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Abstract

We generalize recursive baseline extraction algo-
rithms for symbol layout analysis in math expressions
so that handwritten strokes may be provided as input.
Specifically, baseline extraction is used for lexical anal-
ysis in a modified LL(1) parser, returning a set of candi-
date symbols when the leftmost or next symbol along the
current baseline (from left-to-right) is requested by the
parser. Candidate symbols are used to produce a forest
of parse trees, and the highest ranked parse returned.
Hidden Markov Models (HMMs) are used for symbol
classification, and horizontal adjacency between sym-
bols is determined using two probabilistic quadratic
classifiers, one for ascenders (e.g. ‘A’) and another for
centered and descender symbols (e.g. ‘y’ and ‘x’). The
system placed second in the CROHME 2011 handwrit-
ten math recognition competition.

1. Introduction

Converting math expressions written on a tablet
computer to a symbol layout tree (e.g. in LATEX) is
a structural pattern recognition problem. Given a set
of handwritten strokes, we want to determine which
strokes form symbols, the type (class) of each symbol,
which symbols are adjacent on baselines, and the hier-
archy of spatial relationships between baselines [5, 15].
For the expression 2x

3 there are three baselines: − (the
main baseline), 2x (above −), and 3 (below −).

Math symbol classification is difficult due to the
number of symbols in use: for example, tools such as
detexify1 are used to make it easier to find symbol codes
amongst the hundreds available in LATEX. Handwrit-
ten symbols vary significantly in appearance and form
across writers: for example, some write ‘x’ using two

1http://detexify.kirelabs.org/classify.html

outward curves (‘)(’) while others use two intersect-
ing lines (‘×’). Segmentation of strokes is also diffi-
cult, particularly when a cursive writing style that con-
nects symbols in a single stroke is used [3]. Symbol
layouts such as subscripting vary significantly across
writers, and are often ambiguous [13]. Detecting frac-
tions whose arguments extend past the fraction line is
challenging, for example. These tasks are interdepen-
dent [15], and context is often needed for disambigua-
tion [12].

To exploit contextual/linguistic constraints, com-
monly stochastic or fuzzy language models are used
when recognizing handwritten expressions (see [2, 4,
7, 9, 14], and [15]). A grammar defines legal symbol
layouts, and a two-dimensional parser searches through
alternative segmentation, classification and layout hy-
potheses as productions are applied. The most likely
(legal) interpretation is returned. Like all syntactic
methods, this approach can be brittle; expressions not
detected as in the language result in no output. Error-
correcting parsing [6] can mitigate this problem.

Baseline extraction parses symbol layout by locat-
ing symbols on the main baseline from left to right, and
then repeating this process in regions around baseline
symbols recursively (e.g. for symbols located in an ex-
ponent [16]). The method is deterministic, and requires
symbol bounding boxes and their typographic/layout
classes (e.g. ascender, descender, centered, root, non-
scripted) as input. The (implicit) expression language
accepts nearly all symbol arrangements, but does not
consider math expression syntax. In a parser-driven sys-
tem, interpreting ‘2+’ for an input would lead to back-
tracking, and other interpretations being considered.

In this paper we generalize baseline extraction for
use with handwritten strokes, embedding it within the
lexical analyzer of a modified recursive descent LL(1)
parser. Providing alternatives for leftmost and hori-
zontally adjacent symbols along baselines allows mul-
tiple interpretations (i.e. symbol layout trees) to be



considered. In the next section we introduce a simple
stroke data structure for finding baseline symbols, the
Left Blocking Tree (LBT). Hidden Markov Models are
used for symbol classification, and quadratic classifiers
to identify symbols that are adjacent to a given symbol
on the current baseline. The system placed second in
the CROHME 2011 handwritten math recognition com-
petition [13]. We describe some extensions, and then
present and discuss new results for the system on the
CROHME 2011 dataset.

2. Left Blocking Trees (LBTs)

To identify the leftmost symbol on the main baseline
of an expression, we first need to identify the leftmost
strokes. We do this using a simple data structure, the
Left-Blocking Tree (LBT), illustrated in Figure 1. In an
LBT, an edge between two nodes (strokes) represents
the child node (stroke) being overlapped vertically at
left by the parent node (stroke). More than one stroke
may be unblocked at left (see Figure 1).

To construct an LBT, strokes are sorted by leftmost
x-coordinate from left-to-right, and the first stroke (s1)
is placed in a child node of the root, representing the
left end of the expression. We then traverse the list
of n strokes in sorted order. For stroke sk, we search
right-to-left for a stroke sb (sk−1 ≥ sb ≥ s1) that verti-
cally overlaps (blocks) stroke sk. If a blocking stroke is
found, an edge is added from the node for stroke sb to
the node for stroke sk. If no stroke blocks sk, a node for
sk is added as a child of the root node. Each time a new
baseline symbol is identified, strokes for the symbol are
removed from the LBT, and the LBT is re-built.

3. Detecting Baseline Symbols in Strokes

We now address detection of candidate baseline
symbols from within a stroke set. Section 4 describes
how these methods are used for lexical analysis.

Leftmost Symbol: For each stroke that is a child
of the root in the LBT, we find the two closest neigh-
boring strokes, with stroke distances determined by the
two closest sampled points on the strokes; intersecting
strokes are automatically joined. This produces a set of
candidates for the leftmost baseline symbol, with the in-
tention of capturing leftmost baseline symbols that are
not leftmost in the expression, such as when summa-
tions have limits that extend past the operator’s left end.
Each leftmost symbol candidate is classified using an
HMM (see Section 5), and strokes for the candidate are
removed from the LBT for the associated parse.

Adjacent Baseline Symbols: After the leftmost
baseline symbol is located, additional baseline symbol
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Figure 1. Left Blocking Tree (LBT) for an
Expression. Three strokes do not have a
vertically overlapping stroke at left: the e,
and the two strokes in the i

are detected left-to-right. The method used for finding
the next baseline symbol depends upon whether the cur-
rent baseline symbol is:

1. Non-Scripted (e.g. ‘+’, with no sub/super-scripts),
2. an Ascender (e.g. ‘A’),
3. or a Centered (minim) symbol (e.g. ‘x’).

Descender symbols (e.g. ‘y’) have their descender por-
tion cut off before analyzing layout using a simple
projection-based method, and are then treated as Cen-
tered symbols. For Non-Scripted symbols, we simply
repeat the procedure for finding leftmost baseline sym-
bols, using the current LBT.

For Ascender and Centered symbols, we search for
the leftmost unused stroke where the probability of hor-
izontal adjacency is greater than a superscript or sub-
script relationship, given that the current symbol is an
Ascender or Centered symbol. We use two quadratic
classifiers defining the conditional probability of super-
script, adjacent at right, and subscript relationships be-
tween the current and a candidate baseline symbol, e.g.
PCentered(superscript | (−0.2, 0.1)). The feature vec-
tor represents the top and bottom y-coordinate offsets
for the next baseline symbol candidate’s bounding box
relative to the top of the current baseline symbol. The
distances are normalized by the height of the current
baseline symbol. Values are negative for coordinates
above the top of the current symbol’s bounding box.
A stroke is detected as adjacent to the current baseline
symbol if the probability for adjacency at right is higher
than superscript or subscript. Note that the Gaussian
spatial relationship densities are trained using symbols
from ground truth, but we detect adjacency using indi-
vidual strokes.



Just as for leftmost baseline symbols, once an adja-
cent stroke is detected we consider its two closest neigh-
boring strokes to identify candidates for the next base-
line symbol. When a new baseline symbol is chosen, its
strokes are removed from the current LBT, and the LBT
is rebuilt.

Partitioning Strokes not in Baseline Symbols: Un-
used strokes at left of a newly detected baseline sym-
bol are associated with regions of the current baseline
symbol. For now, we simply partition strokes based
on the vertical center of the new baseline symbol, and
the right-most end of the current baseline symbol (there
are a small number of special cases to handle for the
first and last symbol on a baseline). The center of the
bounding box for each unused stroke is used to deter-
mine which region of the current symbol (above, below,
superscript, subscript, contains) that the stroke belongs
to. For each new region, an LBT is created for strokes
in the region.

4. Modified LL(1) Parser

Our parser produces a set of symbol layout trees con-
sistent with a context-free grammar (LATEX math ex-
pressions are an example of symbol layout trees [15]).
Efficient parsing techniques (e.g. CYK) could be em-
ployed, but we used LL(1) for its simplicity, construct-
ing a forest of layout trees depth-first and returning the
highest ranked layout tree. We represent legal layout
trees using a positional grammar [10], where spatial re-
lations act as terminals along with symbols. Here is a
simple arithmetic language as a non-left recursive posi-
tional grammar:

E → ∗FRAC | ∗ FRAC ∗OP E
E → ∗DIGIT | ∗DIGIT ∗OP E
∗OP → + | −
∗FRAC → −
∗DIGIT → 0 | 1 | 2 | . . . | 9
[[Layout]]
∗FRAC → above E below E

Examples of legal expressions include: 2 + 2, and 1
2 −

1
4 . Legal relationships between baselines are given in
the [[Layout]] section of the grammar. For example,
nonterminal *FRAC represents a line with required sub-
expressions above and below the line.

Lexical Analysis: Consider starting a parse by ap-
plying E → ∗DIGIT ∗OP E. The leftmost baseline
symbol is requested from the parser whenever consid-
ering strokes in a new region; here we seek the left-
most main baseline symbol, considering only associated
symbol classes belonging to ∗DIGIT . The parser in-

vokes the adjacent baseline symbol detector when lo-
cating symbols following the current symbol in a pro-
duction, such as for ∗OP and E. Each time a baseline
symbol is requested, if more than one candidate is re-
turned, the candidates will be considered in turn, pro-
ducing a forest of parse trees. To reduce the combinato-
rial explosion, for each nonterminal that generates a set
of terminals (e.g. *OP and *DIGIT in our example), we
use just the highest probability symbol class.

As baseline symbols are found, symbols at left of
a symbol are partitioned into non-baseline regions (see
previous Section) - these are represented by child nodes
of a symbol (terminal) in the parse tree, with all strokes
associated with a region (e.g. above) and the associ-
ated non-terminal from the grammar stored in the node.
Parsing is depth-first: if there are nested regions, we
parse strokes for the child regions of the current symbol
before completing the current baseline.

Ranking: To score a parse (layout tree), for each
stroke we add the classification probability of its asso-
ciated symbol in the interpretation. Given an expres-
sion with n strokes, where Parse(m) represents the
m-th valid parse, sk represents the k-the stroke and Pk

is the probability for the symbol that sk belongs to in
Parse(m), the score for Parse(m) is calculated as:
Score(Parse(m)) =

∑n
k=1 Pk. The highest scoring

parse is then returned. This scoring function is naı̈ve,
considering only symbol classification - it would be
beneficial to also consider spatial relationships between
symbols [2, 9].

5. HMM-Based Symbol Classification

Classification of a candidate symbol (i.e. stroke set)
is performed using Hidden Markov Models (HMMs)
to represent handwritten symbols and strokes in time-
order [8]. For each symbol class, we design a continu-
ous left to right HMM (i.e. a linear topology) with six
hidden states and five features. A mixture model of five
Gaussians is used to represent the stroke feature distri-
butions observed within each state at a single sample
point on a stroke. A variant of segmental K-means is
used to initialize the Gaussian Mixture Model parame-
ters [8]. Symbol recognition rates reported in this sec-
tion are resubstitution estimates, obtained by training
and testing on the CROHME Part-II training data [13].

Symbol Priors: The symbol class distribution for
the CROHME 2011 data is skewed. Using the prod-
uct of the symbol priors and the posterior probabilities
from the HMM, the isolated symbol classification rate
increased to 92.7% from 91.7% (HMM only).

Stroke Sampling: The number of points uniformly
sampled from each stroke determines the resolution of



Table 1. Results for CROHME 2011 Dataset. Successful and failed parses, and system failures
(Time-out and Out-of-Memory) are shown at right. Metrics: % strokes in a symbol with correct
class (STrec), % correctly segmented symbols in ground truth (SY Mseg), recognition rate for
correctly segmented symbols (SY Mrec), and expression recognition rate (EXPrec)

DATA (NUM. FILES) STrec SY Mseg SY Mrec EXPrec Out Fail Time Mem
Train Part-I (296) 56.07% 54.88% 94.62% 19.26% 223 69 4 0
Test Part-I (181) 41.69% 47.35% 87.00% 13.26% 120 61 0 0

Test Part-I w. Part-II Classifier (181) 42.12% 48.67% 86.54% 14.36% 120 61 0 0
Train Part-II (921) 9.95% 11.64% 91.88% 5.32% 266 112 445 98
Test Part-II (348) 17.74% 22.66% 80.16% 6.03% 193 36 92 27

Test Part-II w. Part-I Grammar (348) 25.57% 31.01% 84.62% 8.05% 183 154 11 0

features. We found that the recognition rate (92.7%)
obtained for 30 points was 0.2%-2% higher than when
sampling using additional points (35, 40, or 45).

Window Size: Three features need neighboring
points for their calculation. If we use a window size
of 7, then for each point the previous 3 sample points
and following 3 points in time series will be used. For
a fixed window size, points near the stroke start and
end do not have sufficient neighbors to compute the
features; we use value 0 in this case. We considered
variable window sizes, where smaller window sizes are
used as needed to obtain non-zero feature values near
stroke ends. Using a fixed 5-point window produced
a recognition rate (92.7%) that was 0.8%-6.5% higher
than when using variable-sized windows for odd win-
dow sizes from 3 to 15 sample points.

New Feature: We use four local features from [8]:
cosine of the slope, normalized y-coordinate, normal-
ized distance to stroke edge and sine of the curvature.
Three additional features considered were negative sine
of local curvature, absolute sine of local curvature, and
cosine of the diagonal. Local curvature for the current
point (x(t), y(t)) is defined by the angle between the
lines connecting the previous and following two points
(x(t − 2), y(t − 2)) and (x(t + 2), y(t + 2)). Cosine
of the diagonal is the angle between the main diagonal
of the bounding box and the line connecting the cur-
rent point and the left top corner of the bounding box.
Although negative sine of the slope is related to cosine
of the slope, it represents the vertical direction of pen
movement: when the pen moves upwards, downwards
or horizontally, its value will be positive, negative or
zero. Adding the negative sine of slope as a fifth feature
produces the largest improvement, obtaining a 93.9%
symbol recognition rate.

6. Results on CROHME 2011 Dataset

The dataset used to evaluate our system is from
CROHME 2011 [13]. The training and test sets have
two levels of complexity, Part-I and Part-II. Part I has
36 symbol classes, and Part II has 56 symbol classes
and a more complex grammar. An earlier version of our
system placed second in CROHME 2011, with expres-
sion rates of 4.4% (Part-I) and 2.6% (Part-II), training
the system using just the provided data sets. The win-
ning system for CROHME 2011 employed a Stochastic
Context-Free Grammar (SCFG) and Cocke-Younger-
Kasami (CYK) parsing [1], with expression rates of
29.3% (Part-I) and 19.8% (Part-II). A system from the
organizers [2] was also run, using a neural net, gram-
mar and dynamic programming to minimize symbol
and layout penalties. The expression rates were 40.88%
(Part-I) and 22.41% (Part-II). Some systems (including
the organizers’) were trained using data in addition to
the CROHME training sets.

Rates are low partly because of the effort needed to
construct tools2 and recognition systems from scratch
(as our group did). Also, stroke data is provided in
different co-ordinate systems and resolutions. Writers
are from multiple countries (France, India, and Korea),
with a large variation in both symbol forms and writ-
ing style. Finally, writer sets for the Part-II training and
testing data are disjoint, making Part-II a difficult task.

Table 1 provides results for our current system on the
CROHME 2011 data, trained using the CROHME train-
ing sets. We show the number of expressions parsed
successfully (Out) as well as the number of parse fail-
ures, when no legal expression was produced (Fail).
Our system uses a time-out threshold of 5 minutes, after
which the parse stops without producing output (Time).
Sometimes our system also runs out of memory (Mem).

Our updated system is able to parse more expres-
sions than before, and obtains better expression recogni-

2http://saskatoon.cs.rit.edu/inkml viewer (data visualization)



tion rates of 13.26% (Part-I) and 6.03% (Part-II). Inter-
estingly, using the Part-II symbol classifier for the Part-
I data increases the expression rate to 14.36%, because
the Part-II training data provides more training samples
(see Table 1). Another interesting result is that using the
Part-I grammar to parse the Part-II test data increases
the expression rate to 8.05%, 2.02% higher than when
using the Part-II grammar, even though the number of
expressions producing outputs decreases by 10. This
is because the Part-I grammar has a simpler language
model with fewer alternatives, improving recognition
for expressions consistent with the grammar while lead-
ing to many parse failures (154). In contrast, our LL(1)
parser is running out of time and memory in many cases
when using the Part-II grammar.

Our parse ranking function sometimes prevents the
correct parse from being ranked highest. Our current
implementation is also inefficient, repeatedly rebuild-
ing LBTs. Additional constraints (e.g. using a mini-
mum spanning tree [11]) may improve segmentation ac-
curacy and speed. Finding adjacent symbols using the
leftmost stroke with a probability of adjacency higher
than sub/super-script causes parse failures for some ex-
pressions where symbols ‘dip,’ such as if one writes
‘10’ slanting down to the right, so that the system de-
tects ‘10’, which is illegal. Finally, grammars may be
revised to accept more inputs, with parses illegal in the
original grammar being penalized in the ranking.

With further investigation and changes as described
above, we believe that baseline extraction-driven pars-
ing will provide a simple but competitive methodology
for handwritten math recognition.

7. Conclusion

We have presented a generalization of baseline ex-
traction from operating on symbols to handwritten
strokes, as part of a lexical analyzer for LL(1) parsing.
Our results on the CROHME 2011 data set have been
improved over our earlier version of the system, and we
have identified future directions for research in baseline
extraction-driven parsing. The performance of our cur-
rent system is modest but encouraging in light of the
simple segmentation and parse ranking methods used.
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