Combining TF-IDF Text Retrieval with an Inverted Index over Symbol Pairs in Math Expressions:

The Tangent Math Search Engine at NTCIR 2014

Nidhin Pattaniyil and Richard Zanibbi Document and Pattern Recognition Laboratory Department of Computer Science Rochester Institute of Technology, NY, USA

NTCIR-11 (2014) Math-2 Task Presentation

Dec. 11, 2014 National Institute of Informatics (NII), Tokyo, Japan

Tangent

Tangent

q(z)=0

86815 results found in 2498 ms (841 ms parsing, 1656 ms searching).

g(z)=0

Document: Wikipedia - Meromorphic function Document: Wikipedia - Elliptical distribution Score: 1.000 - Edit query - Search for this

h(z)=0

Document: <u>Wikipedia - Simple rational approximation</u> Score: 0.667 - <u>Edit query</u> - <u>Search for this</u>

g(z) = z

Document: Wikipedia - DenjoyWolff theorem Score: 0.667 - Edit query - Search for this

g(x)=0

Document: Wikipedia - Bogoliubov causality condition Document: Wikipedia - Truncated distribution Document: Wikipedia - Factor theorem Document: Wikipedia - Centroid Document: Wikipedia - Solid of revolution Score: 0.667 - Edit query - Search for this

saskatoon.cs.rit.edu/tangent

www.cs.rit.edu/~dprl/Software.html

A Formula Search Engine

Previously used for expressions in Wikipedia (Stalnaker, 2013). Appearance-based retrieval model using relative positions of symbols in LaTeX or Presentation MathML

NTCIR-11 Modifications

- Represent matrices, prefix scripts
- Support wildcard query variables
- Support multiple query expressions
- Support keywords (Lucene)
- Reduced storage requirements

Stalnaker, D. and Zanibbi, R. (2015) Math expression retrieval using an inverted index over symbol pairs. Proc. Document Recognition and Retrieval, San Francisco (to appear Feb. 2015).

Formula Index: inverted index from tuples \rightarrow formulae Presentation MathML to SLT Conversion: Depth-First Traversal

Parent	Child	Dist.	Vert.
FRAC	Х	1	1
FRAC	2	2	2
FRAC	+	3	1
FRAC	У	3	1
FRAC	SQRT	1	-1
FRAC	Z	2	-1
х	2	1	1
2	None	0	0
х	+	1	0
х	у	2	0
+	y	1	0
у	None	0	0
SQRT	Z	1	0
Z	None	0	0

(b) Symbol Pair Tuples

Formula Index: inverted index from tuples → formulae Presentation MathML to SLT Conversion: Depth-First Traversal

Parent	Child	Dist.	Vert.
FRAC	Х	1	1
FRAC	2	2	2
FRAC	+	3	1
FRAC	У	3	1
FRAC	SQRT	1	-1
FRAC	Z	2	-1
х	2	1	1
2	None	0	0
х	+	1	0
х	у	2	0
+	y	1	0
у	None	0	0
SQRT	Z	1	0
Z	None	0	0

(b) Symbol Pair Tuples

Formula Index: inverted index from tuples → formulae Presentation MathML to SLT Conversion: Depth-First Traversal

Parent	Child	Dist.	Vert.
FRAC	Х	1	1
FRAC	2	2	2
FRAC	+	3	1
FRAC	У	3	1
FRAC	SQRT	1	-1
FRAC	Z	2	-1
Х	2	1	1
2	None	0	0
Х	+	1	0
х	y	2	0
+	y	1	0
у	None	0	0
SQRT	Z	1	0
Z	None	0	0

(b) Symbol Pair Tuples

Formula Index: inverted index from tuples → formulae Presentation MathML to SLT Conversion: Depth-First Traversal

Parent	Child	Dist.	Vert.
FRAC	Х	1	1
FRAC	2	2	2
FRAC	+	3	1
FRAC	y	3	1
FRAC	SQRT	1	-1
FRAC	Z	2	-1
х	2	1	1
2	None	0	0
х	+	1	0
Х	У	2	0
+	y	1	0
у	None	0	0
SQRT	Z	1	0
Z	None	0	0

(b) Symbol Pair Tuples

NICIRII-Math2–40

Formula Query: $\lim_{n \to \infty} \mathbb{P}[A_n - E[X]] > e = 0$ Keyword: large number Representation

$NTCIR_{1}-Math2-41$				
$A \mathcal{X} = 0 + 1 $		Matrix Struc	ture	
Formula Query : $\mathbb{P}[\lim_{n \to \infty} \mathbf{A} _n = \mathbf{E}[\mathbf{X}]] =$	- 1Parent	Child	Row	Column
	matrix	dimensions	2	2
Keyword : strong law	matrix	x^{2}	1	1
Keyword: large number	matrix	'0'	1	2
ADJ matrix ADJ ADJ 1	matrix	'0'	2	1
	matrix	'1'	2	2
		Subexpress	ions	
	Parent	Child	Dist.	Vert.
	A	matrix2x2	1	0
row1 row2	А	+	2	0
	А	1	3	0
	matrix2x2	+	1	0
(x) (0) (0) (1) (6)	matrix2x2	1	2	0
	+	1	1	0
SUDED	1	None	0	0
SUPER	X	2	1	1
	2	None	0	0
$\begin{pmatrix} 2 \end{pmatrix}$	0	None	0	0
	0	None	0	0
	1	None	0	0

(a) Formula and Symbol Layout Tree

(b) Tuples

NICIRII-Math2–40

Formula Query: $\lim_{n \to \infty} \mathbb{P}[A_n - E[X]] > e = 0$ Keyword: large number Representation

NT <mark>CIR_11-M</mark> ath2-41				
		Matrix Struc	ture	
Formula Query: $\mathbb{P}[\lim_{n \to \infty} [A]_n = \mathbf{E}[[X]] =$	1Parent	Child	Row	Column
	matrix	dimensions	2	2
Keyword : strong law	matrix	' x^{2} '	1	1
Keyword : large number	matrix	'0'	1	2
ADJ matrix ADJ ADJ	matrix	'0'	2	1
$ \begin{array}{c} A \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	matrix	'1'	2	2
		Subexpressi	ions	
	Parent	Child	Dist.	Vert.
	A	matrix2x2	1	0
row1 row2	А	+	2	0
	А	1	3	0
	matrix2x2	+	1	0
(x) (0) (0) (1) (6)	matrix2x2	1	2	0
	+	1	1	0
QUDED	1	None	0	0
SUPER	X	2	1	1
	2	None	0	0
	0	None	0	0
	0	None	0	0
	1	None	0	0

(a) Formula and Symbol Layout Tree

(b) Tuples

NICIRII-Math2–40

Formula Query: $\lim_{n \to \infty} \mathbb{P}[A_n - E[X]] > e = 0$ Keyword: large number Representation

NTCIR_b1-Math2-41				
$A \begin{bmatrix} \mathcal{X} & 0 \end{bmatrix} + I \qquad \qquad$		Matrix Struc	ture	
$\mathbf{Formula} \mathbf{Query}: \mathbb{P}[\lim_{n \to \infty} \mathbf{A} _n = \mathbf{E}[\mathbf{X}]] =$	1Parent	Child	Row	Column
	matrix	dimensions	2	2
Keyword : strong law	matrix	x^{2}	1	1
Keyword: large number	matrix	'0'	1	2
ADJ Matrix ADJ ADJ	matrix	'0'	2	1
	matrix	'1'	2	2
		Subexpressi	ions	
	Parent	Child	Dist.	Vert.
	A	matrix2x2	1	0
row1 row2	А	+	2	0
	А	1	3	0
	matrix2x2	+	1	0
(x) (0) (0) (1) (6)	matrix2x2	1	2	0
	+	1	1	0
SUDED	1	None	0	0
SUPER	X	2	1	1
	2	None	0	0
	0	None	0	0
	0	None	0	0
	1	None	0	0

(a) Formula and Symbol Layout Tree

(b) Tuples

Wildcards

Formula Query:
$$\mathbb{P}[X \ge t] \le \frac{\mathbf{E}[X]}{t}$$

Keyword: Markov inequality

To handle query wildcards, two inverted indices group formula index entries with common parents/children ('Left' and 'Right' wildcard inverted indices)

Examples

(?i, 2, 1, 1): any symbol with superscript 2, e.g. x^2 , n^2 , $)^2$ (x, ?i, 1, 1): x with any superscripted symbol, e.g. x^2 , x^n , x^0

Wildcard-wildcard relationships are not retrieved

Retrieval Model

Text Score

Filter: 'text' for formulae replaced by formula identifiers

Lucene used for TF-IDF-based keyword retrieval; Lucene score used as *textScore*

Formula Score

1) Look up query tuples in formula tuple and L/R wildcard indices to retrieve expressions

2) Sort by match count, keep top k = 1000 formulae

3) Wildcards: iteratively select unifications that match max. no. unmatched query tuples

4) For each document *d*, select formula with max. F = 2RP / (R + P) (*formulaScore*)

R: # matched query tuples P: # matched candidate tuples

4*) Multiple formulae: sum of top-1 score for each query expression in document, weighted by relative sizes of query expressions $m(d, e_1, ..., e_n) = \frac{|e_1|}{\sum |e_i|} t_1(d, e_1) + \ldots + \frac{|e_n|}{\sum |e_i|} t_1(d, e_n)$

Combined Score: score(d) = α textScore(d) + (1- α) formulaScore(d)

Effect of Text Weight (Main Task)

Retrieval Results

Figure 7: MIRMU System vs. Tangent (Main Task).

Figure 8: Wikipedia Math Search Subtask Results.

Top k Hits

Used Amazon EC2 web service: a memory-optimized configuration (r3.4xlarge) with 16 vCPUs, 2.5 GHz, Intel Xeon E5-2670v2, 122 GB memory, and a 320 GB Disk

Main task: Nine EC2 instances used to index formulas, one for Lucene, and one instance to process queries and access text and formula engines (Python-based)

Wikipedia subtask: One instance was sufficient for indexing and retrieval

Table 1. MySQL database table sizes for formula indices. For the main task 81,774,641 symbol pairs are defined across nine indices (with repetitions)

Table	Rows	Size(MB)	Idx(MB)	
arXiv (main)	Shown: 1 of 9 Indices			
symbol pairs	14,791,465	2600	692	
expression-docs	5,927,284	183	147	
expression	5,636,077	313	78	
symbol-ids	195,960	6	10	
Wikipedia	Shown: Complete Index			
symbol pairs	3,002,881	305	141	
expression-docs	387,975	12	9	
expression	387,947	775	6	
symbol	56,437	2	3	

Table 2. Indexing & retrieval times for formula retrieval. Search times shown are for 50 main task queries, and 100 Wikipedia subtask queries.

	Time (minutes)	
Collection	Index	Search
NTCIR-main (arXiv)	$420 \times 9 \approx 3380$	150
Wikipedia	33	8

Thank You.

Acknowledgements

David Stalnaker

Frank Wm. Tompa (Univ. Waterloo, Canada)

Math-2 Task Organizers:

Akiko Aizawa, Michael Kohlhase, ladh Ounis

Moritz Schubotz

This material is based upon work supported by the National Science Foundation (USA) under Grant No. IIS-101681. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

NTCÍR

Sample Results

NTCIR11-Math2-47

Formula Query: $P_n = 2P_{n-1} + P_{n-2}$ Keyword: recurrence relation Keyword: Pell number

Result 1

Example 3.3 An obvious example of Remark 3.2 is the Mersenne number $M_n = 2^n - 1$ $(n \ge 0)$, which satisfies the linear recurrence relation of order 2: $M_n = 3M_{n-1} - 2M_{n-2}$ (with $M_0 = 0$ and $M_1 = 1$) and the non-homogeneous recurrence relation of order 1: $M_n = 2M_{n-1} + 1$ (with $M_0 = 0$). It is easy to check that sequence $M_n = (k^n - 1) / (k - 1)$ satisfies both the homogeneous recurrence relation of order 2, $M_n = (k^n - 1) / (k - 1)$ satisfies both the homogeneous recurrence relation of order 1, $M_n = kM_{n-1} + 1$, where $M_0 = 0$ and $M_1 = 1$. Here, M_n is the IRS with respect to $E_2 = \{3, -2\}$. Another example is Pell number sequence that satisfies both homogeneous recurrence relation $\overline{P}_n = 2P_{n-1} + P_{n-2}$ and the non-homogeneous relation $\overline{P}_n = 2\overline{P}_{n-1} + \overline{P}_{n-2} + 1$, where $P_n = \overline{P}_n + 1/2$.

NTCIR11-Math2-47

Formula Query: $P_n = 2P_{n-1} + P_{n-2}$ Keyword: recurrence relation Keyword: Pell number

Result 2

The Fibonacci numbers F_n satisfy the recurrence $F_{n+1} = F_n + F_{n-1}$ with $F_0 = F_1 = 1$ and $F_2 = 2$. The Lucas numbers L_n satisfy the recurrence $L_{n+1} = L_n + L_{n-1}$ with $L_0 = 1, L_1 = 3$ and $L_2 = 4$. And the Pell numbers P_n satisfy the recurrence $P_{n+1} = 2P_n + P_{n-1}$ with $P_0 = 1, P_1 = 2$ and $P_3 = 5$. Thus we can conclude the following result from Corollary 3.17.

NTCIR11-Math2-47

Formula Query: $P_n = 2P_{n-1} + P_{n-2}$ Keyword: recurrence relation Keyword: Pell number

Result 3

The Pell numbers P_n are given by

 $P_0 = 0$, $P_1 = 1$ and $P_n = 2P_{n-1} + P_{n-2}$ for $n \ge 2$.

It is easy to check that

$$P_n = \frac{(1+\sqrt{2})^n - (1-\sqrt{2})^n}{2\sqrt{2}}.$$

Hence for odd prime p, we have

$$P_p = \frac{\left(1 + \sqrt{2}\right)^p - \left(1 - \sqrt{2}\right)^p}{2\sqrt{2}} \equiv \frac{2\left(\sqrt{2}\right)^p}{2\sqrt{2}} \equiv 2^{(p-1)/2} \equiv \left(\frac{2}{p}\right) \pmod{p} ..8$$

Define the q-Pell numbers $\mathscr{P}_{n}\left(q
ight)$ and $\widehat{\mathscr{P}}_{n}\left(q
ight)$ by

(excerpt)

NTCIR11-Math2--47

Formula Query: $P_n = 2P_{n-1} + P_{n-2}$ Keyword: recurrence relation Keyword: Pell number

Result 4

Let $m \ge 3$. The determinant of *THK* (m, 2) is the *m*th Pell number P_m where $P_1 = 1, P_2 = 2$, and $P_m = 2P_{m-1} + P_{m-2}$ for $m \ge 3$.

$$G_{k,\sigma}(y) = 1 - (1 + ky/\sigma)^{-1/k}$$

1. 0.99
$$G_{k,\sigma}(y) = 1 - (1 + ky/\sigma)^{-1/k}$$

2. 0.46
$$G_{k,\sigma}(y) = 1 - e^{-y/\sigma}$$

3. 0.34 0.187859... =
$$\sum_{k=1}^{\infty} (-1)^k (k^{1/k} - 1) = \sum_{k=1}^{\infty} ((2k)^{1/(2k)} - (2k - 1)^{1/(2k-1)}).$$

4. 0.33
$$a_{\text{dual}}(Z) = 2Z^d \left(\frac{1+Z}{2}\right)^A q_{\text{dual}}(1-(Z+Z^{-1})/2)$$

5. 0.33
$$a_{\text{prim}}(Z) = 2Z^d \left(\frac{1+Z}{2}\right)^A q_{\text{prim}}(1-(Z+Z^{-1})/2)$$

$$K_{x0}^{x1}(k) := T^*(k^{\times})/(a \otimes (1-a)) \qquad (\text{NTCIR11-Math-72})$$

1. 0.95
$$K^M_*(k) := T^*(k^{\times})/(a \otimes (1-a))$$

2. 0.95
$$K^M_*(k) := T^*(k^{\times})/(a \otimes (1-a))$$

3. 0.50
$$K^M_*(F) := T^*F^\times/(a \otimes (1-a)),$$

4. 0.41
$$K_2(k) = k^{\times} \otimes_{\mathbf{Z}} k^{\times} / \langle a \otimes (1-a) \mid a \neq 0, 1 \rangle.$$

5. 0.33
$$T(n) = T(1)\left(B + \frac{1}{n}(1-B)\right)$$

$$\frac{\partial L}{\partial q_i} = \mathbf{x} \mathbf{0} \frac{\partial \mathbf{x} \mathbf{1}}{\partial \mathbf{x} \mathbf{2}}.$$

(NTCIR11-Math-86)

$$1. \quad 0.72 \quad M_i = \frac{v_i}{a} = \frac{1}{a} \frac{\partial \Phi}{\partial x_i}.$$

$$2. \quad 0.66 \quad \frac{\partial L}{\partial q_i} = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i}.$$

$$3. \quad 0.61 \quad \frac{\partial L(t, y(t), \dot{y}(t))}{\partial y} = \frac{d}{dt} \frac{\partial L(t, y(t), \dot{y}(t))}{\partial \dot{y}}.$$

$$4. \quad 0.61 \quad \mathbf{F}_i = -\nabla V \Rightarrow Q_j = -\sum_{i=1}^n \nabla V \cdot \frac{\partial \mathbf{r}_i}{\partial q_j} = -\frac{\partial V}{\partial q_j}.$$

$$5. \quad 0.60 \quad \frac{dF}{dt} = \sum_i \frac{\partial F(T, V, N)}{\partial N_i} \frac{dN_i}{dt} = \sum_i \mu_i \frac{dN_i}{dt} = -VRT \sum_r (\ln w_r^+ - \ln w_r^-)(w_r^+ - w_r^-) \le 0$$

Source Code and Demos

Tangent

g(z)=0

86815 results found in 2498 ms (841 ms parsing, 1656 ms searching).

g(z)=0

Document: Wikipedia - Meromorphic function Document: Wikipedia - Elliptical distribution Score: 1.000 - Edit guery - Search for this

h(z)=0

Document: <u>Wikipedia - Simple rational approximation</u> Score: 0.667 - <u>Edit query</u> - <u>Search for this</u>

g(z) = z

Document: <u>Wikipedia - DenjoyWolff theorem</u> Score: 0.667 - <u>Edit query</u> - <u>Search for this</u>

g(x) = 0

Document: Wikipedia - Bogoliubov causality condition Document: Wikipedia - Truncated distribution Document: Wikipedia - Factor theorem Document: Wikipedia - Centroid Document: Wikipedia - Solid of revolution Score: 0.667 - Edit query - Search for this

DEMOS

saskatoon.cs.rit.edu/tangent saskatoon.cs.rit.edu/min

CODE

www.cs.rit.edu/~dprl/Software.html

