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Abstract—Lecture videos are a valuable resource for students,
and thanks to online sources they have become widely available.
The ability to find videos based on their content could make
them even more useful. Methods for automatic extraction of this
content reduce the amount of manual effort required to make in-
dexing and retrieval of such videos possible. We present a method
that generates static image summaries of handwritten whiteboard
content from lecture videos recorded with still cameras. We gen-
erate a spatio-temporal index for the handwritten content in the
video, and we use it for temporal segmentation by detecting and
removing conflicts between content regions. Resulting segments
are used to produce key-frame based summaries. Our method has
been tested on a video collection showing promising results for
automatic lecture video summarization with good compression
ratios and 96.28% recall of connected components in test videos.

I. INTRODUCTION

Many lecture recordings exist online, providing a useful
resource for many students. Consider the case of a linear
algebra student who wants to find a particular lecture portion
where the professor explains identity matrices. This portion
might be just 5 minutes long within a one hour long video. In
this case, it might be faster to manually find the portion in a
short summary than in the raw video.

Lecture video summaries can be useful tools for video
navigation, and also for automated indexing and retrieval of
lectures. In multiple fields of study, like mathematics, where
explanations are usually given using handwritten content on
the whiteboard or chalkboard, producing these summaries
manually is time consuming and requires detailed handwritten
content annotations. However, many lecture videos in these
fields are only annotated using high level tags describing the
topics covered. Sometimes, audio transcripts are available but
these do not always describe the entire whiteboard/blackboard
contents. If specialized hardware for trace capture (e.g. an
interactive whiteboard) is available at recording time, then the
traces could be recorded and online symbol recognition meth-
ods can be use to recognize them. However, in the absence
of human annotations and specialized hardware, particularly
for existing collections of lecture recordings, we require ro-
bust automated methods for extraction and summarization of
whiteboard contents from the video itself.

In this paper, we focus on providing a method for extraction
and summarization of handwritten whiteboard content. Exist-

ing methods for lecture video summarization typically focus
on local detection of changes in whiteboard/blackboard/slide
content [1], [2]. Such changes are associated with slide
transitions or whiteboard/blackboard erasing events. These
approaches rely on detecting sharp content changes, and if the
change is not sharp enough, a transition/erasing event will not
be detected, resulting in under-segmentation. In videos using
whiteboard or blackboard these changes can happen gradually
and can be missed if small detection windows are used.

We propose a divide-and-conquer segmentation method that
starts by analyzing conflicting regions of content at a global
scale, and recursively splits the video into units that contain
few or no content conflicts. Two connected components are
in conflict if there is an overlap in the space they occupy on
the whiteboard but they exist during different time intervals.
This happens when the whiteboard gets erased and something
new is written on the same region. The proposed segmentation
allows the summarization of the video using a small set of key-
frames. A single key-frame might combine portions of content
that never co-existed on the whiteboard, but that occupied
different spaces and can be displayed on a single image for
better compression rates, producing shorter summaries. For
example, a 45 minute-long video might be summarized in just
10 frames.

In this paper we explore the following research questions:
Q1. How can we reliably extract whiteboard contents from
lecture videos? Q2. How can we produce a static summary
for a lecture video using a minimal number of frames that
contains all handwritten content of the lecture?

Contributions. We propose a novel method for lecture
video summarization based on minimization of conflicts be-
tween content regions. Second, a spatio-temporal index that
can be used to navigate lecture videos based on the hand-
written content on the whiteboard. Finally, given the lack of
labeled data for this particular domain, we provide a small
dataset of labeled lecture videos that can be used for training
and testing of newer approaches for this and related problems.
This dataset and the tools for ground truth generation are
publicly available1.

1https://cs.rit.edu/∼dprl/Software.html



II. RELATED WORK

Video summaries can provide quick overviews facilitating
user navigation, indexing and retrieval of videos. The survey
by Hu et al. [3] provides details about approaches for indexing
and retrieval of videos. Detecting handwritten content in video
is a special case of text detection in imagery covered in Ye
and Doermann [4]. Approaches for text detection, tracking and
recognition in videos are covered by Yin et al. [5].

Our work is video summarization within the domain of
videos containing handwritten whiteboard content. These
videos typically represent a single scene with one shot, but
some might contain multiple shots when the focus shifts from
the whiteboard to another object or person in the classroom.

Key-frame extraction. A simple summarization approach
is to compute video key-frames and choose the most rep-
resentative of the entire video. A good key-frame set has
little redundancy and good content coverage [3]. Traditional
key-frame extraction techniques are based on the analysis
of different types of features like: color histograms, edges,
shapes, optical flow, and others [3]. Some approaches for
key-frame selection use global comparison between frames to
distribute the key-frames by minimizing an objective function
that can be application dependent [3]. For example, the work
by Li et al. [6] uses minimization of frame reconstruction
distortion to select key-frames for video summaries. Our
proposed approach falls within this particular type of approach.
A survey on key-frame extraction methods can be found in
Sujatha and Mudenagudi [7].

Video summarization. There are two types of summaries
[3]: static video abstracts and dynamic video skims. The first
type are small key-frame sets that can be used to create
tables of contents, storyboards and pictorial summaries [3].
Generated visualizations can summarize dynamic events like
Nguyen et al. [8], where 3D views summarize video segments.
Key-frames help to navigate the video in a non-linear way, but
most of the dynamics of the content and the audio are lost.
Video skims use short video segments to create summaries that
may be more appealing to users, and can keep relevant audio
portions. These two summary types can be combined to create
hierarchical summaries [3], where high-level key-frames can
be associated with low-level short video segments. Additional
video summarization techniques can be found in Truong and
Venkatesh [9] and Money and Agius [10].

Evaluation. Ideal video summaries can be subjective and
often quality measurements are application dependent [3].
Typical metrics include recall of application-dependent targets
extracted in the summary, and video compression ratio where
we want to use the smallest possible set of key-frames. Higher
recall usually means lower compression ratio by requiring
more frames to extract all targets. Choudary et al. [1] uses a
recall-based error metric for evaluation of lecture video sum-
maries by identifying missing content by counting connected
components for words and lines for graphics. In Chang et al.
[11], the authors proposed a key-frame fidelity measure that
is based on a semi-Hausdorff distance.

In some cases, video summarization approaches require
video segmentation, and measure the quality of chosen split
points compared to ideal video segments. This is common
in slide-based lecture videos. In the work by Li et al. [2], the
evaluation is made in terms of the precision, recall and F-score
of the slide transitions detected. In the AMIGO system [12],
the Jaccard index is used to evaluate the correctly detected
slide transitions within a ±3 second error margin.

A. Lecture Video Summarization

We focus on three elements of lecture video summarization
methods and similar applications: binarization/segmentation,
content extraction and summarization. Content extraction
refers to techniques used to analyze and separate high level
units of whiteboard/blackboard/slide content. We also consider
two type of lecture video content: handwritten (from paper,
whiteboard, etc), and typeset (slides). It is important to note
that many approaches are multi-modal and also consider audio
and supplementary lecture materials. Here, we concentrate on
the image-based lecture video summarization approaches.

Binarization/segmentation. For videos or sets of images of
handwritten content from whiteboards/chalkboards, traditional
binarization methods like Otsu’s [13] and Niblack’s [14] have
been employed in cases where illumination changes do not
represent a major issue like in the whiteboard reading works
by Wienecke et al. [15], Plötz et al. [16] and Vajda et al. [17].
Other thresholding-based techniques have also been employed
in the works by Liu et al. [18], [19]. Some approaches use
text detection and background removal techniques to isolate
first the handwritten content regions before thresholding [20],
[21], [22].

When the background is not very uniform and simple
threshold-based methods fail, more sophisticated segmentation
approaches are employed. Color space L∗a∗b∗ has been em-
ployed for mean-shift segmentation in the work by Comaniciu
et al. [23], and k-means segmentation in the works by Liu
and Choudary [24], [25], [1] and Lee et al. [26]. In the work
by Davila et al., edge detection and morphological operations
have been used for whiteboard image binarization [27].

Content Extraction. A common idea is to divide the input
image using a grid [18], [19], [15], [20], [17], [27], and then
classifying each cell as handwritten content, background or
noise using statistical methods. Some approaches then group
together handwritten content cells into blocks or text lines that
can be used for summarization using OCR methods [15], [16],
[17]. Temporal information and heuristic rules can be used to
create these blocks by grouping changes as they happen [28].
Other methods employ local features to classify image patches
as text or background. In the works by Tang and Kender [21],
[22], SVMs are trained using features extracted from the edge
image. In the work by Banerjee et al. [29], SIFT features
[30] extracted from a dense grid are employed for patch-based
classification of pixels as text/background using MLPs.

A common factor affecting the quality of the extracted
content is low resolution. Some approaches like the work by
Tang and Kender [22], [21] have employed super resolution
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techniques taking advantage of the temporal information avail-
able in the video domain. Another common factor affecting
readability is poor contrast. Some methods employ contrast
enhancing techniques to deal with this [16], [20], [17].

Most methods have taken advantage of the particularities of
the lecture video domain. For example, explicit speaker mod-
eling improves precision by avoiding extraction of occluded
content [28], [1], [20], [31], [27], [32], [2], [26]. Erasing
event detection in whiteboard/chalkboard videos is useful for
video segmentation, and most whiteboard content will be on
the image right before these erasing events happen. [1], [31],
[27]. Some methods only extract content from frames with
little motion assuming that this means no particular events
like erasing or writing are taking place and that the speaker
is probably not currently in the view of the camera [21],
[22], [27], [33]. Also, not all methods need to detect the
whiteboard, chalkboard or slide area in the image explicitly
before doing content extraction, but some existing methods
do it for different reasons including increased precision of
content extraction [27] and the ability to correct camera view
distortions for cleaner content extraction [2].

For slide-based videos, detecting transitions between
slides is analogous to detecting erasing events in white-
board/chalkboard based videos. OCR techniques along with
supplementary materials [32], [12] can be used to accurately
extract typeset text from the slide images. Sometimes videos
can include shots where the slides are not visible, and detecting
and removing these shots is helpful for clean content extrac-
tion. In the work by Adcock et al. [33], a SVM is trained
for classification of slide/non-slide key-frames on videos. A
full-optimization framework based on local feature tracking is
used in the work by Li et al. [2] for detection of slide location
and transition, and sharp changes in these features are used to
detect and exclude segments with no visible slides.

Summarization. For whiteboard reading approaches, the
final summary is given by text lines extracted and recognized
text from the video [21], [22], [15], [16], [17], [31]. Region-
based content extraction methods represent the video regions
[28], [27]. Images coming from different camera views of the
content can be mosaicked into single panoramic images [1],
[26] or into large virtual slides [19].

Full key-frames can be used to summarize the video as
well. Some methods try real-time selection of key-frames
for lecture video summarization typically using rules based
on motion and/or content change detection [18], [21], [22],
[25], [1], [20], [26] where frames with low motion and large
content changes from the previously selected key-frame are
preferred. In particular, some methods try to identify peaks in

a function that sums all chalk/ink pixels per frame for key-
frame selection [1], [26]. For slide-based videos, images of
the detected slides are also typically used as video summaries
[2], [12]. In the work by Eberts et al. [12], local features
are used for indexing of the graphic content embedded in the
slides. Yadav et al. [34] uses C-NN to detect and index anchor
elements (figures, tables, equations, proofs, etc) in images for
indexing and summarization of slides.

III. METHODOLOGY

We propose a method (see Figure 1) that given a lecture
video is able to produce a small set of frames containing
the handwritten content from the whiteboard. As illustrated in
Figure 2, our method is designed for videos recorded using
a single still camera in a classroom. We assume that the
whiteboard will be the largest object in the image surrounded
by some background objects. Some moving elements like the
instructor will be present on the video as well.

Frame Sampling and Binarization. We sample frames
from the video at a sampling rate FPS (frames per second)
to obtain a subset F . We have determined empirically that
FPS = 1 is enough to capture relevant changes. Each selected
frame is then preprocessed for background estimation and

(a) Raw Frame (b) Binarization

(c) Whiteboard Detection (d) Whiteboard Segmentation

(e) CC Stability Analysis (f) Reconstructed Frame

Fig. 2. Overview of our video summarization approach.
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Fig. 3. Overview of our binarization approach.

removal, and then binarized using a combination of two meth-
ods: a high-recall, low-precision machine learning binarizer,
and low-recall, high-precision Otsu’s [13] binarization. An
example of this procedure is shown in Figure 3.

Global thresholding using methods like Otsu’s [13] do not
work well in gray scale images for this application. A single
global threshold is unable to separate the whiteboard content
from the background pixels due to non-uniform illumination
on the board. Adaptive threshold methods do not work well
because of many false positives in large empty regions of the
whiteboard. In addition, dirty whiteboards and old markers
produce traces that are hard to distinguish from background
even for humans. To deal with these issues, we use a back-
ground subtraction method to generate edge frame images FE

as shown in Figure 3c.
For a given frame f , we first apply a bilateral filter [35]

with Sigma color Bsc = 13.5 and sigma space Bsp = 4.0 for
smoothing the whiteboard background while preserving the
handwriting edges. Then, we estimate the background using
a median blur filter with aperture size Bblur = 33. We then
subtract estimated background from the smoothed image to
obtain the difference on each RGB channel. The raw difference
includes positive and negative values depending on which
pixels are lighter or darker than the estimated background.
Since we work with whiteboards, we only need the pixels
darker than the background (negative values). We make all
positive values equal to zero and then we change the sign of
the negative values. We finally combine the differences on the
three channels into a single edge image fe by keeping the
maximum value of all channels per pixel.

Note that for chalkboards/blackboards, we would simply
need to make the negative values in the raw difference image
equal to zero, and the rest of the binarization procedure would
remain mostly unchanged.

We use a Random Forest classifier [36] for window-based
pixel-level binarization because they produce reasonably ac-
curate classification results in faster times than other machine
learning techniques. We train it using patches of size Tw×Tw

(TW = 7) randomly sampled from fully labeled binary key-
frames in training data. The goal is to learn the class of

the pixel at the center of each window given contextual
information in the edge space. We bias the patch sample
by forcing a proportion of Tfg = 50% patches to be taken
from foreground elements, where Tfg is typically higher than
the actual proportion of foreground pixels on the whiteboard.
Using object labels provided in the ground truth, we only
sample patches from whiteboard pixels as we assume that
general background and the speaker will be removed from
binary images using other processes later. For the whiteboard
background pixels sampled, we bias their distribution by as-
signing each pixel a probability proportional to their intensity
in the edge frame space, adding 1 to all intensities to smooth
probabilities for zero intensity pixels. In this way, the harder
classification cases of the strong edges that are not handwriting
or that are close to its boundaries will be well represented in
our random sample. After sampling the training patches, we
train our Random Forest classifier [36] using Ttrees = 16
trees, maximum tree depth of Tdepth = 12 and maximum
number of features to consider at each split of Tfeat = 32.

We finally binarize each frame edge image fe using hys-
teresis, similar to Canny edge detection, by combining a weak
(high recall, low precision) with a strong (low recall, high
precision) binary image. The weak image is obtained using the
window-based pixel-level Random Forest classifier described
before (See Figure 3d). The strong image is obtained using
Otsu’s [13] binarization (See Figure 3e). The final binary
image f b is generated by overlapping the two images and
keeping all connected components (CC) from the weak image
that have at least one pixel overlap in the strong image.

We use a combined approach because the Random For-
est generally produces easy to read binary traces and can
even recover trace pixels that are hard to separate from the
background in the original image (See Figure 3d), but it also
produces false positives. On the other hand, Otsu’s binarization
[13] produces few false positives but many broken traces. The
final binary keeps most handwriting CCs and will have most
noisy CCs removed (See Figure 3f).

Whiteboard Segmentation This procedure estimates the
whiteboard region and removes from the binary frames any
CCs that are not fully contained in this region. (See Figure
2c and 2d). Similar to the optimization approach used by
Li et al. [2], we estimate the whiteboard region using two
high confidence estimates, one for handwriting pixels and
the other for general background pixels, to choose the best
quadrilateral from a set of candidates. We use a coarse sample
of frames (one every 10 seconds) to estimate handwriting
and general background locations based on two pixel-wise
temporal statistics: median and standard deviation.

The pixel-wise temporal median image captures the tempo-
ral background of the video by keeping the most stable objects
(usually background) while removing unstable elements like
the speaker and most handwriting. These properties make this
image ideal for estimation of the boundaries of the whiteboard
region and locations of background pixels. We apply Canny
edge detection (low threshold = 30, high threshold = 50) to this
image to obtain a high confidence estimation of background



pixels. Next, we use the Hough transform (radius resolution =
1 pixel, angular resolution = 1 degree, minimum line length
= 100, maximum line gap = 10, minimum line intersections
= 50) on the edge image to obtain candidate edges for the
whiteboard region. We classify these edges based their angle
and relative location as: top, bottom, left or right. We ignore
diagonal lines that are more than 15 degrees away from
the closest axis. To the list of candidate edges we add the
boundaries of the image in case that no edge is detected on a
particular direction.

The pixel-wise temporal standard deviation image captures
what pixels change the most making it good for estimation of
handwriting locations. We transform all sampled images to the
same edge space used for binarization. We apply a temporal
median blur filter using a window of size Cblur = 11 frames.
This produces a set of edge frames where fast moving elements
like the speaker are removed. From this set, we compute the
final pixel-wise temporal standard deviation image. In this
image, handwriting pixels tend to have the highest intensities.
We threshold by setting a minimum intensity C⊥fg = 5,
assuming that all pixels with intensity greater than or equal
to C⊥fg are very likely to be handwriting pixels.

Then we choose the quadrilateral whiteboard region using
Hough transform line candidate edges and the estimates of
handwriting and background pixels. We exhaustively evaluate
all possible combinations of top, bottom, left and right edges
to find a region that maximizes the Cf1 criterion:

Cf1 =
2Crec

fg Crec
bg

Crec
fg + Crec

bg

×Warea (1)

Where Cf1 represent the harmonic mean of the high
confidence foreground pixel recall Crec

fg and high confidence
background pixel recall Crec

bg scaled by the area of the candi-
date Warea. The goal is to maximize both the proportion of
assumed to be foreground pixels inside of the region and the
proportion of assumed to be background outside of the region.
We multiply by Warea to prefer larger candidate regions when
many of them have very similar harmonic means. In some
cases, this criteria might prefer unnecessary larger but safer
regions that preserve recall with some loss in precision.

The final background removal step on a given frame f b

simply removes any CC that is not fully contained in the
final whiteboard region. Applying this to every frame in FB

we obtain the frame set FC where the background has been
mostly removed and most CCs belong to either handwriting
or foreground elements like the speaker.

CC Stability Analysis. We identify and group CCs that are
stable for some interval of time in the video. The output of this
analysis is a spatio-temporal index of groups of stable CCs.
For each group, the index stores a timeline describing the life
span of the group split into time intervals based on the original
addition/deletion times of each stable CC in the group. For
each time interval, the spatio-temporal index stores a refined
image of the group of CCs and their location in the frame.
We can then use this index to reconstruct the binary frames

Fig. 4. CC Stability Analysis. Stable CCs are shown in black while unstable
CCs are shown in red.

without moving objects like the speaker. Also, we can use it to
detect conflicts between regions of content for temporal video
segmentation.

Figure 4 shows a comparison between raw binary frames
containing both stable and unstable elements and correspond-
ing reconstructed binary frames containing only stable ele-
ments. Static elements in the background and handwritten
content in the whiteboard are expected to produce CCs that
can be matched between neighboring frames. Moving elements
like the speaker are expected to produced CCs that are hard
to match across frames becoming quite unique and easy to
identify. Also, a moving speaker will block portions of the
whiteboard causing stable CCs to change in shape, merge
and/or split for some frames. However, stable CCs remain
with roughly the same shape on frames where they are not
being occluded by the speaker.

The proposed method of analyzing stable CCs can be
divided into two main steps: Stable CC identification, and
Stable CC grouping.

Step 1: Stable CC identification. This step detects in-
stances of unique CCs that appear in different frames within
certain intervals of time. The input is the set of binary frames
after background removal FC . The output is a set of unique
stable CCs Scc. Given two binary frames f c

i and f c
j , we want

to detect whether the CCs u and v, u ∈ f c
i and v ∈ f c

j ,
might represent the same unique object in the video. We use
temporal and spatial criteria for this task.

The spatial criterion is defined by computing the pixel-wise
overlap between u and v. For this task, we use:

Space (u, v) =
|pu ∩ pv|
|pu|

≥ S⊥space∧
|pu ∩ pv|
|pv|

≥ S⊥space (2)

where pu and pv represent sets of pixel locations of u and v
respectively. We want the spatial overlap |pu ∩ pv| to represent
at least S⊥space = 92.5% of both u and v pixels.

The temporal criterion is defined by the time difference
between f c

i and f c
j . If ti and tj are the timestamps of f c

i

and f c
j respectively, we define the temporal criterion as:



Temporal (ti, tj) = |ti − tj | ≤ S>time (3)

Where the threshold S>time = 85 seconds is the maximum
time gap between f c

i and f c
j in order to consider u and v

the same stable CC. These rules are applied between all pairs
of frames on a moving window of length S>time, and while
for u and v the criteria might not hold directly, there might
be another intermediate CC w, w ∈ f c

k with timestamp tk
such that Space (u,w) ∧ Space (w, v) ∧ Temporal (ti, tk) ∧
Temporal (tk, tj) and thus we would conclude that u, v and
w are 3 instances of the same CC.

The next process is to take the set of unique CCs Ucc and
identify the subset of stable Scc believed to represent handwrit-
ing assuming that all background has been correctly removed
previously. For this task, we use a threshold Scount = 3
representing the minimum number of frames in which a given
unique CC must appear in order to be considered stable: Scc =
{u ∈ Ucc|Count(u) ≥ Scount}. By applying this filter, we
manage to remove CCs belonging to moving objects like the
speaker. However, this filter might also eliminate handwritten
content appearing for shorts periods of time. In a sense, Scount

is related to the minimum time that a given element must
remain on the whiteboard to be considered relevant. Unstable
elements are sometimes noise or even mistakes made by the
writer who might quickly erased them from the whiteboard.
Speakers might not be completely removed from the video if
they do not move for many seconds.

Step 2: Stable CC Grouping. This procedure takes as input
the set of stable CCs, Scc, groups them by overlaps in space
and time and finally produces a spatio-temporal index of these
groups. First, we identify the sets Os and Ot as the sets of
CCs that overlap in space and time respectively. If we define
[tu0 , t

u
n] and [tv0, t

v
m] as the time intervals where u and v appear

respectively, then we can define Overlap(u, v) as:

Overlap (u, v) = tu0 − Sw < tvm ∧ tv0 < tun + Sw (4)
Os = {(u, v) ∈ Scc × Scc| |pu ∩ pv| > 0 ∧ u 6= v} (5)
Ot = {(u, v) ∈ Scc × Scc|Overlap(u, v) ∧ u 6= v} (6)

Where Sw = 5 seconds is a small window allowing stable
CCs separated by a small time gap to be considered as
overlapping in time. We finally define the set Ots = Ot ∩Os

as the set of all stable CCs overlapping both in space and time.
Now, the sets Scc and Ots are used to compute Gcc, a

partition of Scc that groups all stable CCs having spatial
and temporal overlaps. This is an attempt to group together
different CCs that might represent a unique set of objects in
the video. For example, a typical CC representing handwriting
might suffer multiple gradual changes as it gets written,
overwritten or partially erased. Grouping CCs also accounts
for some minor binarization errors that consistently split/merge
CCs of a set of content objects. Here all these related CCs are
merged and treated as single units that change shape over time.

We start with Gcc = {{u}|u ∈ Scc}. Then, we use every
pair in Ots to agglomerate the subsets in Gcc. We then
compute the relevant time stamps for every group of CCs
in Gcc and create our spatio-temporal index to represent the
extracted content from the whiteboard in terms of groups of
CC and their corresponding timelines.

Frame Reconstruction. We use the spatio-temporal index
to regenerate the binary frames of the video. First, we create
refined images of each group of CCs in Gcc for each time
interval in its timeline. These images are pixel-wise averages
of foreground pixels of CCs from the group that co-existed
in that particular interval of time. We then use these refined
images to create the reconstructed binary frames FR.

Using this procedure we also fill the gaps in the video where
stable CCs were not visible due to occlusion by foreground
elements like the speaker. Refined images of groups will be
placed in all frames within its timeline, filing many holes left
behind by unstable CCs removed in the previous steps. Figure
4 shows an example of this procedure. In the original frames,
the head and hand of the speaker block some content that is
now visible in the reconstructed frames.

Segmentation Through Conflict Minimization This pro-
cess creates a temporal segmentation PR of the video by
identifying and minimizing conflicts. Here, we define two
regions of contents to be in conflict with each other if they
occupy the same space in the whiteboard, but exist at different
time intervals. Content that gets erased will be in conflict with
anything that gets written on the same space. The goal of the
proposed algorithm is to find suitable split points that will
automatically separate such conflicting content into different
video segments using a minimum number of splits. This also
means that content that never co-existed in the whiteboard
might be located on the same video segment as long as they
are written on different whiteboard regions. Two main steps
are required for this process: CC conflict detection and CC
conflict minimization.

Step 1: CC Conflict Detection During the CC stability
analysis, two sets of pairs of stable CCs with spatial overlap,
Os and Ots, were identified. We define the set of conflicting
pairs of CCs Oconf using Oconf = Os−Ots. In other words,
Oconf is the set of pairs of CCs that overlap in space but do
not overlap in time.

Step 2: CC Conflict Minimization We start with a single
segment corresponding to the entire video. Then, for each pair
of conflicting CCs (u, v) in Oconf that co-exist in the current
segment, we identify an interval of time such that if we split
the video at any frame within that interval, u and v will go to
different partitions thus resolving the conflict. The next step
is to count the number of conflicts that can be resolved by
splitting the video at each frame in the current segment. We
greedily choose the frame where the maximum number of
conflicts will be resolved as the next split point, and then we
apply this procedure recursively on each partition until a stop
condition is achieved. Based on assumptions about minimum
time for relevant whiteboard content changes and to avoid
adding to the summaries the mistakes made by the speaker



that are quickly erased from the whiteboard, we do not split
a segment if it contains less than p⊥conf = 3 conflicts or if
splitting the current segment would create a segments shorter
than p⊥time = 25 seconds.

We observed that this procedure tends to select intervals
closely related to erasing events. More specifically, they are
typically chosen at points where the speaker starts writing
again after erasing content from the whiteboard.

Video Summarization. Given the set of video segments PR

found by conflict minimization, we use our spatio-temporal
index to generate one key-frame for each segment to form the
set of summary frames FS . Instead of simply selecting frames
from the segment, we compute each summary key-frame fs

i

by rendering the images of all CC groups that existed within
that video segment. We use the timeline of each CC group to
identify and render the latest version of its image during that
video segment. In cases where the video segment still contains
conflicting CC groups, we only render those that existed on
the whiteboard closer to the end of the segment and have no
conflicts among themselves.

IV. EXPERIMENTS

In our experiments, we compensate for the lack of standard
datasets for this application by creating our own labeled
dataset from an existing collection of linear algebra videos.
These HD videos (1920x1080 pixels) were recorded using
a still camera (no zooming or panning), and the whiteboard
always represents the largest element in the image. A total
of 12 videos were manually labeled by 4 graduate students.
Labeling each video required between 12 to 15 hours of
work to define: ideal segments, best key-frames per segment,
background objects per key-frame, unique content elements,
and the pixel level ideal binarization for each handwritten
content region. A total of 5 videos were used for training and
the remaining 7 were reserved for evaluation. The average
length of each testing video is about 49 minutes, and the
entire dataset represents about 10 hours of fully labeled lecture
footage. We used the training videos to adjust each of the
parameters of our proposed pipeline, and whenever it was
possible we used automated procedures to learn the values
that would maximize our evaluation metrics on the training
set. The newly labeled videos along with the ground truthing
tools will be made publicly available.

To evaluate the effectiveness of our method at different
stages, we use 4 baselines: binary, whiteboard segmenta-
tion, ground-truth-based whiteboard segmentation, and recon-
structed. For each baseline, we uniformly sample 1 frame
every 10 seconds of video. In addition, a fifth baseline, Max
Sum, is added to compare an alternative strategy for key-frame
selection after frame reconstruction using a sliding window
to find key-frames with the maximum number of ink pixels
within a 25 second window [1]. For each summary, we match
CCs between ground truth and summary key-frames with
overlapping time intervals. For every pair of frames, we find
a translation of the summary key-frame that maximizes pixel-
wise recall, and then evaluate pixel-wise recall and precision of

overlapping CCs. We accept inexact matches between groups
of CCs if their combined images match with pixel recall and
precision above 50%. We chose this threshold to compensate
for variations in thickness for good readable matches. For
global recall metrics, we computed our metrics based on
unique CCs in the ideal summaries, while global precision
is measured in terms of all CCs in summary frames.

In Table I we present average results for different sum-
marization methods. We consider number of frames, and the
global and average per-frame recall/precision. As expected, the
binary frames obtained the highest recall at 98.96% with the
lowest precision because of all the non-content CCs.

Whiteboard Segmentation increases global precision from
64.01% to 70.32% with a small drop of 0.03% in global
recall. Ground-truth based whiteboard segmentation suggests
it would be possible to achieve precision of 73.27% with an
ideal whiteboard segmentation method. Then, after analyzing
stability and removing unstable CCs that belong to the speaker,
the reconstructed binaries achieve a global precision of 94.28%
which represents almost a 24% increase in precision with a
drop in recall of just 2%.

Our proposed method using conflict minimization obtains
a better compression rate (50% fewer key-frames on average)
than selecting key-frames using the max sum method [1]. It
also keeps global recall and precision almost at the same
level. One of the reasons why our generated frames get
slightly weaker global precision is because they render all
non-conflicting CCs that exist on a given interval of time.
This means that all noisy CCs that might exist on a given
segment will be included in the corresponding summary frame.
The same does not happen with sampled key-frames. In their
original work, the max sum method produced an average of 45
frames per video with 95.08% recall on a different collection
of lecture videos.

One issue with the local sliding window is that sometimes it
can generate redundant key-frames if the window is too small.
Our proposed method avoids this issue by optimizing key-
frames globally instead of locally. Our approach can further
compress the whiteboard content by placing non-overlapping
regions of contents on a single frame. However, recall can
drop if the video is under-segmented and conflicts still exist
in a segment because our method will only display the most
recent elements.

Our method uses multiple parameters in its pipeline. Many

TABLE I
RESULTS FOR DIFF. SUMMARIZATION METHODS IN 7 TEST VIDEOS.

AVG AVG GLOBAL AVG PER FRAME
METHOD FRAMES REC. PREC. REC. PREC.
Binary 295.71 98.96 64.01 98.69 63.30
W. Segm. 295.71 98.93 70.32 98.43 69.87
Gt. W. Segm. 295.71 98.94 73.27 98.49 73.29
Reconstructed 295.71 96.95 94.28 96.49 90.51
Min. Conflicts 17.29 96.28 93.56 95.73 92.21
Max Sum. [1] 34.42 96.49 94.51 96.13 91.95



of them would need to be fine-tuned on new collections.
However, some depend on summarization goals and are input
independent. More sophisticated methods will be required for
automatic fine tuning of these parameters in the future.

V. CONCLUSIONS

We have proposed a novel method for lecture video summa-
rization based on minimization of conflicts between regions of
content. Our proposed CC stability analysis for reconstruction
of binary frames and background removal procedures are
very effective in increasing the precision of content extracted
from lecture videos after binarization. As future work, we
would like to test the effectiveness of this method using
blackboard/chalkboard videos. We would also like to further
extend the proposed method to work on harder cases where
there is camera zooming/panning and lectures recorded using
multiple cameras.

Acknowledgments. This material is based upon work sup-
ported by the National Science Foundation (USA) under Grant
No. HCC-1218801.

REFERENCES

[1] C. Choudary and T. Liu, “Summarization of visual content in instruc-
tional videos,” IEEE Transactions on Multimedia, vol. 9, no. 7, pp.
1443–1455, 2007.

[2] K. Li, J. Wang, H. Wang, and Q. Dai, “Structuring lecture videos by
automatic projection screen localization and analysis,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 37, no. 6, pp.
1233–1246, 2015.

[3] W. Hu, N. Xie, L. Li, X. Zeng, and S. Maybank, “A survey on
visual content-based video indexing and retrieval,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 41, no. 6, pp. 797–819, 2011.

[4] Q. Ye and D. Doermann, “Text detection and recognition in imagery:
A survey,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 37, no. 7, pp. 1480–1500, 2015.

[5] X.-C. Yin, Z.-Y. Zuo, S. Tian, and C.-L. Liu, “Text detection, tracking
and recognition in video: A comprehensive survey,” IEEE Transactions
on Image Processing, vol. 25, no. 6, pp. 2752–2773, 2016.

[6] Z. Li, G. M. Schuster, and A. K. Katsaggelos, “Minmax optimal video
summarization,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 15, no. 10, pp. 1245–1256, 2005.

[7] C. Sujatha and U. Mudenagudi, “A study on keyframe extraction meth-
ods for video summary,” in International Conference on Computational
Intelligence and Communication Networks (CICN). IEEE, 2011, pp.
73–77.

[8] C. Nguyen, Y. Niu, and F. Liu, “Video summagator: an interface for
video summarization and navigation,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2012,
pp. 647–650.

[9] B. T. Truong and S. Venkatesh, “Video abstraction: A systematic
review and classification,” ACM Transactions on Multimedia Computing,
Communications, and Applications (TOMM), vol. 3, no. 1, p. 3, 2007.

[10] A. G. Money and H. Agius, “Video summarisation: A conceptual
framework and survey of the state of the art,” Journal of Visual
Communication and Image Representation, vol. 19, no. 2, pp. 121–143,
2008.

[11] H. S. Chang, S. Sull, and S. U. Lee, “Efficient video indexing scheme
for content-based retrieval,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 9, no. 8, pp. 1269–1279, Dec 1999.

[12] M. Eberts, A. Ulges, and U. Schwanecke, “Amigo-automatic indexing
of lecture footage,” in International Conference on Document Analysis
and Recognition (ICDAR). IEEE, 2015, pp. 1206–1210.

[13] N. Otsu, “A threshold selection method from gray-level histograms,”
Automatica, vol. 11, no. 285-296, pp. 23–27, 1975.

[14] W. Niblack, An introduction to digital image processing. Strandberg
Publishing Company, 1985.

[15] M. Wienecke, G. A. Fink, and G. Sagerer, “Toward automatic video-
based whiteboard reading,” International Journal of Document Analysis
and Recognition (IJDAR), vol. 7, no. 2-3, pp. 188–200, 2005.
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