decisions, so these can be recovered from the edges. See rsl/trunk/rsl/mk-rsl-exec.fun for
the implementation (as AST node type E Query).

This table is manipulated by the hadd operation (which queries the history), and some other historical
functions (e.g. hupdate), where the programmer may add annotations of their own.
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Note: for reporting functions, the reject operation clears both the current set of interpretations and
empties the current user annotation table.

Example: see rsl/trunk/tests/query, which contains the example program queryTest1.rsl. Try
running the program using:

./queryTest1 testIn.i 4

The program will print contents of the user annotation table, and make queries using simple filters.
Note: operations to query the attribute table have been added (e.g. getar), so that the programmer

does not need to act on the attribute table directly. These functions are defined in the file:

rsl/rsl parser/AstTraceExec.sml.

2.3.2 Decision Labels

As can be seen in Figure 1.3, RSL operations may have an associated decision label. For example,

[ I ]
munge: initInterp

Labels the operation munge: initInterp with [ I ], where “I” is the label associated with this
operation, which adds a single interpretation to the current interpretation set. The .lrsl file created by the
RSL Parser (rslp) contains the list of complete labels used for a program. Every RSL operation other than
output statements are numbered in order using D<num>: operations not labeled by the programmer will
have this unique tag as a decision label, and given decision labels are modified so that D<num> becomes a
prefix for the label. In the example above, the generated label for the munge operation is D0 I.

In the reporting portion of an RSL program, interpretations and associated annotations may be recovered
from the RSL history using the hadd operation, which uses regular expression matching against decision
labels to define the set of decision points from which to add interpretations and associated edges to the
current set of interpretations, and the current user annotation table, respectively.

2.3.3 Automatically Generated Decision Label Suffixes

Within the RSL Core library (see rsl/trunk/rsl/mk-rsl-exec.fun), control flow operations are
given some annotations to provide a finer-grained set of decision labels to match when querying the history.
These are summarized in the table below.

Operation Suffix Description
if -true Set of interpretations for which the boolean test is true.

-false Set of interpretations for which the boolean test is false.
-all Set of interpretations produced from the union of interpretations

from true and false branches.
if all -in Set of interpretations received as input. Tags above also defined

for if statement that is executed after the initial currying of
the decision function using the current set of interpretations.

while -true, -false, -out while is implemented using ‘if’: multiple invocations can lead
to multiple nodes in the execution trace (if decision points) hav-
ing the same label (e.g. -true). See note below

while all -in Set of interpretations received as input.
duplicate -out Union of interpretation sets produced by all branches.

Table 2.2: Suffixes added to decision points during RSL execution
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Note: accept operations may be labeled, which can be useful for simply capturing interpretation sets.
For while operations, this must be used to capture the final set of interpretations produced, as there
may be multiple ‘-out’ results produced, due to the current implementation of while using if statements.
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Chapter 3

RSL Syntax and Operations

3.1 RSL Functions

The syntax of RSL functions is quite simple. Here is an example of a regular RSL function, that manipulate
the current set of interpretations.

fn main ( arg1 ) {
(* Declarations *)
i = 5
message = "a string"
k = Int.toString(arg1)

(* RSL operations )
print "Hello World."
print "I was given:"
print k
[ Out ] accept

}

Arguments are provided as names, without types. Also, note that value bindings must precede the RSL
operations: expressions for values may be provided as any primitive ML value or single function call (which
may be higher-order, i.e. arguments to this function may themselves be functions). More sophisticated
bindings and operations may also be produced through embedding ML directly into the RSL function (see
Section 4.2).

For reporting/historical functions, the syntax differs only slightly:

hfn report ( arg1 ) {
(* Declarations *)
i = 5
message = "a string"
k = Int.toString(arg1)

(* RSL operations )
print "Hello World."
print "I was given:"
print k
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(* Add interpretations from end of main function above, print with

* edge/annotation information *)
hadd [ "Out" ]
hprint showInterpWithAssociatedEdges

}

Here we run code nearly identical to that for main, but being a historical function additional operations
may be used that make use of the program trace, and the user annotation table (see the previous chapter for
an explanation of these).

Note that for report, the set of command line arguments is enforced as being identical to that for
main. This is not the case for any other RSL functions, where the set of arguments is programmer-defined.

3.2 RSL Programs

RSL programs are defined, in-order, as:

1. An optional list of included SML files (inc "file")

2. An optional ‘notes’ declaration for annotation types

3. The ‘interp’ interpretation type declaration

4. Zero or more RSL regular functions

5. Zero or more reporting/historical RSL functions

In an RSL program, regular RSL functions must precede historical reporting functions. Both RSL
function types may employ any of the RSL operations shown in Tables 3.1 and 3.2, which manipulate the
current set of interpretations, affect control flow observing the current set of interpretations, and produce
output (again, looking at the current set of interpretations).

However, the operations shown in Tables 3.3 and 3.4 can only be used in historical/reporting functions.

3.2.1 Two Entry Points: main and report

The first entry point for an RSL function is the main regular RSL function. If provided, the program
continues with the report historical RSL function, from which the history produced by executing main
may be queried and analyzed.

3.3 External/Decision Functions

Decisions are made in RSL programs by functions that are normally defined outside of the RSL program it-
self. We refer to these as ‘external functions’ or ‘decision functions.’ All decision functions are implemented
as Standard ML functions. Standard ML provides support for executing code from other languages using
the Foreign Function Interface (FFI) or (much more crudely) through system calls to executable programs.

In addition to defining how interpretations are to be modified, external functions may be used to define
boolean values (e.g. for conditional statements), or to produce strings (e.g. for printing to the standard
output, or to a text file).

There are two basic types of decision functions; those that operate on individual interpretations (‘reg-
ular’), and those that operate on interpretations plus historical information (‘historical’). In addition, a
number of operations such as update, hupdate and if allow the decision function to be a curried
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function that is first applied to a set of interpretations before returning a function to be applied to individual
interpretations. We briefly summarize these different types of decision functions below.

3.3.1 Regular Decision Functions

Other than for munge, regular decision functions that do not employ an observation specification or ‘all’
are of the form: RslTypes.Interp.r ! [output-type] that is to say, a single interpretation is
assumed as input, and the appropriate output (boolean, string, or annotated list of interpretations) needs to
be returned by the decision function.

[DRAFT: for time, look at rsl/trunk/rsl/rsl-ast.sig for expected types for different operations].

3.3.2 Historical Decision Functions

For historical decision functions (again, other than munge or those using ‘all’), the input is a triple, consist-
ing of:
(RslTypes.Interp.r * ((string * RslTypes.Annot.t * DGraph.Edge.t) list) HashTable

* Trace.t) ! [output-type]
This simply states that the decision function must accept an interpretation, the user annotation table (a

hash table of (string, annotation, trace graph edge) triples), and a Trace structure (containing information
about the program’s execution to the current point in the program), and then return the output type expected
by an operation.

3.3.3 ‘all’ functions

keyword Whether for regular or historical operations, the all keyword is used to indicate an operation where
the decision function must be a curried function. The decision function will first be applied to the set
of interpretations, and must return the curried function, along with an annotation (which is stored in the
history: see rsl/trunk/rsl/mk-rsl-exec.fun).

Example: see rsl/trunk/tests/cond.

3.4 RSL Operations

In this section we provide a very brief summary of the operations available in RSL, and their syntax.

3.4.1 Regular Function Operations

Operations that may be used in both regular and historical RSL functions are summarized in Tables 3.1 and
3.2.

3.4.2 Historical RSL Operations

Operations that may only be used in historical RSL functions are summarized in Tables 3.3 and 3.4. Note
that with the exception of hadd, the operations are simply variations of the regular function operations, but
where the input to the function is a triple rather than a single interpretation or interpretation set. External
functions associated with these ‘historical’ or ‘reporting’ operations are passed the current state of a user
annotation table (in which edges from the execution trace and/or defined by the programmer are stored),
along with the complete execution trace.
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Table 3.1: RSL Decision and Output Operations
Interpretations
accept Accept (keep) the current set of interpretations (no-op)
reject Reject the current set of interpretations (produces empty set)

(in reporting/historical functions, also empties user annotation table)
add [file name] Add interpretations to current set from an ifile
update [obs spec] : [dec fn] update each current interpretation using a decision function.
update all [obs spec]: [dec fn] As in previous, but first pass current interpretation set to dec fn, then

apply resulting curried function dec fn curry to each interpretation.
munge : [dec fn] Replace the current hash-consed interpretation set using dec fn.
Output: Standard Output and Standard Error
print [string] Print string to standard output.
print ifile Print current interpretations as an ifile to standard output.
print [obs spec] : [str fn] Print the string produced by str fn for each interpretation.
print all [obs spec] : [str fn] As in previous, but first pass current interpretation set to str fn, then apply

the resulting curried function str fn curry to each interpretation.

error [string] Print string to standard error.
error ifile Print current interpretations as an ifile to standard error.
error [obs spec] : [str fn] Print the string produced by str fn for each interpretation.
error all [obs spec] : [str fn] As in previous, but first pass current interpretation set to str fn, then apply

the resulting curried function str fn curry to each interpretation.
File Output (use write ++ to append to rather than overwrite a file)
write [string] to [file name] Write string to given file name.
write ifile to [file name] Write current interpretations as an ifile to file name.
write [obs spec] : [str fn] Write the string produced by str fn for each interpretation.
write all [obs spec] : [str fn] As in previous, but first pass current interpretation set to str fn, then apply

the resulting curried function str fn curry to each interpretation.

Table 3.2: RSL Control Flow Statements

fun name([arg list]) Call an RSL function, passing the current set of interpretations
(implcitly) along with the given list of arguments.Regular RSL
functions (fn) may not invoke historical/reporting functions
(indicated by hfn)

if [obs spec] [bool fn] { ... } else { ... } Simple conditional (else branch optional). Note that interpre-
tations are individually passed down the true or false branch;
branches that receive no interpretations are not executed.

if all [obs spec] [bool fn] { ... } else { ... } As above, but first pass current interpretation set to str fn, then
apply the resulting curried function bool fn curry to each inter-
pretation.

while [obs spec] [bool fn] { ... } Apply operations in the given scope to each interpretation mak-
ing bool fn true, until no no such interpretation remains.

while all [obs spec] [bool fn] { ... } As above, but first pass current interpretation set to bool fn, then
apply the resulting curried function bool fn curry to each inter-
pretation.

duplicate { ... } . . .{ ... } Create two or more scopes that will process the current set of
interpretations in parallel (independently of one another), and
return the union of their final interpretation sets as the final re-
sult.
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Table 3.3: Historical RSL Decision and Output Operations
Querying the History (for Interpretations and Trace Graph Edges)

hadd [ [dec label list] ]
[ : interp bool] ]
[ notes : note bool ]

Add interpretations from the indicated decision points, selected by
matching any of a list of regular expressions to portions of deci-
sion labels (e.g. [ ”dec”, ”init” ] to match all labeled points in the
firstExample.rsl program) Regular expressions are defined us-
ing awk syntax.
Interpretations are filtered using the interp bool function (keeping
those making the function true), and edges associated with the set of se-
lected interpretations are filtered using note bool, and added to the
user annotation table.

hadd all
[ : bool value] ]
[ notes : bool value ]

As above, but any filters provided are applied to the set of all interpreta-
tions produced.

Interpretations
hupdate [obs spec] : [dec fn] update each current interpretation and user annotation table using a

decision function.
hupdate all [obs spec]: [dec fn] As in previous, but first pass current interpretation set to dec fn, then

apply resulting curried function dec fn curry to each interpretation.
hmunge : [dec fn] Replace the current hash-consed interpretation set and user annotation

table using dec fn.
Output: Standard Output and Standard Error
hprint [string] Print string to standard output.
hprint ifile Print current interpretations as an ifile to standard output.
hprint [obs spec] : [str fn] Print the string produced by str fn for each interpretation, also observing

the user annotation table and trace.
hprint all [obs spec] : [str fn] As in previous, but first pass current interpretation set to str fn, then apply

the resulting curried function str fn curry to each interpretation.

herror [string] Print string to standard error.
herror ifile Print current interpretations as an ifile to standard error.
herror [obs spec] : [str fn] Print the string produced by str fn for each interpretation also observing

the user annotation table and trace.
herror all [obs spec] : [str fn] As in previous, but first pass current interpretation set to str fn, then apply

the resulting curried function str fn curry to each interpretation.
File Output (use write ++ to append)
hwrite [string] to [file name] Write string to given file name.
hwrite ifile to [file name] Write current interpretations as an ifile to file name.
hwrite [obs spec] : [str fn] Write the string produced by str fn for each interpretation also observing

the user annotation table and trace.
hwrite all [obs spec] : [str fn] As in previous, but first pass current interpretation set to str fn, then apply

the resulting curried function str fn curry to each interpretation.
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Table 3.4: Historical RSL Control Flow Statements

hif [obs spec] [bool fn] { ... } else { ... } Simple conditional (else branch optional) but also observing
the user annotation table and trace. Note that interpretations
are individually passed down the true or false branch; branches
that receive no interpretations are not executed.

hif all [obs spec] [bool fn] { ... } else { ... } As above, but first pass current interpretation set to str fn, then
apply the resulting curried function bool fn curry to each inter-
pretation.

hwhile [obs spec] [bool fn] { ... } Apply operations in the given scope to each interpretation mak-
ing bool fn true, until no no such interpretation remains, but
also observing the user annotation table and trace. .

hwhile all [obs spec] [bool fn] { ... } As above, but first pass current interpretation set to bool fn, then
apply the resulting curried function bool fn curry to each inter-
pretation.
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Chapter 4

Pre-Processing and the RSL Compiler

The current RSL compiler rslc is implemented using a combination of TXL and SML (Standard ML).

4.1 inc: including additional SML source files

At the top of an RSL program, any number of .sml files may be included using the syntax:

inc "externalDecs.sml"
inc "anotherFile.sml"

. . .

4.2 Embedding ML in an RSL program

While it is less-than-ideal style, to support rapid prototyping ML code may be embedded directly within an
RSL program, using the syntax (*ML*) ... (*ML*). ML may be embedded in the following parts of
an RSL program:

• Before the inc include declarations,

• Before the notes and interp declarations,

• Before a regular or reporting/historical RSL function, or

• In the data declaration section at the top of an RSL function.

Note that RSL functions are mapped to SML functions.
Embedded ML that precedes the include and notes/interpretation type declarations will appear in the

file program-types.sml. The remaining ML code is translated and included in the main generated
program.sml file produced by rslp for a program named program.rsl.

An example is provided in rsl/trunk/tests/mlembed/mlembed.rsl (note: the program takes
one command line argument).
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4.3 Command-Line Arguments

In an RSL program, the number of command-line arguments passed must match the number of command-
line arguments named as parameters of the main() function. Consider the following program, which will
say hello to the passed command-line arguments.

interp:
field: int

fn main( name1, name2 ) {
print "Hello " ˆ name1 ˆ " and " ˆ name2

}

hfn report() {
print "And a Historical Hello for " ˆ name1 ˆ " and " ˆ name2

}

This program will say hello to the two passed command line arguments twice: once for the main pro-
gram, and once for the reporting portion of the program. Note that the same command line arguments are
passed to the report() and main() functions with the same identifier names, even if the report
function has arguments. This means that the reporting function shown above is transformed so that it is
equivalent to:

hfn report( arg1, arg 2 ) {
print "And a Historical Hello for " ˆ name1 ˆ " and " ˆ name2

}
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[1] FILLIÂTRE, J.-C., AND CONCHON, S. Type-safe modular hash-consing. In ML ’06: Proceedings of

the 2006 workshop on ML (New York, NY, USA, 2006), ACM, pp. 12–19.

28


