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ABSTRACT
We report on the system design and NTCIR-Math-2 task
results for the Tangent math-aware search engine. Tangent
uses a federated search over two indices: 1) a TF-IDF tex-
tual search engine (Lucene), and 2) a query-by-expression
engine. Query-by-expression is performed using a bag-of-
words approach where expressions are represented by pairs
of symbols computed from symbol layout trees (e.g. as ex-
pressed in LATEX or Presentation MathML). Extensions to
support matrices and prefix subscripts and superscripts are
described. Our system produced the highest highly + par-
tially relevant Precision@5 result for the main text/math
query task (92%), and the highest Top-1 specific-item recall
for the Wikipedia query-by-expression subtask (68%). The
current implementation is slow and produces large indices
for large corpora, but we believe this can be ameliorated.
Source code for our system is publicly available.
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1. INTRODUCTION
Math expressions found in on-line documents are often

encoded in LATEX or MathML. Conventional text search en-
gines ignore the structure provided in those encodings, treat-
ing math as normal text. This may prevent users from lo-
cating relevant documents due to limited structural informa-
tion about expressions in the search index. This text-based
approach also poses problems for users. In terms of query
formulation, there is an intention gap for non-experts un-
familiar with LATEX or MathML (e.g. when trying to learn
about ‘

(
n
2

)
’ [21]). Also, a recent study confirms that present-

ing ‘raw’ math encodings in search results can adversely af-
fect the accuracy of relevance assessment for search hits [16].
Multimodal search interfaces like min that support visual
editing of query expressions may help with query formula-
tion [21] (see Figure 1), but in general better integration of
expression layout and/or content is needed.

Issuing a math expression as a query is known as query-
by-expression, and systems supporting such queries may be
beneficial to both non-experts looking up unfamiliar formu-
lae as well as experienced researchers seeking to locate rele-
vant papers based on formulae [22].
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Note however, that query-by-expression is insufficient in
many cases due to publications across different topics and
fields sharing formulae. Take for example Bayes’ theorem
below, which is found in documents from diverse fields like
Machine Learning, Statistics, Medicine and History [12].
Without keywords to refine the query, Bayes’ theorem will
match a wide variety of documents for myriad topics.

P (A|B) =
(B|A)P (A)

P (B)
.

When individuals have a mathematical information need,
the query they pose often consists of interleaved math and
text as opposed to separated math and text, as can be seen in
the titles of posts from question-and-answer (Q/A) forums
such as MathOverflow and MathStackExchange.1

The field of Math Information Retrieval (MIR [23]) is
still relatively young, with few benchmark datasets avail-
able. The NTCIR-Math tasks provide a valuable resource
in this regard, both in collecting system results and dissemi-
nating labeled corpora for use in research. 2014 is the second
year in which an MIR workshop has been held. The tasks
in which we participated are the main text/math query task
(Math-2) and the Wikipedia query-by-expression subtask.

For our group to successfully participate in NTCIR-11,
we needed to modify our group’s earlier query-by-expression
system (Tangent [19, 20]) so that it could scale to cope

1http://mathoverflow.net/
http://math.stackexchange.com/

Figure 1: The min search interface [18]. Input via
keyboard, mouse/touch and images is supported.
Queries may be sent to different engines, including
DLMF [14], Google, Wolfram Alpha, and Tangent



with the gigabytes of documents from the arXiv2 used for
the main task. We also needed to add support for addi-
tional structures (e.g. matrices) and wildcard variables. Our
intended audience for Tangent was originally non-experts,
whom we imagined submitting whole expressions from a pdf
document or web page [3, 9] to learn more about them.

Our system performed well in both NTCIR-11 Math-2
tasks, achieving a Precision@5 of over 92% in the main task
(when counting both highly and partially-relevant hits), and
the strongest result for the Wikipedia expression retrieval
task, with a specific-item recall at Top-1 of 68% and 74%
at Top-10. However, there are performance issues that need
to be addressed. While the original Tangent system was
fast enough for real-time use, the current implementation of
the expression retrieval engine is slow in terms of indexing
and retrieval time, and produces relatively large index files.
We remain confident that our basic approach is sound, and
that efficient implementations and/or approximations can
be created. Source code for our system is available.3

We continue with a discussion of related work in text and
math retrieval in the next Section.

2. RELATED WORK
In this Section we briefly summarize related work, and in

particular work that has influenced the design of Tangent.
Text Search. Text-based informational retrieval is one

of the oldest areas of research in Computer Science, and
a number of approaches have been devised over the years
[11, 17]. Methods based on ‘bag-of-word’ representations,
where the frequency of terms in documents are used to de-
fine a vector space remain dominant, with variations of the
Term Frequency-Inverse Document Frequency model (TF-
IDF) being the most popular (e.g. the Pivot TF-IDF tech-
nique [11]). Boolean and Bayesian approaches have also
been well-studied and find use in practice.

An important data structure for supporting text search
is the inverted index [24]. In an inverted index, words or
other tokens are mapped to documents that contain them.
A widely-used scalable full text inverted index library is the
Lucene Java library.4 We adapt a TF-IDF-based scoring
metric provided with Lucene, as discussed in Section 3.2.

Math Search and Query-by-Expression. Mathemat-
ical Information Retrieval (MIR) is a comparatively new
area of research [23]. An important early development was
the creation of the NIST Digital Library of Mathematical
Functions (DLMF) which supports LATEX queries [14]. Cur-
rently systems supporting query-by-expression accept queries
in LATEX or Presentation MathML representing the layout of
symbols in an expression (see Figure 2b) or Content MathML
which represents the underlying mathematical semantics via
an operator tree for the expression. Both the layout and op-
erator representations are rooted trees.

Techniques for query-by-expression may be categorized
into methods that use operator structure vs. the layout of
symbols in an expression, and methods that use sequence-
based matching (e.g. by tokenizing LATEX and then mod-
ifying a conventional text retrieval system [14]) vs. those
that use the rooted trees representing expression semantics
or symbol placement directly [19]. At the present time, it

2http://arxiv.org/
3http://www.cs.rit.edu/~dprl/Software.html
4http://lucene.apache.org/

isn’t clear whether layout, mathematical content or some
combination of both are best to use for math search. How-
ever, tree-based methods appear to be proving more effective
for query-by-expression than adapting sequential text-based
techniques [4, 9, 20].

It is common in math search engines to create an inverted
index where symbols, subexpressions and/or complete ex-
pressions are mapped to the documents that contain them.
Two MIR systems that generate tokens from Presentation
MathML are Sojka and Liska’s MIaS system [10] and Kris-
tianto et al.’s MCAT system [7]. Tokens are generated dif-
ferently in both systems, but both store tokens in the Lucene
implementation of an inverted index. In the MIAS system,
during tokenization an expression is decomposed into indi-
vidual symbols (e.g. number, operator, function) and subex-
pressions. The tokenized form of the expression is a gen-
eralization, where for example all numbers are represented
using one symbol, and all identifiers another. Subexpres-
sions are also generated from these generalized expressions.
All generated tokens are assigned a weight capturing a dif-
ference/distance from the original formula. When an ex-
pression is retrieved, Lucene’s TD-IDF scoring algorithm is
adapted to use these token weights.

In the case of the MCAT system, an expression is bro-
ken into tokens containing symbols, operators, and sub-
expressions. Sub-expressions generate two token types: the
ordered symbols found in the subexpression, and the un-
ordered symbols. Unlike MIaS, when storing tokens in the
Lucene index, no additional weight is assigned to tokens.

An alternative to retrieving matched tokens and subex-
pressions in an inverted index is to instead use a unification-
based approach where a hierarchical index of expressions is
searched for similar expressions. This is the approach used in
Kohlhase and Sucan’s Math original WebSearch [6]. Math-
WebSearch makes use of a substitution index tree, originally
developed to unify terms for automated theorem proving.
Content MathML is stored in a substitution index tree, and
a search for expressions with similar operator structure and
operands starts from the dominating/lowest-precedence op-
erators. Nodes in the tree correspond to expressions with
common structure at the top of their operator trees. Mov-
ing from the root to the leaves of the substitution tree yields
increasingly concrete expressions.5

The query-by-expression technique we employed adapts
Stalnaker’s original Tangent system [20]. Tangent repre-
sents expressions using an inverted index over pairs of sym-
bols in an expression and their relative positions, effectively
using a Boolean bag-of-words (now, a bag-of-symbol-pairs)
approach to matching the structure of symbol layout trees
(e.g. as represented in LATEX and Presentation MathML).
Candidate expressions are scored by the ratios of query and
candidate symbol pair sets that are matched. Somewhat
surprisingly, this method tends to handle variable substitu-
tions and locate subexpressions of the query well, due to
using both local and non-local symbol relationships.

The original Tangent used a memory-resident hash table
implemented in Python and Redis to store expressions in
the English Wikipedia corpus. The system was fast enough
for use in real-time, and produced strong results in terms of
the similarity of returned hits to the query expression [20].
Details of our extensions and integration with text retrieval

5Updated MCAT [8] and MathWebSearch systems [5] par-
ticipated in NTCIR-11 Math-2.



are provided in Section 3.
Indexing Text and Mathematics. If math and text

are stored in the same index, such as in MIAS and MCAT, a
single function may be used to compute the similarity score
between two documents. However, an issue is that math to-
kenization can generate many tokens, and there are different
methods used to tokenize math and text.

Using separate indices for text and math features has been
used in systems such as MaTeSearch [2] and Nguyen’s sys-
tem [15]. The issue raised when using separate text and
math indices is how to combine their rankings. The com-
mon approach is to use a linear combination of a documents’
math and text similarity scores. In MaTeSearch, parameters
for the weight function were set empirically based on obser-
vations about the number of documents typically returned
for math and text queries. Nguyen et al. instead used a
learning algorithm to set the combination weights.

3. METHODOLOGY
The Tangent system used for NTCIR-Math-2 combines

a text retrieval system with a query-by-expression system.
It is a generalized version of Stalnaker’s original Tangent
system [20]. In this section we summarize how scores from
the math and text sub-systems are combined, followed by
details of the retrieval and scoring mechanisms used by each.

3.1 Combining Math and Text Scores
Determining an optimal manner in which to combine scores

from separate subsystems for text and math retrieval is chal-
lenging. Nguyen’s MIR system [15] used a Large Margin
Perceptron trained on pairs of documents from Math Stack
Exchange to learn the weights for his linear scorer. A similar
approach could be used for Tangent, but we instead varied
the combination weight over multiple runs in the main task
to observe the effect of the text weight (see Section 4).

We use a simple linear combination of the retrieval scores
for the text (Lucene/Solr) and math (symbol pair-based)
subsystems. If α ∈ [0, 1] is the weight for the text portion
of the system, the final score for a document d is given by:

score(d) = α lucene(d) + (1− α) expr(d)

where expr(d) is the maximum score for a formula in d, and
lucene(d) is the score for d output by Lucene.

3.2 Text Retrieval using TF-IDF/Lucene
Most common approaches to text retrieval use the term

frequency-inverse document frequency model (TF-IDF [17]).
TF-IDF represents a document as a vector of word frequen-
cies, with each frequency logarithmically scaled by the in-
verse ratio of documents containing the term (IDF). The
IDF scaling gives preference to rarer, and thus often more
discriminating terms: idf(t) = log( N

dεD:tεd
) where N is the

number of documents in corpus D, t is a term, and dεD : tεd
is the number of documents containing t.

The number of vector elements corresponds to the num-
ber of pre-selected terms from the corpus included in the
model (e.g. extremely frequent, non-discriminative ‘stop-
words’ such as ‘the’ are excluded). This representation al-
lows documents to be compared within a vector space, most
commonly using the dot product of normalized document
vectors. The dot product is proportional to the angular dif-
ference between two document vectors, arising from relative
differences in TF-IDF term values.

A key data structure for text search is the inverted in-
dex, which maps terms to the documents that contain them.
In our system we have used Lucene, which provides an in-
verted index and TF-IDF scoring algorithm. The text simi-
larity score used in our system is provided by Lucene’s Dis-
junction query, which applies TF-IDF to multiple fields of a
document.

For a single field, Lucene scores a document d for query
q = {t1, . . . , tn} by:

s(q, d) = c(q, d) idn(q)
∑
t∈q

√
freq(t, d) · idf(t)2 · norm(t, d)

where c is the ratio of query terms (ti) matched in the docu-

ment, idn(q) =
√∑

t∈q idf(t)2
−1

normalizes the squared idf

values, freq(t, d) the number of times t appears in d, and
norm(t, d) is the normalized number of tokens in the field
(in our case, body text or title).

To emphasize title text, the score for the title field is dou-
bled, and then the maximum of the title and body text scores
is returned as the final text score.

3.3 Math Retrieval using Symbol Pair Sets
Symbol Normalization. To avoid treating identical

symbols with different codes (e.g. unicode vs. LATEX codes)
as separate symbols, it is important to map these symbols
to common codes in a normalization step. We use integers
for this purpose. Unfortunately, in the current implementa-
tion this step is working improperly, meaning for example
that ‘>’ and ‘&gt;’ are treated as different symbols. Our
reported results may be slightly lower and our indices larger
due to these issues.

After the competition we noticed that the LATEXML tool
used to convert the arXiv data for the main NTCIR-11
retrieval task inserts ‘implicit multiplication’ operators be-
tween most adjacent identifiers and operators, leading to the
representation of relationships with and between invisible
operators in our index. Due to the consistency of the map-
ping, we expect that this has increased our index size with-
out significantly impacting the relevance of returned hits.
Earlier results suggest that effective retrieval is obtained by
Tangent without implicit operators [20].

Symbol Pair Tuple Generation. The input expression
is translated from Presentation MathML to a symbol layout
tree [23] that describes the relative placement of symbols
in an expression (see Figure 2b). Next, symbol pairs are
generated from the layout tree using a depth-first traversal
from the root of the tree toward the leaves. All symbols
generate a pair with each of their descendants, with symbols
at the end of baselines generating a relationship pair with
the placeholder symbol None.

For NTCIR we extended our earlier algorithm for gener-
ating pairs [20] to accommodate matrices and prefix sub-
scripts and superscripts. Matrices are handled by treating
whole matrices as symbols represented by their dimensions
along with LATEX for the subexpression located in each cell
(see Figure 3). The expression on the main baseline of the
expression is indexed in the normal way, treating matrices
as individual symbols, and each matrix subexpression cell is
converted to symbol pairs.

Prefix subscripts and superscripts have also been added,
through negating the distance between symbols if the child
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Parent Child Dist. Vert.
FRAC x 1 1
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2 None 0 0
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(a) Expression (b) Symbol Layout Tree (c) Symbol Pair Tuples

Figure 2: Symbol layout representations. Tuples are defined for every descendant of a symbol (c) in the
symbol layout tree (b). Symbols without children produce a tuple with child symbol ‘None.’ In (c), Dist.
is the path length from the parent symbol to the child symbol in the symbol layout tree, and Vert. is a
sum representing vertical displacements along this path: +1 for each superscript/above edge, -1 for each
subscript/below edge, and 0 for each horizontally adjacent/within edge.
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Matrix Structure
Parent Child Row Column
matrix dimensions 2 2
matrix ‘x2’ 1 1
matrix ‘0’ 1 2
matrix ‘0’ 2 1
matrix ‘1’ 2 2

Subexpressions
Parent Child Dist. Vert.
A matrix2x2 1 0
A + 2 0
A 1 3 0
matrix2x2 + 1 0
matrix2x2 1 2 0
+ 1 1 0
1 None 0 0
x 2 1 1
2 None 0 0
0 None 0 0
0 None 0 0
1 None 0 0

(a) Expression (b) Symbol Layout Tree (c) Symbol Pair Tuples

Figure 3: Matrix handling. At the topmost level of the expression, matrices are treated as single symbol
labeled by their dimensions (e.g. ‘matrix2x2’). This topmost expression along with all subexpressions in
matrix cells are represented as in Figure 2 (under Subexpressions in (c)). Additional tuples are used to
represent matrix dimensions, and the contents of matrix cells.

symbol is at left of the parent symbol, rather than at right.6

For example, the symbol pair from C to n in nC2 (‘n choose
2’) would be represented by (C, n,−1,−1).

Inverted Index and Retrieval. Figure 4 provides a
summary of the expression retrieval algorithm used by Tan-
gent. Our inverted index is broken into two parts, one
lookup table mapping symbol pairs to expressions (pairIndex
in Fig. 4), and a second lookup table mapping expressions to
the document containing an expression, and a list of (pair,
count) entries to represent symbol pairs in the expression
(exprIndex in Fig. 4). To save space, symbol names are
replaced by integer codes, and another table is used to map
expressions to their LATEX representation.

6First suggested by P. Pavan Kumar et al., University of
Hyderabad, India.

Using the inverted index in this way, our basic approach
is for specific symbol pairs and structures. However, in both
the main and Wikipedia subtasks, expressions in queries
could contain (enumerated) wildcards replaceable by any
symbol, e.g. a?i + b?i =?j2, where ?i and ?j represent two
different wildcard symbols, with a and b having the same
exponent. To address this, we have added entries in the
symbol pair index where either the parent or child symbol
is a wildcard. We then add a greedy search in our ranking
algorithm that assigns concrete symbols to wildcards such
that the largest number of unmatched symbol pairs associ-
ated with one wildcard symbol is matched incrementally (see
Figure 4, Step 5). To avoid overwhelming the system, we
ignore pairs of wildcard symbols (e.g. (?i, ?j, 0, 0)) and wild-
card symbols at the end of a baseline (e.g. (?w,None, 0, 0)).
This means that those pairs are treated as unmatched in the



retrieveExpression( query, topK, pairIndex, exprIndex ):

Let H be the search hits, an empty list.
Let C, L, and R be hash tables from expr. ids to symbol pairs
with counts, e.g. C: eid -> ((pair1,count1), ... ,(pairN, countN))
Let l* and r* be hash tables of candidates for wildcards

in an expression. l*,r*: (eid, ?w) -> (list of symbols)

1. Normalize the query, and build a symbol layout tree (T)

2. Generate symbol pairs (Q) for query tree T using a depth-first
traversal

3. Symbol pair lookup:
a. Find symbol pairs from Q without wildcards in pairIndex,

update C to record matching pairs in pairIndex
b. Find each pair (?p, [any symbol]) from Q in pairIndex,

update L; add symbols matching ?p to l* for each expression
c. Find each pair ([any symbol], ?c) from Q in pairIndex,

update R; add symbols matching ?c to r* for each expression

4. Filter: Sort expressions in C by matched pair count, then
keep only the topK expressions in C

5. Match wildcard symbols and score expressions:

For each expression (eid) in C:
a. Let U be a set containing unmatched symbol pairs with counts.

Obtained by removing matched pairs in C[eid] from all pairs
in the expression, stored in exprIndex[eid]

b. Let W be the set of unique wildcard symbols in Q,
and wildcard match count M be 0

c. Until W is empty, or no wildcard match is found:
i. Using substitution candidate tables l* and r*, find the

(symbol, ?w in W) substitution that is most frequent
ii. Remove matching pairs from U, and matched wildcard ?w

from W. Increment M by the number of matched pairs
d. Let I be the sum of M and the number of matched pairs

in C. Let Recall be I/|Q| and Precision I/|eid|, where
|eid| is the number of symbol pairs in the expression

d. Add (eid,score) to hit list H, where score is the F-measure
for query and expression symbol pair matches, defined
by F = (2 * Recall * Precision) / (Recall + Precision)

6. Sort search hits H by F-measure, then return H

Figure 4: Tangent expression retrieval algorithm.
?p, ?c and ?w represent wildcard symbols in queries

query, but also means that when there are a large number
of wildcards, many parts of the structure of the expression
may not be represented.

Matching expressions are ranked by the harmonic mean
of the ratio of matched query expression pairs and ratio of
matched candidate expression pairs. We return both the
specific expression along with the document with which the
expression is associated.

Multiple Expressions. The math score for a document
d is given by a weighted sum of the top-1 match scores for
each query expression ei (t1(d, ei)). Individual top-1 ex-
pression match scores are weighted by the ratio of pairs in
a query (|ei|) to all pairs in queries:

m(d, e1, ..., en) =
|e1|∑

i=1...n

|ei|
t1(d, e1)+. . .+

|en|∑
i=1...n

|ei|
t1(d, en)

4. RESULTS
Our group participated in two tasks for NTCIR-Math-2:

1) the ‘main’ Math-2 task, and 2) the Wikipedia subtask
for formula retrieval using query-by-expression. These cor-
pora are quite different. The English Wikipedia corpus con-

NTCIR11-Math2–35

Formula Query: || x � a ||  1

|| a
�1||

Keyword: invertible
Keyword: Banach algebra

NTCIR11-Math2–36

Formula Query: ⇢( A ) = lim
n!1

|| A
n
||1/n

Keyword: spectral radius
Keyword: matrix

NTCIR11-Math2–37

Formula Query: A = U S V
T

Keyword: singular value decomposition
Keyword: matrix

NTCIR11-Math2–38

Formula Query: || x + y || p  || x || p + || y || p

Keyword: minkowski
Keyword: inequality

NTCIR11-Math2–39

Formula Query: P[ X � t ]  E[ X ]

t
Keyword: Markov inequality

NTCIR11-Math2–40

Formula Query: lim
n!1

P[| A
n
� E[ X ]| > e ] = 0

Keyword: weak law
Keyword: large number

NTCIR11-Math2–41

Formula Query: P[ lim
n!1

A
n

= E[ X ]] = 1

Keyword: strong law
Keyword: large number

6

µ(A) =

{
1 if 0 ∈ A
0 if 0 /∈ A.

a) Math-2 #39 b) Wikipedia #49

Figure 5: Sample Queries. Query a) contains four
wildcard symbols (shown in boxes), and two key-
words. Queries for the Wikipedia subtask were sin-
gle expressions. Query b) has no wildcards and in-
cludes a tabular/matrix layout

tains 387,947 unique expressions,7 while the arXiv corpus
used for the main Math-2 task contains 30,008,971 unique
expressions. The Wikipedia corpus contains roughly 35,000
encyclopedia entries, each treated as a single document. The
arXiv corpus contains 100,000 scientific articles (e.g. from
physics) split into fragments, producing 8,301,578 ‘docu-
ments.’ These fragment ‘documents’ range in size from a
couple of words to complete derivations with accompanying
text. The uncompressed arXiv collection occupies 173GB
on disk.

Queries differ in the two tasks; Figure 5 provides exam-
ples. In the main task, most queries are a single expres-
sion along with keywords. One main task query contained
four query expressions, and two contained two query ex-
pressions. The number of keywords in each query was be-
tween one and six, with roughly three keywords on average
(µ = 3.1, σ = 1.27,mode = 3). For the Wikipedia task,
100 expressions were selected randomly from the English
Wikipedia articles, and then had variables replaced by wild-
cards uniformly at random. The original names of wildcard
variables were provided in the main task, but enumerated
as x1, . . . , xn in the Wikipedia task. In the Wikipedia task,
36 of the 100 queries contained wildcards (36%), while for
the Math-2 task 40 of 50 queries had an expression contain-
ing wildcards (80%), with an average of 2.9 wildcards per
expression (µ = 2.9, σ = 2.3,mode = 2), and between 0 and
10 wildcards in query expressions.

The main task (Math-2) was evaluated using hits judged
by two human evaluators. Evaluator ratings were combined
into a single Likert scale rating between 0 (irrelevant to the
query) and 4 (highly relevant). Unjudged hits were treated
as irrelevant. Evaluations were performed two ways: 1)
highly-relevant condition: judged hits with a rating of 3
or 4 are treated as relevant, and 2) partially-relevant con-
dition: judged hits with a rating greater than 0 are treated
as relevant. The treceval evaluation tool (version 9.0) was
used to compute Precision@5 and Precision@10 metrics.

Due to the large number of submitted runs for the main
task, a ‘round-robin’ sampling method was used to select hits
for ranking, trying to cover as many of the submitted top-k
hits as possible. Most top-5 hits were evaluated for systems,
but coverage of the top-10 was less consistent (for example,
on average 6 of our system’s top 10 hits were judged). As a
result, we focus our analysis on top-5 results.

For the Wikipedia subtask, a form of specific-item-recall
was used to evaluate systems. The topmost position where
the original article from which a query was taken appears
were compared. Due to this, it is possible to match a dif-
ferent expression in the article, and have the returned ex-

7computed based on the number of unique LATEX strings
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Figure 6: Tangent Precision@5 (Main Task) for 50
queries combining one or more math expressions
with keywords. The collection holds roughly 100,000
arXiv articles broken into fragments serving as the
retrieval units (‘documents’). Grey: highly relevant
hits; White: partially + highly relevant hits

pression and article treated as a valid hit. It may also be
possible to match the query expression identically, but find
it in an article differing from the query and treated as a
miss. However, this seems to be a rare occurrence in the
Wikipedia corpus.

4.1 Tangent Submissions and Retrieval Results
Our group submitted 4 runs to the main task, each of

which used a different weight for text retrieval in the final
ranking of hits: {0, 0.05, 0.25, 0.5}. In the following, weight
0 for text is termed ‘math-only,’ and 0.5 ‘equally-weighted.’
For the Wikipedia subtask, only the query-by-expression
subsystem was used in a single run.

Math-2 (main) Task. For the main task, looking at
the boxplots in Figure 6 we see that increasing the weight
of text results substantially increases the Precision@5 rat-
ings for both the highly-relevant and partially + highly rele-
vant conditions. The average Precision@5 for the partially-
relevant condition with text and math weighted equally is
over 92% (µ = 0.92, σ = 0.18). Observing hits returned
by the math-only and math/text equally weighted condi-
tions, some trends emerge. Returning documents based on
the best expression match appears to work best when: 1)
expressions are not tiny; expressions such as ‘(D)’ produce
exact matches, but with little relevance to the query topic
as they are not distinctive, 2) query expressions have nei-
ther too few nor too many wildcards. Queries with many
wildcards obtain poor results due to wildcard symbol pairs
being ignored by our retrieval algorithm, while one or two
wildcards seems to provide useful flexibility, and 3) rare sym-
bols and/or relationships tend to produce relevant matches
in the math-only condition (e.g. for expressions using
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Figure 7: MIRMU System vs. Tangent (Main Task).
*Prec@ indicates precision for high-relevance hits
(rated 3-4), and Prec@ using hits rated higher than
0. Note that unevaluated hits are treated as misses.
For Precision@5 at most 1 hit is unevaluated for each
of the 50 queries (10 for MIRMU, 7 for Tangent).
For Precision@10 the average number of evaluated
top-10 hits in both systems is only 6, (i.e. a maxi-
mum possible Precision@10 of 60% on average)
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Figure 8: Wikipedia Math Search Subtask Results.
100 English Wikipedia articles were chosen at ran-
dom. Query expressions were produced by select-
ing one math expression at random from each arti-
cle, replacing variables in these expressions by wild-
cards (qvar) at random. ‘Query Documents @k’ is a
specific-item recall measure, giving the percentage
of query articles returned in the first k hits



an indexed operator), precisely because they are infrequent.
For the main task, the ‘math only’ Tangent system pro-

duced no hits in the top-5 results for 26 queries for the high-
relevance condition, but only 15 complete misses for the
partially-relevant condition. In contrast, the equal-weight
Tangent had 7 queries with no hit in the top-5 in the high-
relevance condition, and no complete misses in the partially-
relevant condition.

The high partially-relevant score for the equally weighted
math and text condition is in part because the Lucene hits
were often much smaller document excerpts than those for
the math index hits. In some cases the Lucene hits were
single words, whereas math queries often returned large ex-
cerpts with complete derivations and surrounding text. For
example, in one query the term ‘Lisboa’ is used, which then
matches a number of addresses contained in the database
(which are rated as partially relevant by judges), but doesn’t
appear alongside a mathematical concept. We believe this
occurs because Lucene prefers tight matches, whereas Tan-
gent’s math retrieval engine ranks documents by highest
similarity of a single expression in the excerpt, ignoring other
content in the document.

In cases where both the math-only and math/text equal
conditions produce primarily highly-relevant hits in the top-
5, the hit diversity was high (for queries 18, 22, 36 and
47, containing 2, 2, 2 and 0 wildcards, respectively). For
the highly-relevant condition, there were in fact six queries
where the math-only condition had higher Precision@5 than
math/text equal (queries 2, 10, 11, 38, 48, and 50). Three of
these queries contain 6 keywords. It is possible that some-
how this led to weaker text retrieval results, due to the num-
ber and variety of query terms. In some cases the math-only
condition performed better because the text retrieval system
was returning small excerpts (a single sentence or less) with
little context, and so were not rated as being highly relevant.

A comparison of results from the math/text equally weighted
condition and the system (MIRMU [13]) with the highest
‘highly relevant’ ratings obtained for the main task are shown
in Figure 7. Tangent with equally-weighted math and text
produced the highest partially relevant Precision@5 result,
and the second-highest highly-relevant Precision@5 result
for the main task.

Wikipedia Subtask. Results for Tangent vs. the high-
est result from other runs at different ranks are provided in
Figure 8. At all ranks up to 1000 Tangent has the highest
metric value. Tangent returned 68 of the 100 query arti-
cles as the first hit, with the next-highest top-1 result 5%
lower (63 hits). With 36 queries containing wildcards, it
seems likely that most participating systems were able to
match the original query expression in the top-1 when no
wildcards were used (63 + 36 = 99). Additional hits near
the top of the rankings most likely occur because some vari-
ant(s) of the query expression are ranked above the query
expression itself (e.g. when a wildcard variable is bound to
y, rather than x in the original query). Tangent behaves as
one expects, preferring exact matches and structurally sim-
ilar matches with few additional or missing symbols [19,20].

4.2 System Configuration and Performance
We constructed our search engine using Amazon Elastic

Compute Cloud (Amazon EC2), a web service. We used an
EC2 memory-optimized configuration (r3.4xlarge) with the
following specifications: 16 vCPUs, 2.5 GHz, Intel Xeon E5-

Table 1: Database table sizes for query-by-
expression systems. Sizes shown for the arXiv main
task are for 1/9th of the complete collection. For the
main task 81,774,641 symbol pair entries are defined
across all nine indices (including repetitions).

Table Rows Size(MB) Index(MB)
arXiv (main) Shown: 1 of 9 Indices
symbol pairs 14,791,465 2600 692
expression-docs 5,927,284 183 147
expression 5,636,077 313 78
symbol-ids 195,960 6 10
Wikipedia Shown: Complete Index
symbol pairs 3,002,881 305 141
expression-docs 387,975 12 9
expression 387,947 775 6
symbol 56,437 2 3

2670v2, 122 GB memory, 1 x 320 GB Disk. A snapshot was
configured to include MySQL, Tangent, python packages,
Java, and Solr (which includes Lucene). The document col-
lection itself was large, consuming 173GB of disk space.

For the main task, expressions were indexed in a divide-
and-conquer fashion, with 9 EC2 machines with the above
configuration indexing 1/9th of the collection apiece, and
one additional instance used for Solr/Lucene. Because all 9
folds are built independently, the same expression may be
present in different folds, with a different expression identi-
fier. Similarly there is one symbol index per server. How-
ever, no document occurs in more than one database. The
sizes of the tables for symbol pairs, expression documents,
expressions and symbols are shown in Table 1.

An additional instance was used to issue queries and then
compile results from the nine math indices and the Lucene
index. This instance was configured to allocate 65% of its
available RAM for MySQL. Results from the nine servers
were then pooled to produce the final 1000 hits output by
the expression index, which were then combined with the
Lucene hits using the weight parameter α.

As can be seen in Table 2, both indexing and retrieval
were quite slow for the main task. This is partly due to the
number of unique symbol pairs, and for retrieval the large
number of pairs that may match symbol pairs containing a
wildcard. We suspect that there may be some issues with
how the database was constructed and the database tables
were organized, which may also be slowing things down.

In contrast, the Wikipedia corpus was small enough to
be indexed and stored using a single machine (see Table 1).
Execution time for all 100 Wikipedia queries is eight minutes
(Table 2). This is a bit slower than the original Tangent
would take at most 3-5 seconds for a large query to finish
[20], but wildcards were not supported in that version of
the system. For faster execution, one might delay retrieving
symbol pairs with wildcards until after concrete symbol pairs
have been located, or reduce the index size by reducing the
granularity of symbol distances (e.g. treating symbols at
distance three or higher as one value [20]).

5. CONCLUSION
We have extended the Tangent query-by-expression search

engine to support new structures and wildcard matching,
scale up to larger collections, and integrate with TF-IDF-
based text search. The resulting system performed well



Table 2: Indexing & retrieval times for query-by-
expression. Search times shown are for 50 main task
queries, and 100 Wikipedia subtask queries.

Time (minutes)
Collection Index Search
NTCIR-main (arXiv) 420 × 9 ≈ 3380 150
Wikipedia 33 8

in both the Math-2 main task and Wikipedia query-by-
expression subtask. However, a number of performance is-
sues need to be resolved, in terms of both space and time.

For future work, perhaps the most pressing need is to im-
prove the handling of wildcards. Currently results are poor
for queries with many wildcards because we ignore relation-
ships between pairs of wildcard symbols, as well as wildcards
at the end of a baseline. The current ranking of documents
in the expression index by the best matching expression is
brittle. Type information may also be helpful, for example
to prevent wildcard variables from matching constants. We
might also rank matches where keywords and expressions are
close to one another higher (i.e. by locality of the match) to
improve retrieval for mixed math and text queries.

Finally, we believe that our expression retrieval method
can be adapted to work with operator trees (e.g. Content
MathML), and we are interested in combining layout and
operator tree information in a query-by-expression system.
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