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Abstract—This paper presents a new symbol segmentation
method based on AdaBoost with confidence weighted predictions
for online handwritten mathematical expressions. The handwrit-
ten mathematical expression is preprocessed and rendered to
an image. Then for each stroke, we compute three kinds of
shape context features (stroke pair, local neighborhood and global
shape contexts) with different scales, 21 stroke pair geometric
features and symbol classification scores for the current stroke
and stroke pair. The stroke pair shape context features covers
the current stroke and the following stroke in time series. The
local neighborhood shape context features includes the current
stroke and its three nearest neighbor strokes in distance while
the global shape context features covers the expression. Principal
component analysis (PCA) is used for dimensionality reduction.
We use AdaBoost with confidence weighted predictions for
classification. The method does not use any language model. To
our best knowledge, there is no previous work which uses shape
context features for symbol segmentation. Experiment results
show the new symbol segmentation method achieves good recall
and precision on the CROHME 2012 dataset.

I. INTRODUCTION

Recognition of math expressions includes three major
parts: symbol segmentation, symbol recognition and structural
analysis [1], [2]. The input data for online handwritten ex-
pressions is a set of strokes, and a mathematical symbol may
contain more than one stroke. Symbol segmentation aims to
transform strokes into a set of symbols [3]. It is the basis
of symbol classification and structural analysis, therefore the
quality of symbol segmentation determines the quality of the
whole math expression recognition system.

II. RELATED WORK

A number of approaches have been proposed for mathemat-
ical symbol segmentation. One group of methods are based on
X-Y cut. Faure and Wang [4] propose a segmentation method
based on a modular system which contains two modules: data-
driven segmentation module and knowledge-driven segmenta-
tion module. Okamoto et al. [5] present a segmentation method
based on recursive projection profile cutting. This segmentation
method leads to over segmentation. Then the over-segmented
symbols are combined based on some rules and segment
connectivity matrix. Ha et al. [6] propose a recursive X-Y
cut segmentation method for printed expressions based on a
top-down process and a bottom-up (merging) process.

X-Y cut or projection methods work well for printed
expressions but not for handwritten ones, because handwritten

expressions have more variation, and it is hard to segment them
well just based on gaps along horizontal or vertical directions.

There have been many graph-based methods [7]–[10].
Those segmentation methods are usually a part of correspond-
ing math expression recognition systems which try to optimize
segmentation, symbol classification and structural analysis
simultaneously. In those systems, a set of symbol hypotheses
will be generated and each hypothesis has a score produced by
the segmenter, classifier or structural analyzer. Those symbol
hypotheses will form a graph, in which each node represents
a symbol candidate and each edge denotes the relationship
between two symbol candidates. The segmentation is acquired
when the best symbol candidate set is chosen to optimize
the evaluation score. So the time complexity is exponential in
the number of strokes, all graph based segmentation methods
have some constraints to reduce computation: only successive
strokes in time series can belong to the same symbol and
a symbol at most has 4 strokes [7]–[9], or only connected
subtrees in the Minimum Spanning Tree (MST) over strokes
can form the symbol candidates [10].

Winkler et al. [7] propose a symbol segmentation method
for online handwritten expressions based on a symbol hypothe-
ses net (SHN). Each path in the SHN represents a symbol hy-
pothesis sequence. Stroke specific features are used to classify
each stroke to three complexity categories: primitive, standard
and complex. Rules specify that only certain combinations of
these categories are possible. The segmentation score for each
symbol hypothesis is computed based on the stroke specific
features and geometric features between strokes. Prerecogni-
tion is used to detect dot, minus and fraction lines, and these
classification results are used to improve the segmentation rate
using rules for these specific symbols before segmenting the
other symbols.

Toyozumi et al. [8] present a symbol segmentation method
for handwritten expressions based on candidate character lat-
tice method. Evaluation values are calculated based on the
positional relation of two strokes and math structure informa-
tion. Nearest point distance between two strokes is used to
get the evaluation value for stroke positional relation. Spatial
grammars are defined on structure symbols (such as −,√,

∑
and so on) and stroke patterns which satisfy the grammars will
be counted up to get the probability of existence of structure
symbols. Feedback from symbol classifier is used to improve
the segmentation rate.

Shi et al. [9] present a unified probabilistic framework for



symbol segmentation and recognition of handwritten expres-
sions based on a symbol graph. They define a function to
calculate the grouping likelihood between two strokes by using
three geometric features (horizontal distance, size difference
and vertical offsite).

Matsakis [10] proposes a segmentation method based on
MST. For the given expression, it will form an MST over the
strokes. In the MST each node represents a stroke, and the
distance between any two strokes is the Euclidean distance
between the centers of the bounding boxes. The segmentation
method only considers partitions that form connected subtrees
in the MST.

Another group of methods [11]–[15] are driven by gram-
mars. There are some segmentation methods [11]–[13] under
the restriction of a set of math expression grammars. For these
segmentation methods, a symbol candidate generator produces
multiple symbol candidates. A cost function is defined to
choose the final interpretation. The grammars are used to
check the validity of proposed interpretations. In [11], the two
dimensional math expression grammars are combined by two
sets of one dimensional grammars on horizontal and vertical
direction. Maximum number of hypothesis, maximum number
of strokes per symbol and maximum distances between strokes
forming the same hypothesis are limited. In [12], a set of
LL(1) grammars is defined and maximum number of strokes
per symbol is limited. In [13], there is a set of fuzzy relational
context free grammars.

Some segmentation methods [14], [15] are driven by
stochastic context free grammars (SCFG). In [14], the ex-
pressions recognition system is driven by the 2D context-
free probabilistic graph grammar to find all mathematically
valid interpretations and assign scores to each possible inter-
pretation. The suitability of the symbols spatial distribution
for the rules and the likelihoods of the recognized symbols
determine the score of an interpretation. In [15], the online
handwritten expressions will be rendered to image first. Then
each connected component will be taken as a symbol candidate
and passed to the symbol classifier based on Hidden Markov
Model (HMM). The SCFG determines whether to merge two
symbol candidates or not based on the class label and class
confidence produced by the symbol classifier.

There have also been many other methods [16], [17].
Smithies et al. [16] present a progressive segmentation method.
It has the time sequential assumption. For 4 strokes, the
segmenter generates all possible groupings. Then the first
recognized character from the group with highest confidence
level will be removed and the process will restart when there
is 4 strokes again. Kosmala et al. [17] propose a segmentation
method based on HMM. Discrete left to right HMMs without
skips and with different numbers of states are used. An addi-
tion space model is introduced to model the spaces between
symbols.

III. METHODOLOGY

Like many previous segmentation methods, our method
assumes a symbol can only contain successive strokes. But
our method does not specify the number of strokes a sym-
bol can have and does not use any language model. Given
an expression with n strokes, our segmentation method

just considers merging or splitting the n − 1 stroke pairs
(S1, S2), (S2, S3), ..., (Sn−1, Sn) in time sequence and only
provides one segmentation interpretation. The time complexity
of our segmentation method is O(N2). Therefore our segmen-
tation method is efficient, in terms of computation.

Expressions are preprocessed to reduce noise and reso-
lution variance first. Then for each stroke pair, we extract
351 features, including 21 geometric features, three types of
shape context features (each shape context feature has 60
dimensions) and two sets of classification scores (each set
of classification scores has 75 dimensions). After the feature
extraction, we apply PCA to the 351 features and choose the
first 100 components. The 100 components are used to train
the classifier by using AdaBoost with confidence weighted
predictions [18].

A. Preprocessing

To reduce noise and resolution variance between different
expressions, we apply preprocessing to render the expression
to an image. Our procedure contains four steps: duplicate point
filtering, smoothing, size normalization and resampling.

We delete duplicate point which has the same (x,y) co-
ordinates as the previous point because they cannot provide
any useful information. To reduce the noise caused by the
stylus’ jogging, we smooth the whole expression. Except the
first point and the last point of each stroke, we replace the
other points’ coordinates by the average of the coordinates
of current point, the previous point and the next point. In
order to remove the influence of writing velocity and devices’
difference in coordinate range and resolution, we transform
the y coordinate’s range to be [0, 200] while preserving the
width-height aspect ratio. Then we use linear interpolation to
resample the expression and render it to an image.

B. Feature Extraction

All the stroke pair features used in previous segmentation
methods are geometric features. Winkler et al. [7] use min-
imum distance, horizontal overlapping of the bounding box,
distance and offset between the beginning points and end
points, backward movement and parallelity of two successive
strokes. Shi et al. [9] use horizontal distance, size difference
and vertical offsite. Toyozumi et al. [8] use the minimum point
distance. MacLean et al. [13] use the overlapped area.

We use all the geometric features mentioned above and de-
sign some other geometric features: distance between bounding
box centers, distance between averaged centers (the coordi-
nates of averaged center are the average of the coordinates
of all points of the stroke), maximal point pair distance (two
points are from different strokes of the stroke pair), horizontal
offset between the ending point of the first stroke and the
beginning point of the second stroke, vertical distance between
bounding box centers, writing slope (slope is the angle between
the horizontal line and the line connecting the last point of the
current stroke and the first point of the next stroke) and writing
curvature (curvature is angle between the line connecting the
first point and last point of the current stroke and the line
connecting the first point and last point of the next stroke). We
normalize all the geometric features except parallelity, writing
slope and writing curvature to make them between [0, 1].



It is hard to design a good set of geometric features, so we
add multi-scale shape context features (MSSCF). The shape
context [19] at a given point captures the distribution of the
other points relative to it. Figure 1 shows one example of shape
context feature. A circle is divided into 60 bins, containing 12
equal angle bins and 5 distance bins. We chose the parameters
for bins based on Belongie et. al’s paper [19]. The ratios of the
radii of the five distance bins to radius of the outmost circle are
1
16 ,

1
8 ,

1
4 ,

1
2 and 1. For each bin, the number of points within

that bin divided by the number of points is a shape context
feature.

Ouyang and Zanibbi [20], [21] presented a symbol layout
classification method to classify printed math symbols into
seven layout classes [22]: ascender, descender, centered, open
bracket, non-scripted, variable range and root. Hirata and
Honda [23] used shape context feature in their graph matching
method to automatically label symbols in handwritten math
expressions. Marinai et al. [24] used shape context feature for
math symbol retrieval.

Fig. 1. Example: shape context feature computation.

We design three shape context features: stroke pair, lo-
cal neighborhood and global. Figure 2 shows one example
of multi-scale shape contexts. For the three kinds of shape
contexts, the circle center is the center of the bounding box
of the current stroke, but their radii will be different. Stroke
pair shape context only considers the current stroke and the
following stroke in time sequence. The radius for stroke pair
shape context is the maximal distance between the points in
the two strokes and the circle center. Local neighborhood
shape context considers the current stroke and its three nearest
neighbor strokes. The distance between two strokes is the
minimal point distance between them. The radius for neighbor
shape context is the maximal distance between the points in the
four strokes and the circle center. Global shape context covers
the whole expression. The radius is the maximal distance
between the points in the whole expression and the circle
center. Each one of the three circles will be divided into 60
bins as showed in Figure 1. The MSSCF capture the successive
stroke pair, local neighborhood and the whole expression
separately and include information at different level. Compared
to a single shape context feature, the MSSCF contains much
more information which is helpful for deciding to merge or
split the successive stroke pair.

For different symbol classes, the strokes’ layout and neigh-
borhoods are different. We add the classification scores as
additional features to use the symbol class information. The

Fig. 2. Example of multi-scale shape contexts (current stroke is the top stroke
of the symbol 4).

classifier we use is similar to the HMM classifier in [25], but
with additional angular feature and global features [12]. We
design a continuous left to right HMM for each symbol class.
A variant of segmental K-means is used to get initialization of
the Gaussian Mixture Models’ parameters which represent the
observation probability distribution of the HMMs. We take the
current stroke (the first stroke of the stroke pair) as one symbol
candidate and also take the stroke pair as the other symbol
candidate. For each symbol candidate, the classification scores
with a fixed order over all the classes are used as features.

C. Dimensionality Reduction

For each stroke pair, we have 351 features which are based
on the stroke pair, such as geometric features, stroke pair
shape context features and classification scores, or are centered
around the stroke pair, such as local neighborhood shape
context features and global shape context features. Among
these features, some are redundant. For example, the bins
which are far away from the circle center vertically in global
shape context usually contain no points, and those shape
context features are always 0. We use PCA to reduce noise
and redundancy. After PCA, the first 100 components account
for the 99.86% variance of all the features. The ratio of the
variance of the first five components are 45.24%, 25.75%,
18.96%, 3.90% and 1.11%. The ratio of the variance of the
other components are all less than 1.00% and form a long tail.
The shape of the plot about the ratio of the variance of each
component in descending order is close to an ’L’. The first 100
components are used as new features to train the classifier.

D. AdaBoost

We use AdaBoost with confidence-rated predictions, and
the weak learner is a decision stump. In each iteration of
AdaBoost, we try to minimize the normalization factor

Zt
.
=

m∑
i=1

Dt(i)exp(−αtyiht(xi)), (1)



where Dt is the weight distribution over the all training
samples; αt is a parameter which is used to update Dt(i);
yi ∈ {−1,+1} (+1 represents merge while −1 represents
split); ht is the weak hypothesis.

There are 23424 training samples for our classifier, there-
fore it is hard to calculate ht and at in general method. By
assuming the weak learner can scale any weak hypothesis h
by any constant factor α ∈ R freely without loss of generality,
expression (1) can be simplified by folding at into ht [18]. We
choose α to be 1. Then our goal becomes minimizing

Zt =

m∑
i=1

Dt(i)exp(−yiht(xi)). (2)

Our classifier only contains two classes: merge and split.
The weak learner decision stump finds a threshold to divide
the whole training samples into two parts. In each iteration, for
all samples within each block Xj , weak hypothesis h is equal
to some fixed value cj . The normalization factor in equation
(2) is minimized when

cj =
1

2
ln

W j
merge + ε

W j

split + ε

 , (3)

where W j
merge is the summed weight of merge samples which

fall in block j while W j

split is the summed weight of split
samples which fall in block j. ε in expression (3) is typically
chosen to be on the order of 1

m and m is the number of training
samples [18]. We choose ε to be 1

23424 .

IV. DATASET AND EXPERIMENT RESULTS

The dataset we use in this paper is the Part-III dataset in
CROHME 2012 [26]. We use the training set of Part III data
to train the classifier and the testing set for test. The training
set has 1338 expressions and 23424 successive stroke pairs,
in which 7773 stroke pairs should be merged while 15651
should be split. The testing set has 488 expressions and 8379
successive stroke pairs, in which 2459 stroke pairs should be
merged while 5920 should be split. Training set and testing
set have the same 75 symbol classes.

We train the classifier 10000 iterations, and Table I shows
the minimal classification error rates on the successive stroke
pairs of training set and testing set with different features
among the 10000 rounds.

From Table I, we can find that MSSCF performs better than
G (geometric features) on training set but worse on testing set.
This shows MSSCF is easy to overfit. MSSCF performs much
better than either one of three shape context features (SPSCF,
LNSCF and GSCF) on both training and testing set. If we
just use one of the three shape context features, the larger the
radius is, the worse the performance. The reason is that the
shape context features will have less variance and become less
discriminative when the scope become larger. Using G and
MSSCF can get better performance on training set and testing
set than using either one of them alone. Adding classification
scores to G and MSSCF can improve the performance further.

For the classification error rate curve on training set and
testing set over the 10000 iterations by using G + MSSCF + C,

TABLE I. MINIMAL ERROR RATES (CORRESPONDING NUMBERS OF
ITERATION) ON THE SUCCESSIVE STROKE PAIRS OF TRAINING SET AND

TESTING SET WITH DIFFERENT FEATURES AMONG THE 10000 ROUNDS (G:
GEOMETRIC FEATURES, MSSCF: MULTI-SCALE SHAPE CONTEXT

FEATURES, SPSCF: STROKE PAIR SHAPE CONTEXT FEATURES, LNSCF:
LOCAL NEIGHBORHOOD SHAPE CONTEXT FEATURES, GSCF: GLOBAL

SHAPE CONTEXT FEATURES, C: CLASSIFICATION SCORES).

features training set testing set
G 7.60% (9995) 12.85% (390)
MSSCF 1.50% (9999) 14.49% (822)
SPSCF 5.72% (9995) 15.85% (5366)
LNSCF 14.48% (9909) 25.27% (542)
GSCF 15.48% (9965) 29.26% (12)
G + MSSCF 0.00% (9946) 10.36% (6604)
G + MSSCF + C 0.00% (7147) 8.80% (4111)

the error rates on training set and testing set drop fast in the
first 2000 iterations. After 2000 iterations, the training error
rates continue to drop and are almost 0 after 6000 iterations,
while the testing error rates just change a little. The error
rate curves by using the other sets of features (such as G or
MSSCF or G+MSSCF) have the similar shape. This shows that
AdaBoost with confidence-rated predictions will not overfit the
training set.

Figure 3 shows the precision and recall on testing set with
different features. Recall is the same as symbol segmentation
rate in [26]. We can find that the precision and recall for
different features on training set or testing set is very close.
It is easy to find that using G + MSSCF + C gets the best
performance. By using all these three sets of features, our seg-
mentation method achieves 99.88% recall, 99.76% precision
on training data and 84.95% recall, 84.79% precision on testing
data. In CROHME 2012 [26], the top two systems (MyScript
Equation recognizer from Vision Objects and the Waterloo
recognizer [13]) get 98.84% and 95.56% symbol segmentation
rate (recall) on the testing data. The reasons there is a gap
between our segmentation method and the top two systems are:
(1) given an expression, these two systems produce multiple
segmentations while our segmentation method produces one;
(2) both systems use language models while our segmentation
method does not; (3) both systems use extra datasets for
training; (4) both segmentation methods cannot be separated
from the whole math expression recognition systems which
optimize the segmentation, classification and parsing at the
same time while our segmentation method is independent.

Through analyzing the experiment results, we find many
segmentation errors happen to multi-stroke symbols, such as
cos, sin, log, lim, ellipsis . . . and so on. Those multi-stroke
symbols are easy to be over segmented. Symbol segmentation
rates for cos, sin, log, lim, ellipsis . . . are 38.37%, 48.00%,
44.44%, 34.69% and 0. For the single-stroke symbols, which
have intersections with nearby symbols or are very close
to nearby symbols, they are easy to be under-segmented.
Therefore the symbol segmentation rate can be improved by
adding prerecognition. Prerecognition means trying to find
symbol candidate which is highly possible to be a symbol and
this symbol is not a part of other symbol. The strokes of the
symbol candidate will be isolated from the other strokes.



Fig. 3. Precision and recall on testing set with different features (G: geometric
features, MSSCF: multi-scale shape context features, C: classification scores).

V. CONCLUSION

This paper presents a new symbol segmentation method for
online handwritten mathematical expressions using AdaBoost
with confidence rated predictions. For the stroke pair contain-
ing two successive strokes in time series, we calculate geomet-
ric features, a new shape context-based feature (multi-scale
shape context features) and classification scores. Multi-scale
shape context features includes three different shape contexts:
stroke pair, local neighborhood and global shape contexts.
Then we apply PCA to reduce dimensionality. AdaBoost with
confidence rated predictions is the classifier. Our segmentation
method achieves 84.95% recall, 84.79% precision on testing
data. The initial experiment results are encouraging in light of
we do not use any language model.

In future work, we will make symbol segmentation interact
more with symbol classification and structural analysis to get
higher recall.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science foundation under Grant No. IIS-1016815. The authors
would like to thank David Stalnaker and Francisco Álvaro for
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