
Using Off-line Features and Synthetic Data for
On-line Handwritten Math Symbol Recognition

Kenny Davila 1, Stephanie Ludi 2 and Richard Zanibbi 1

1 Department of Computer Science
2 Department of Software Engineering

Rochester Institute of Technology
Rochester, New York, USA

Email: kxd7282@rit.edu, salvse@rit.edu, rlaz@cs.rit.edu

Abstract—We present an approach for on-line recognition of
handwritten math symbols using adaptations of off-line features
and synthetic data generation. We compare the performance
of our approach using four different classification methods:
AdaBoost.M1 with C4.5 decision trees, Random Forests and
Support-Vector Machines with linear and Gaussian kernels.
Despite the fact that timing information can be extracted from
on-line data, our feature set is based on shape description for
greater tolerance to variations of the drawing process. Our
main datasets come from the Competition on Recognition of
Online Handwritten Mathematical Expressions (CROHME)
2012 and 2013. Class representation bias in CROHME datasets
is mitigated by generating samples for underrepresented
classes using an elastic distortion model. Our results show that
generation of synthetic data for underrepresented classes might
lead to improvements of the average per-class accuracy. We also
tested our system using the MathBrush dataset achieving a top-1
accuracy of 89.87% which is comparable with the best results
of other recently published approaches on the same dataset.

Keywords: Handwritten Character Recognition, AdaBoost,
Random Forest, SVM, Elastic Distortion, Off-line Features

I. INTRODUCTION

In pattern recognition there are several applications for
automatic recognition of math expressions. This is a hard task
specially if the input data is handwritten. This task has two
general modes: on-line and off-line. The first one refers to the
case when tracing information is available. The second one
refers to the case when tracing information is not available
but images of the final drawings are provided instead.

In this research work we are focused on using adaptations
of off-line features for on-line classification of math symbols.
Since the training dataset is usually biased toward very few
classes, we also reduce this class-representation disparity by
generating synthetic data using an elastic distortion model.
We tested our approach using different classification methods:
AdaBoost.M1 [1] algorithm using C4.5 decision trees [2] as
the weak learner, Random Forests [3] and Support-Vector Ma-
chines (SVM) [4], [5] with linear and Radial-Basis Function
(RBF) kernels. The input of these classifiers is a set of simple
features used for description of the shapes of each symbol. For
our main experiments we used datasets from the Competition
on Recognition of Online Handwritten Mathematical Expres-
sions (CROHME) 2012 [6] and CROHME 2013 [7]. Finally,

in order to provide a comparison of our approach with other
existing approaches for isolated math symbol recognition,
we benchmarked our system using the MathBrush database
[8]. The complete source code of our system is available at
http://www.cs.rit.edu/∼dprl/Software.html.

Different approaches have been used before in the field
of math recognition and retrieval as documented by Zanibbi
and Blostein [9]. The CROHME competitions [6], [7], [10]
provide a good comparison between different approaches for
math expression recognition on a set of standardized tasks. For
the scope of this paper, we are only interested in the specific
problem of isolated on-line math symbol recognition.

One of the most important elements of a math symbol
classifier is the set of features used to describe each symbol.
In the survey by Yang et al. [11] different feature extraction
techniques for shape description have been identified. While
some feature extraction techniques based on timing or drawing
information have been used before for on-line symbol recog-
nition [12], [13], [14], [15], [16], techniques based on shape
description might be more robust since a single shape can be
drawn in several ways. In the work by Delaye et al. [17] a set
of 49 features that describe both the drawing process and the
shape have been proposed as a baseline for different on-line
symbol recognition datasets.

In addition to strong features, good training data is also
important. For some applications, synthetic training samples
can be generated to improve the quality of a given training
set. In the current application, it is possible to apply a data
generation model to create synthetic samples from the existent.
In the work by Simard et al. [18], an elastic distortion model
for data generation is applied to off-line character recognition.
Also, the Sigma-lognormal model of the kinematic theory of
rapid human movement presented in the work by Plamondon
et al. [19] has been used to produce very realistic synthetic
on-line signatures and handwritten gestures.

The quality of a training set is not only determined by its
size, but also by having a good representation for each symbol
class. In this sense, a balanced representation of classes is
helpful to make symbol classifiers that base their decisions
mainly on the actual shapes of the symbols rather than based
only on the prior probabilities for each class. We would like
our sample to be representative and to have a balance between

classes. Ideally, a good data generation strategy can enhance
a dataset even with limited amounts of synthetic samples.

Nevertheless, it has to be considered that on a recognition
problem there might be different styles for a single class
[20]. For handwritten symbols, these styles go beyond small
differences in slant and thickness to the point of having
completely different shapes that still belong to the same class
like for example the lowercase z character written in cursive
style. If a given writing style is absent from the training set,
then it will be very difficult or even impossible for a classifier
to learn to correctly identify symbols using that style.

In our work we use a data generation strategy based on
balancing class representation. The CROHME [6], [7] training
and testing datasets are highly biased. For this reason, we used
average per-class accuracy as an indicator of how the system
performs on the individual classes.

II. STRATEGY FOR DATA GENERATION

Given a distortion model and a training set, additional data
can be generated in any convenient way. Ideally, more data
can produce more accurate classifiers. However, there is no
guarantee that higher accuracy will be achieved by getting
more samples from what is already in the training set. In fact,
we could easily obtain lower accuracies by multiplying noisy
samples. In this work we use a data generation strategy that
simply balances the class representation in the training set.

Our strategy for data generation is very simple: all classes
should have at least a given number of samples. The main
parameter for this method is the percentage T of the size of the
largest class C that will be the new minimum of samples per
class min count = T ∗ |C|. For each class, if the number of
elements is smaller than min count, then the existing samples
are used to create distorted copies of them until the size of
the class is equal to min count. Note that if T ≥ 1.0 then
the resulting dataset will be perfectly balanced.

For the generation of synthetic samples we use an elastic
distortion model similar to what Simard et al. [18] used before
for symbol recognition. One important difference in the current
model is that our input data is on-line instead of images. In
this sense, a distortion can be easily created by just randomly
moving the points of each trace around their original positions.
However, if the points are moved too far away from their
original positions, or if two contiguous points are moved in
completely opposite directions, the resulting sample might not
be a realistic variation of the original.

In order to attempt to create realistic variations of the
original shapes in our system, we used Perlin Noise [21] to
generate smooth noise maps that control how much should
we move each point in the shape, and because these noise
maps are smooth, contiguous points are very likely to move on
similar directions making the final result credible. Besides the
parameters of the Perlin Noise maps [21], the system defines
the maximum level of distortion to apply to a given point.
This is the maximum distance that a point can travel from
its original location, and it is defined as a proportion of the
length of the diagonal of the bounding box that contains the

(a) Original (b) Copy 1 (c) Copy 2 (d) Copy 3

(e) Original (f) Copy 1 (g) Copy 2 (h) Copy 3

Fig. 1. Examples of results for our distortion model. (a) and (e) are the original
symbols, and (b)-(d), (f)-(h) are distorted versions of each respectively.

trace being distorted. Empirically, we found that 30% of this
length produces credible but highly distorted samples and that
about 9% of this length was more than enough distortion to
create visually acceptable variations with a positive impact
in the training process. An example of our model applied to
distort two symbols is shown in Figure 1.

III. SYMBOL RECOGNIZERS

Three factors must be considered for the creation of a
recognizer of symbols for on-line math expressions. The first
one is a preprocessing procedure to mitigate the noise present
in the input data. The second factor is the set of features used
to describe the symbols. Finally, the third factor is the machine
learning technique used for classification and in our case we
are comparing four: AdaBoost.M1 [1] with C4.5, Random
Forests [3], and SVM with linear and RBF kernels.

A. Preprocessing of input

Our preprocessing procedure is an adaptation of the method
in [22]. Three main stages can be identified on the process:
Removal of duplicated points and hooks, then smoothing of the
trace and finally size normalization of the symbol. However,
there are two minors differences in our approach. First, during
the removal of duplicated points, we only remove them if the
length of the sub-trace connecting them is smaller than 10%
of the length of the diagonal of the bounding box that contains
the whole trace. The second difference is the cubic spline used
for the final re-sampling of the shape which in our case we
use Catmull-Rom splines [23]. After size normalization, the
resulting symbols will have all their coordinates contained
inside a 2-by-2 box centered at the origin.

B. Features

One of our goals was to use features that were both simple
and strong for shape description. Our input data is on-line
which implies that tracing information is available and can be
used to compute features that cannot be easily computed for
off-line data. However, we avoided relying on information that
describes how the trace was drawn because of the high degree
of variation introduced by the different writing styles.

We considered different features and tested many combi-
nations of them and finally we produced a set that is both
simple to compute and achieves high accuracy in our training

and testing sets. These features can be divided into four
main categories: global features of the symbols (11), crossings
features (30) 2D fuzzy histograms of points (25) and fuzzy
histograms of orientations (36). A total of 102 values are used
to describe every symbol in our system.

1) Global features of the symbols: These features represent
individual values that describe the complete symbols and
provide general information about their shapes. The current
set of global features is: number of traces (1), angular change
(2), line length (2), number of sharp points [22] (2), aspect
ratio (1), mean x coordinate (1), mean y coordinate (1) and
covariance of x and y coordinates (1). For angular change, line
length and number of sharp points, two values are added: the
total sum and the average of the values for all traces.

2) Crossings features: This kind of features has been
previously used for off-line character recognition [24]. Given
any arbitrary line, it is possible to compute the number of
times that it intersects the traces of a symbol. Also, if the
line intersects multiple times the traces, then the first and the
last intersections can be useful to describe the shape at that
location. If we extend this idea to a set of lines at fixed vertical
and horizontal positions, then we get a set of features useful
for classification of shapes of symbols.

However, one of the issues of these features is their sensitiv-
ity to small variations in writing style. A way to mitigate this
issue is using the average of many parallel lines to describe
a region instead of a single line. Currently, X and Y axis
are divided into five regions each, and for each region nine
sub-crossings are computed and the average of those sub-
crossings is used to describe the region. Three average values
are computed per region: count of intersections and positions
of first and last intersections. The entire shape is describe
horizontally and vertically using 5× 3 + 5× 3 = 30 values.

Figure 2.a shows an example of horizontal crossings for the
number 3. In this example, the lines in the middle represent
the horizontal sub-crossings of that region of the symbol. Most
sub-crossings on this region intersect the trace exactly once,
but the last intersects three times. The example shows how
little variations could lead to large changes for crossings values
if only one line is used per region. However, by using the
average of nine lines the final value of crossing counts for
this example will be very close to one.

3) 2D Fuzzy histogram of points: The normalized region
that contains the symbol is divided into a grid of 4-by-4
cells, and then each point on each trace is assigned a fuzzy
membership value for each of the four corners of the cell of the
grid where it is contained. A grid of n-by-n cells will contain
a total of (n+ 1) × (n+ 1) different corners. In this case,
5 × 5 = 25. For a given point P = (xp, yp) and a given
corner C = (xc, yc) the membership value mp is defined
as mp =

w−|xp−xc|
w × h−|yp−yc|

h , where w and h refer to
the width and height of the cell respectively. At the end,
all membership values are added on each corner, and then
these values are divided by the total of points in the symbol
producing a normalized 2D fuzzy histogram of the coordinates
of the points of the symbol.

(a) (b)

Fig. 2. Two kind of features used by our system. (a) Horizontal crossings
with average of sub-crossings. Each horizontal line in the middle represents a
sub-crossing. Intersections are marked with larger dots. (b) Fuzzy Histogram
of Orientations. The circled line segment is affecting the four corners of the
cell where it is located and most heavily the one in the middle-right.

4) Fuzzy histograms of orientations: Histograms of ori-
entations have been used before as a zoning approach for
description of shapes for off-line optical character recognition
[24]. The entire symbol area is divided into small regions using
a grid of 2-by-2 cells. Similar to the previous feature set, the
grid defines 3×3 = 9 corners, and for each of them the slopes
of the closest line segments are grouped into four bins. The
grouping criterion used is the angle formed by that slope and
the horizontal axis. Note that any slope can be represented
by an orientation angle in the range

[
−π8 ,

7π
8

]
, and then that

range can be divided into four bins of size π
4 . In that sense, we

could think of the first bin
[
−π8 ,

π
8

]
as the representation of

horizontal lines in the region. Similarly, the third bin
[
3π
8 ,

5π
8

]
represents the vertical lines, and the other two bins represent
the two diagonal directions. These features consists of a total
of 9× 4 = 36 values.

Using a grid as described before, we create fuzzy histogram
of orientations of line segments by using different weighting
criteria. Consider that the middle point of each line segment
falls inside of a cell in that grid, then the first weighting
criterion determines the membership of the line segment for
each of the four corners of the cell based on the relative
distance to each corner. This membership system is illustrated
in Figure 2.b. and is computed with the same formulas used
for mp in the 2D fuzzy histograms of points by defining the
point P = (xp, yp) as the middle point of each line segment.
The second weighting criterion is the actual slope angle and
it makes each line segment a member of the two angular bins
with the closest ranges to its orientation. The distance between
a given angle and a range is computed using the absolute
angular distance between that angle and the value in the middle
of that range. Note that angular distance is circular and some
slopes can become members of both the first and the last bins.
In summary, a single segment will affect a total of 8 bins, 2
angular bins per each of the 4 corners of the cell where its
middle point is located.

The third weighting criterion is the relative length of the line
segment. Initially, individual histograms are computed for each
trace of the symbol and the contribution of each line segment is
given by its own length divided by the total length of that trace.
The next step is to combine the individual histograms of the

traces into a single histogram for the whole symbol, and this
is done by weighting the entire histogram of each trace using
the length of that trace divided by the sum of the lengths of
all traces. After re-weighting the individual histograms, these
can be added up into a single histogram.

The fuzzy histograms are expected to be more tolerant to
small variations that their non-fuzzy versions. Consider the
case of a value that lies in the border between two bins in a
non-fuzzy histogram. A very small change in the value could
make it fall into a different bin. However, for the fuzzy case
such change will only represent a small modification to the
contribution of that value to the closest bins.

C. Classifiers

Four alternative classification algorithms were considered.
Each of them has its own advantages and disadvantages. For
example, the most accurate requires more time to classify
a symbol, and the ones that provide faster classification
times can also require longer training times. The following
subsections define each of them.

1) AdaBoost.M1 [1] with C4.5 Decision Trees [2]: Ad-
aBoost requires the use of a weak learner with at least 50%
of accuracy and C4.5 decision trees fulfill this requirement
in our current datasets. Of all the different versions of Ad-
aBoost, we are using the AdaBoost.M1 algorithm [1]. The
greedy approach described by Quinlan [2] for training of the
individual decision trees based on the calculation of the gain
ratio has been adapted to work with weighted samples. Also,
when the tree is evaluated, the class probabilities are no longer
computed using the counts of samples per class, but instead
using the total weights per class divided by the total weight
in the current node for use with boosting. Each decision tree
is pruned using the pessimist error estimation with confidence
intervals for the binomial distribution as done by Quinlan.

The main idea of boosting is that higher accuracy can
be achieved by combining the output of multiple weighted
classifiers. The algorithm is based on rounds were each round
attempts to classify correctly the samples that were misclas-
sified on previous rounds using a weighting system for each
individual sample. Additional details can be found in work
by Schapire [1]. In our tests, we set the number of boosting
rounds to a maximum of 50.

2) Random Forests [3]: A different ensemble method based
on decision trees. It has the advantage of high parallelization
as each decision tree on the ensemble can be trained and eval-
uated independently of the others. We used the implementation
of Random Forests included in the scikit-learn [25] library for
python. It trains each tree using a bootstrap sample drawn from
the training set, and randomizes the available attributes at the
time of computing the best splits. No pruning is performed
over the learned decision trees but their depth is limited. For
our classifier, we used 50 trees with depths above 20. We set
the limit of available features at each split to 30.

3) Support Vector Machines: An adaptation of SVM for
multi-class classification [5] is being used in our system. We
use the implementation provide by the scikit-learn [25] library

for python. Two different kernels were tested: Linear and RBF.
SVM with linear kernels can be easier to configure than SVM
with RBF kernels. In the other hand, SVM using RBF kernels
usually achieved the highest accuracy once that the right
values for their C and Gamma parameters were found. The C
parameter defines the simplicity of the model while Gamma
controls the influence of each training sample. In our work we
applied grid search to find good values for these parameters
which achieve the highest accuracy for each training set. The
greatest advantage of SVM is that their accuracies are usually
the highest and can be used as a reference when optimizing
the parameters of other classifiers. The greatest disadvantage
of SVM is their evaluation time for any given sample which
might be due to the fact that several SVM trained for binary
classification must be evaluated before deciding the final class
of the sample.

IV. EXPERIMENTAL RESULTS

For the first set of experiments with synthetic data genera-
tion we used the training set from CROHME 2013 [7] that
contains 68598 valid samples of handwritten symbols, and
two testing sets, one from part III of CROHME 2012 [6]
with 6336 samples and the second is from CROHME 2013
with 6082 samples. The main different between these testing
sets is the total number of classes. For CROHME 2012, 75
different class of math symbols are included. In the case of
CROHME 2013, 101 classes are available. It is important to
mention that these 101 classes are a super set of the original
75 in the first testing set. A custom training set was obtained
by extracting the samples of the 75 common classes from the
CROHME 2013 training set and the classifiers trained with
this data were evaluated using CROHME 2012 testing data.
This second training set has a total of 65544 samples.

Each of the original CROHME training sets is heavily
biased toward very few classes. For example, only 5 classes (-,
1, 2, +, x) out of the 101 present in the CROHME 2013 dataset
represent more than 35% of the whole dataset and just by
adding 4 more symbols (=, ”(”, ”)”, 3) they account for more
than half of the entire dataset. A similar bias is also present
on the testing data. In order to produce less biased classifiers
and at the same time attempt to reach higher recognition rates
we applied our data generation strategy to balance the class
representation. We tested different amounts of synthetic data
as shown in Figure 3. As we expected, additional samples stop
contributing to the accuracy of the system after a large number
of samples has been created. For each test we include the
global testing accuracy and also the average per-class accuracy
with its corresponding standard deviation. From these results
we decided that we would use a maximum of 70% of the
largest class as the new minimum size per class for balancing
on the CROHME 2013 (101) training set, and a maximum of
60% for the CROHME 2013 (75).

Given that the expanded version of each training set is
relatively large compared to the original, 68598 vs 451637
for CROHME 2013 (101) and 65544 vs 291192 for CROHME
2013 (75), and that for each symbol a total of 102 features are

Fig. 3. Effect of generating different amounts of data. The axis represent
the percentage (T) of the largest class. Note that for CROHME 2013
(101) the global accuracy does not improve. However, the average per-class
accuracy increases from 77.79% when T = 0.0 to 83.30% when T = 0.7.
Also, its standard deviation decreases from 25.49% to 18.01%. No further
improvements were obtained with larger values for T

Fig. 4. Comparison of global accuracy using different classifiers. Here, 2012
and 2013 refer to the testing set used while (75), (101) and extended refer to
training set and whether that training set was expanded or not.

Fig. 5. Comparison of average per-class accuracies using different classifiers.
The extended training set always achieve higher average per-class accuracy

used, we considered the use of Principal Component Analysis
(PCA) for dimensionality reduction. However, this led to
smaller accuracies even after using up to 99% of variance.
For this reason we decided to keep the original set of features
for our current analysis. Figure 4 shows a comparison of
the global accuracy of the four classifiers over two different
testing sets. It also shows that global accuracy values were
usually lower when the extended training sets were used. SVM
classifiers achieved the highest accuracies, specially the one
using RBF kernel. Random Forest usually achieved higher
accuracy than AdaBoost with C4.5. The best testing accuracies
are 85.89% for CROHME 2013 and 94.49% for CROHME
2012. However, a direct comparison with CROHME results
might not be possible as CROHME 2013 [7] does not provide
accuracy for isolated symbol classification. In the case of
CROHME 2012, the best accuracy reported on the original
competition was 96.85%, but this value is calculated over
a subset of correctly segmented symbols from entire math
expressions and not from isolated symbols. Figure 5 compares
the different average per-class accuracies and their standard de-
viation. Extended training set always produced higher average
values with smaller standard deviations.

A very important concept to keep in mind when balancing
classes is that some symbols are ambiguous by nature. For
example, s and S are symbols that can only be distinguished

TABLE I
COMPARISON OF ACCURACY OF DIFFERENT METHODS ON MATHBRUSH

Method Classifier Top - 1 Top - 5
Hu et al. [14] HMM 82.9% 97.8%
Alvaro et al. [15] RNN 89.4% 99.3%
MacLean et al. [26] Greedy DTW 85.8% 99.1%
Proposed Method AdaBoost C4.5 88.4% 98.7%

Random Forests 87.9% 98.4%
SVM Linear Kernel 88.6% 99.1%
SVM RBF Kernel 89.8% 99.1%

using context information. By plotting the accuracy of individ-
ual classes before and after the expansion of the dataset we
can observe how certain classes increase in accuracy while
others decrease. Figure 6 shows the plot for CROHME 2013
(101) including only classes with more than 5% of difference
in accuracy. Current results suggest that ambiguous classes
make trade-offs during the balancing process.

Considering the existence of ambiguous classes, we decided
to recompute the global accuracy of our best SVM RBF
classifiers if errors between ambiguous classes were ignored
assuming that these could be solved later using context infor-
mation. The ambiguous pairs of classes were the following: x-
X, x-\times, X-\times, 1-|, (-|,)-|, 1-(, 1-), 1-/, 1-COMMA, c-
C,)-COMMA, p-P, \prime-COMMA, \prime-|, v-V, s-S, q-9,
o-0, \prime-/, /-COMMA. We achieved 93.52% for CROHME
2013 (101) and 96.36% for CROHME 2012 part III.

Since direct comparison with results from other systems
using CROHME datasets is difficult, we tested our system
using the MathBrush [8] database. The database contains
100 classes of symbols, but following the procedure of other
approaches using this dataset [14], [15], seven classes of
symbols were discarded: ≤, 6=, <, λ,Ω, comma and dot. Table
I contains a comparison of Top-1 and Top-5 accuracies for
the following approaches on MathBrush dataset: Hu et al.
[14] using Hidden Markov Models (HMM) and Pen-Up/Down
features, Alvaro et al. [15] using Recurrent Neural Networks
(RNN) and hybrid features, MacLean et al. [26] using greedy
Dynamic Time Warping (DTW), and finally our approach
using the four classifiers described in section III-C. We tested
each classifier using 20 experiments as described in [15] using
exactly the same partitions of data. Note that in [26] only 70
classes of single-trace symbols were used.

V. CONCLUSION

We have presented an approach for on-line recognition
of handwritten math symbols. We compared the accuracy
of our approach using different machine learning techniques
and obtained relatively small differences in terms of global
accuracy. Math symbols are described in our approach mainly
using off-line features. Note that we never converted our
symbols to an off-line representation, instead we converted
the computation of these features to an on-line version. It is
worth to mention that our initial tests suggested that crossings
features are by far the strongest in our current set of features.
Our features mainly aim to describe the shapes of the symbols,
and we achieve recognition rates that are competitive with

Fig. 6. Classes with more than 5% of change in accuracy due to extension of the training set. Note that classes like ”x” suffer a great loss of accuracy while
classes like ”X” and ”times” have a great gain.

other approaches that use the on-line data to compute time-
based features.

Our experiments shown that for certain datasets like
CROHME, data generation might produce subtle benefits that
might be missed if we only pay attention to the global accuracy
of the system. In most of our test, extended datasets cre-
ated classifiers with slightly lower global accuracy but better
average per-class accuracy with smaller standard deviation.
This loss of global accuracy was mainly due to the existence
of ambiguous classes in the dataset as trade-offs took place
between pairs of ambiguous classes.

ACKNOWLEDGMENT

The authors would like to thank Dr. Pengcheng Shi, Danilo
Dominguez, Francisco Alvaro, Lei Hu and the reviewers for
their valuable feedback and shared data. This material is based
upon work supported by the National Science Foundation
(USA) under Grant No. HCC- 1218801

REFERENCES

[1] R. E. Schapire and Y. Freund, Boosting: Foundations and Algorithms.
The MIT Press, 2012.

[2] J. R. Quinlan, C4. 5: programs for machine learning. Morgan
kaufmann, 1993, vol. 1.

[3] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[4] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[5] T.-F. Wu, C.-J. Lin, and R. C. Weng, “Probability estimates for multi-
class classification by pairwise coupling,” The Journal of Machine
Learning Research, vol. 5, pp. 975–1005, 2004.

[6] H. Mouchère, C. Viard-Gaudin, D. H. Kim, J. H. Kim, and U. Garain,
“Icfhr 2012 competition on recognition of on-line mathematical expres-
sions (crohme 2012),” in Frontiers in Handwriting Recognition (ICFHR),
2012 International Conference on. IEEE, 2012, pp. 811–816.

[7] H. Mouchere, C. Viard-Gaudin, R. Zanibbi, U. Garain, D. H. Kim,
and J. H. Kim, “Icdar 2013 crohme: Third international competition
on recognition of online handwritten mathematical expressions,” in
Document Analysis and Recognition (ICDAR), 2013 12th International
Conference on. IEEE, 2013, pp. 1428–1432.

[8] S. MacLean, G. Labahn, E. Lank, M. Marzouk, and D. Tausky,
“Grammar-based techniques for creating ground-truthed sketch corpora,”
International Journal on Document Analysis and Recognition (IJDAR),
vol. 14, no. 1, pp. 65–74, 2011.

[9] R. Zanibbi and D. Blostein, “Recognition and retrieval of mathematical
expressions,” International Journal on Document Analysis and Recog-
nition (IJDAR), vol. 15, no. 4, pp. 331–357, 2012.

[10] H. Mouchère, C. Viard-Gaudin, D. H. Kim, J. H. Kim, and U. Garain,
“Crohme2011: Competition on recognition of online handwritten math-
ematical expressions,” in Document Analysis and Recognition (ICDAR),
2011 International Conference on. IEEE, 2011, pp. 1497–1500.

[11] M. Yang, K. Kpalma, J. Ronsin et al., “A survey of shape feature
extraction techniques,” Pattern recognition, pp. 43–90, 2008.

[12] U. Garain and B. B. Chaudhuri, “Recognition of online handwritten
mathematical expressions,” Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, vol. 34, no. 6, pp. 2366–2376, 2004.

[13] A. H. Toselli, M. Pastor, and E. Vidal, “On-line handwriting recognition
system for tamil handwritten characters,” in Pattern Recognition and
Image Analysis. Springer, 2007, pp. 370–377.

[14] L. Hu and R. Zanibbi, “Hmm-based recognition of online handwritten
mathematical symbols using segmental k-means initialization and a
modified pen-up/down feature,” in Document Analysis and Recognition
(ICDAR), 2011 International Conference on. IEEE, 2011, pp. 457–462.

[15] F. Alvaro, J.-A. Sánchez, and J.-M. Benedi, “Classification of on-
line mathematical symbols with hybrid features and recurrent neural
networks,” in Document Analysis and Recognition (ICDAR), 2013 12th
International Conference on. IEEE, 2013, pp. 1012–1016.

[16] F. Álvaro, J.-A. Sánchez, and J.-M. Benedı́, “Recognition of on-line
handwritten mathematical expressions using 2d stochastic context-free
grammars and hidden markov models,” Pattern Recognition Letters,
vol. 35, pp. 58–67, 2014.

[17] A. Delaye and E. Anquetil, “Hbf49 feature set: A first unified baseline
for online symbol recognition,” Pattern Recognition, vol. 46, no. 1, pp.
117–130, 2013.

[18] P. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolu-
tional neural networks applied to visual document analysis.” in ICDAR,
vol. 3, 2003, pp. 958–962.

[19] R. Plamondon, C. OReilly, J. Galbally, A. Almaksour, and É. Anquetil,
“Recent developments in the study of rapid human movements with the
kinematic theory: Applications to handwriting and signature synthesis,”
Pattern Recognition Letters, vol. 35, pp. 225–235, 2014.

[20] P. Sarkar and G. Nagy, “Style consistent classification of isogenous
patterns,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 27, no. 1, pp. 88–98, 2005.

[21] K. Perlin, “An image synthesizer,” SIGGRAPH Comput. Graph., vol. 19,
no. 3, pp. 287–296, 1985.

[22] B. Q. Huang, Y. Zhang, and M.-T. Kechadi, “Preprocessing techniques
for online handwriting recognition,” in Intelligent Text Categorization
and Clustering. Springer, 2009, pp. 25–45.

[23] E. Catmull and R. Rom, “A class of local interpolating splines,”
Computer aided geometric design, vol. 74, pp. 317–326, 1974.

[24] Ø. D. Trier, A. K. Jain, and T. Taxt, “Feature extraction methods for
character recognition-a survey,” Pattern recognition, vol. 29, no. 4, pp.
641–662, 1996.

[25] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[26] S. MacLean and G. Labahn, “Elastic matching in linear time and
constant space,” in Proc., Ninth IAPR Intl. Workshop on Document
Analysis Systems, 2010, pp. 551–554.

