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Goal

 Improve algorithms and tools for recognition and retrieval 
of information in documents, images, audio and video.  

Let’s first look at some examples of systems and results 
produced by student researchers in the dprl. 



Video CAPTCHA 
(Kurt Kluever, CUPS 2009)

• Identify computers (‘bots’) vs. humans. 
One ‘correct’ word to pass. Words 
stemmed (via Porter), synonyms 
allowed.  

• ‘Correct’ answers generated 
automatically from tags on ‘similar’ 
YouTube videos (by cosine similarity). 
Filter tags with frequency > t %. 

• In an experiment, students passed 90% 
of challenges, vs. 13% break rate using 
most common tags. 

• Innovations: First video CAPTCHA. 
Random walk-based video sampling, 
tag set expansion and filtering methods.



Text-Conv: Text Detection in Natural Scenes 
(Siyu Zhu, CVPR 2016; David Syner, Bo Ding, Kardo Aziz)

• Cascaded AdaBoost-based detector that obtained state-of-the-art 
results for ICDAR 2015 benchmark without OCR or conv. nets. 

• Innovations: patch context (8-neighborhood); sampling techniques 
(coarse to fine; graph constraints); MST word segmentation; 
extended convolutional k-means [Coates & Ng] for patch learning.  

but faster execution. The saliency map of the coarse detec-
tor will then be used as a reference for fine detection. In the
fine scan, only regions of interest found by the coarse de-
tector are considered. The fine scan uses a very small step
size (1 pixel) to ensure high recall.

The coarse detector patch size is 32 by 32 pixels, with a
step size of 16 pixels. Therefore, two consecutive patches
have 50% area overlap. We found that using a standard
window such as shown in Figure 3(a) to capture local in-
formation gives poor performance. However, neighboring
pixels provide discriminative information (see Figure 3 (c)-
(f)). To consider neighboring patches during detection, we
design the image patch as shown in Figure 3(b). The cen-
ter block contains a 3 ⇥ 3 grid containing the target region
at center. The eight neighboring blocks around the center
block provide contextual information.

Coarse detection produces a hotmap representing the
likelihood of text. An example of a coarse detection hotmap
with and without contextual features is shown in Figure 4.
As seen in the example, a substantial increase in discrim-
inative power is provided by the surrounding blocks. To
define regions of interest for the fine detector, the hotmap is
thresholded. The threshold is defined as the value obtaining
the highest f-measure on a validation sample taken from the
training data, as shown in Figure 5(a).

For fine-grained character detection, the scan step size is
reduced to 1 pixel, and so it is less important to consider par-
tial overlap with characters, and surrounding pixels are ig-
nored. The fine detector is trained using patches containing
fully overlapped characters as foreground. To handle differ-
ent text aspect ratios caused by perspective transformations
and improve detection for very narrow and wide characters,
we compute multiple window aspect ratios and image rota-
tion angles. A grid search is performed over aspect ratios
and rotational angles, with output values maximal pooled.
We compute aspect ratios from 0.6 to 1.4, using step size
0.2. We also consider small rotations from �6� to 6�, using
a step size of 2�.

These transformations and a smaller scan step size make
fine detection much more computationally expensive. How-
ever, these computations are performed only in regions of
interest. The fine hotmap is then thresholded to maximize
the f-measure (see Figure 5(b)). Surviving pixels provide
seeds for the subsequent region growing step.

Scales. In order to catch texts in different sizes, the
coarse detector considers multiple scales. However, for fine
detection, only scales containing regions of interest remain-
ing after thresholding the coarse detection are considered,
along with the next-largest and next-smallest scales. We
iteratively decrease the image size by 10%, obtaining 30
different scales. The detector will cover texts with a size
variation of about 23.59 times. The definition of character
bounding box overlap for foreground patches is based upon

(a) (b) (c) (d) (e) (f)

Figure 3: Local 3x3 (a) and Contextual 9x9 (b) detection
windows. Contextual windows are a standard 3x3 window
surrounded by features from an 8 neighborhood. Panels (c)-
(f) illustrate resolving ambiguous local features by context.

(a) Input (b) Local 3x3 (c) Contextual 9x9

Figure 4: For the ICDAR 2015 test image in (a), differences
in coarse character detection maps for a standard 3x3 sliding
window (b) vs. a contextual 9x9 widow (c) are shown.

(a) Coarse Detection (b) Fine Detection (c) Verification

Figure 5: Recall, Precision and F-Measures at Different
Classification Confidence Thresholds for (a) Coarse Detec-
tion, (b) Fine Detection and (c) Verification. Training image
samples are divided into 80% training and 20% validation.
Validation set results are shown.

the scanning step size and scale ratio. If a patch is less than
10% smaller in width or height of a character bounding box,
and the overlapping area is greater than 0.752 = 0.56, then
it is considered a foreground patch. This defines a mini-
mal target overlap, to help insure detections only when a
substantial portion of a character is seen in the detection
window.

3.2. Region Growing

The thresholded fine detection saliency map provides
seeds for a flood-filling type of region growing, in order
to form CCs. For each position that was classified as text
from Text-Conv, we start to grow regions iteratively until
they reach an edge or a large shift in color. Some small
false CCs might appear, due to small homogeneous regions
around character edges. We implement a surrounding sup-
pression technique to remove these easy negative regions.
When a text region is detected, its surrounding area is sup-
pressed. The surrounding area is defined as 5 pixels in our
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Figure 1: System Architecture. The main stages localize
text pixels, generate and verify connected components as
characters, and finally segment words.

Figure 2: Detection Examples. From left-to-right inputs are
shown followed by their results for: i) coarse detection, ii)
fine detection and region growing, and iii) word segmen-
tation. In word detection results, words are in blue boxes,
and characters in green boxes. For simplicity, we represent
word segmentation results using a Minimum Spanning Tree
(MST) over character pairs (yellow lines) defining character
merges (blue lines) and word separations (red lines). In ac-
tual fact, all character pairs are labeled as ‘merge’ or ‘split.’

false negatives.

3.1. Text-Conv Detection System

We propose a feature learning-based convolutional de-
tector called Text-Conv. It is composed of a coarse-to-fine
two step scanning scheme, mimicking glancing and focused
attention by the human visual system.

3.1.1 Feature Learning Using Convolutional K-means

Feature learning algorithms were developed using restricted
Boltzmann machines (rBM) [6] or auto-encoders [20], etc.
However, these algorithms are computationally expensive
and not suitable for large images or real-time applications.
Coates et al. [5] proposed the convolutional k-means feature
learning algorithm, using simple k-means clustering to learn

feature banks. Convolutional k-means considers the angu-
lar distance between training sample patches, and generates
cluster center vectors (i.e. convolution masks) through it-
erative learning. The cluster centers represent typical pat-
terns, including horizontal and vertical bars, corners, slop-
ing bars, zebra textures etc. These patterns are learned auto-
matically from data, without elaborate modeling. The only
hyperparameter that needs tuning is the number of clusters.
These learned features are very similar to those acquired by
an auto-encoder or rBM, and lead to very similar perfor-
mance [6].

For sample matrix X containing m samples with n fea-
tures, we make the matrix size n ⇥ m. Each column is
a sample vector, and each row corresponds to a feature,
X 2 Rn⇥m. For initialization, we randomly pick k samples
(initial cluster centers) from the sample matrix X and then
normalize each vector, so cluster center matrix D 2 Rn⇥k.
Our goal is to minimize Equation 1 (see Coates et al. [5]):
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.
In our experiments, k = 1000 convolution masks (clus-

ter centers) are learned for both the coarse and fine detec-
tors. We found empirically that fewer than 1000 masks re-
duce accuracy, while additional masks lead to only minor
improvements in accuracy.

3.1.2 Coarse-to-Fine Character Detection

Conventionally in a CNN, the system is trained using
algorithms such as back-propagation. Instead, we use
confidence-rated AdaBoost to classify patches as fore-
ground (text) and background (non-text). Unlike the orig-
inal AdaBoost which provides discrete labels in {�1, 1},
a confidence-weighted AdaBoost classifier produces both
a label and confidence value. Applying our detector to
windows across the image, we obtain a detection hotmap
(saliency map). This is computationally very expensive. To
reduce computation, we implement a coarse-to-fine scan.

The Text-Conv system is trained and applied to testing
images after color Sobel edge detection has been applied.
Edge images are used so that the influence of luminance in-
homogeneity can be reduced. Our coarse-to-fine scanning
divides the raster scanning patch generation and classifi-
cation into two stages. In the coarse stage, the image is
scanned using a larger step size, i.e. with lower resolution



Handwritten Math Recognition 
(Lei Hu, ICFHR 2016; Ouyang, Davila, Condon, Ravi)

• Efficient parser for math 
written on a tablet. 

• Innovations: LOS 
constraints; Parzen shape 
context features; accurate 
segmentation & structure 
without OCR

based parsing technique, which does not require a grammar.

III. METHODOLOGY

MST-Based Parsing. Figure 1 shows an example of an
MST-based parse. A Line-of-Sight (LOS) graph is con-
structed based on whether an unobstructed line can be drawn
from the center of one stroke to the convex hull of another
stroke [15]. After constructing the stroke level LOS graph
[16] (see Figure 1 (b)), a binary classifier labels each edge as
‘merge’ or ‘split’ (Figure 1 (c)). Each connected component
defined by ‘merge’ edges is taken to be a symbol candidate.
A symbol level Line-of-Sight graph is then constructed using
the symbol candidates, using the same LOS algorithm but
with symbols rather than strokes as input (Figure 1 (d)).
For each edge (symbol pair) in the symbol level Line-of-
Sight graph, a symbol spatial relationship classifier produces
a score list (a ranked list of scores (C

i

, S
i

) for each class C
i

with score S
i

). Edmonds’ algorithm first adds a dummy node
to the symbol LOS graph with all symbols as its children,
which will allow us to represent the leftmost symbol on the
main baseline of the expression. The algorithm then extracts
a spanning tree at the symbol level (Figure 1 (e)). We then
remove the dummy node, producing a Symbol Layout Tree.

Our method is quite different from Eto and Suzuki’s MST-
based algorithm [13]: they recognized math images, used
undirected MSTs along with local beam searches, defined
heuristic penalty functions, and the construction of their
initial graph over symbols is unclear.

Edmonds’ Algorithm. We apply Edmonds’ algorithm [2]
to a directed Line-of-Sight graph over given or recognized
symbols [15], with symbol relationship classification prob-
abilities associated with edges. Given this directed graph
with real-valued edge weights, Edmonds’ finds a rooted
spanning tree with directed edges as output (see Figure 1
(d-e)). This fits our needs well, as the Symbol Layout Trees
we wish to recover are also rooted directed trees - while
more familiar, Prim and Kruskal’s MST algorithms produce
undirected spanning trees. We make one small change, in
that we use Edmonds’ to obtain the maximum probability
spanning tree. Edmonds’ algorithm greedily selects the in-
coming edge with the highest weight for each node, allowing
the ‘best’ relationships to be selected from any location in
the expression as the algorithm progresses. As the MST is
constructed, if no cycles exist, then all selected edges form
an MST. If there is a cycle, the algorithm contracts the cycle
into a single node, and then recalculates edge weights going
into and out the cycle before selecting the next edge.

We implement Edmonds’ Algorithm as described in [2],
with O(|E| ⇥ |V |) time complexity. In the worst case,
|E| = |V | ⇥ (|V | � 1). Therefore, the time complexity of
MST-based parsing is O(|E| ⇥ |V |) = O(|V |2 ⇥ |V |) =

O(|V |3) = O(N3
), where N is the number of symbols in

the expression. We use symbol level Line-of-Sight graphs as
input, with |E| seldom reaching this worst case. On average,

(a) Input:
Six strokes for kn = 1

(b) Stroke Line-of-Sight (LOS)
graph

(c) Segment symbols w. binary
directed edge classifier [15]

(d) Create symbol LOS graph.
Classify symbols & compute

relationship probabilities

(e) Apply Edmonds’ algorithm to obtain MST.
Output: Remove dummy node for Symbol Layout Tree

Figure 1: MST-based Parse for a Handwritten Formula.
In (d) visual and geometric features are used to compute
symbol and relationship class probabilities independently

the number of edges in LOS is 3.3 times the number of
strokes [16]. One could also use Gabow et al.’s [17] faster
version with running time O(|E|+ |V | log |V |) 2 O(N2

).
Stroke Pair and Symbol Pair Relation Classifica-

tion. We use random forests for both the binary stroke
pair classifier (‘merge’/‘split’), and symbol pair relationship
classifier (seven classes). The set of spatial relationship is
one seven classes: undefined (no-relation, ), Right (R),
Subscript (Sub), Superscript (Sup), Above (A), Below (B),
Inside (square root, I). Both classifiers also use Parzen
window Shape Context features (described below), along
with geometric features. In the binary stroke classifier we
also use a time gap feature: for stroke pair (i, j), time gap
feature is j � i.

Geometric features include distances between bounding
box centers, distances between averaged centers (centers-
of-mass), maximal point pair distances (for two points, one
from each stroke), horizontal offset between the last point of
the current stroke and first point of the next stroke, vertical
distance between bounding box centers, writing slope (angle
between the horizontal and the line connecting the last point
of the current stroke and the first point of the next stroke)
and writing curvature (angle between the lines between the
first and last points of the current and subsequent stroke).
We normalize all the geometric features in [0, 1] except
parallellity, writing slope and writing curvature.

Parzen window Shape Context Feature (PSC). Be-
longie et al. [18] propose shape contexts for shape matching
and object recognition. The shape context [18] at a given
point captures the distribution of the other points relative to
it, and therefore provides a globally discriminative character-
ization. Shape context features have been usefully applied to
math symbol classification [19]–[21], math symbol retrieval
[22] and spatial relationship classification [23]. These shape
context features are histograms, obtained by counting the
number of points within each bin of a polar histogram.
Therefore, all these previously used features are discrete,
with each point only affecting the bin to which it belongs.

In our work, we compute shape contexts from foreground
pixels in binary images generated from the stroke data
[15], using a fixed image height of 200 pixels, and then
adjusting the width to match the aspect ratio of the original
expression. We have designed a continuous shape context
feature based on Parzen Windows that insures every point
contributes to all bins in the histogram, making the resulting
distributions smoother. Parzen-window density estimation is
a data-interpolation technique [24]. A kernel function is
placed at the location of each point, generating ‘pulses’ that
collectively define a continuous distribution. To produce our
PSCs, these pulses are measured at the center point of each
shape context bin and added to produce a histogram of real
values that is then normalized. We use a two dimensional
gaussian distribution as the Kernel function:
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) are the coordinates of the points, while (x, y)
represents the center of a given bin. As can be seen in Figure
2, the result is a simplified, radially skewed version of the
input image.

Given a pair of strokes or symbols (i, j), the center of
shape context is the average of their two bounding box
centers. The radius can vary - we crop the histogram around
pairs of symbols, but allow PSCs for strokes to be larger
in order to include additional context, which we found
empirically to be beneficial. The number of bins is the
product of the number of angles (M) and distances (N).
The shape context is divided into bins uniformly by angle
and distance, as done by Álvaro [23]. We actually use three
separate PSCs to characterize the distribution of points from
each of our three sources (parent, child, and other). This
produces 3MN features.

Figure 2 shows an example of stroke-level PSC. Different
color represents different sources: red for points from the
parent stroke, green for points from the child stroke, and
blue for points from other strokes. The parent stroke (red)
is the vertical stroke of ’+’ and child stroke (green) is ’1’,
and other strokes are blue. Brightness indicates densities in
the bins.

Expression with PSC center and perimeter shown

Parent stroke Child stroke Other strokes

Figure 2: Example of Parzen Shape Contexts. Here a di-
rected edge between the vertical stroke of the ‘+’ and stroke
for the ‘1’ are to be classified, making the ‘+’ stroke the
parent, and the ‘1’ the child of the relationship. The center of
the Shape Context is the average of the two stroke bounding
box centers. Each PSC has 120 bins, with the PSC radius
reaching the furthest parent or child stroke point (pixel). In
experiments we use only 30 bins (5 distances ⇥ 6 angles).
For symbol-level PSCs, we use the same representation after
grouping all points from parent symbol strokes together, and
all points from child symbol strokes together.

IV. EXPERIMENTAL RESULTS

Datasets. The Competition on Recognition of On-line
Handwritten Mathematical Expressions (CROHME) is a
well-established annual competition [25]. The results re-
ported in this section are computed using the CROHME
2012 and 2014 data sets. CROHME 2012 has 1336 training
and 486 test expressions; CROHME 2014 contains more
structurally complex formulae, and is larger with 8834
training and 986 test expressions.

Training. Greedy search and cross validation are used to
determine the parameters of Parzen window shape context
feature [16]. We use 30 bins, with 5 angles and 5 distances.
We use a Parzen window width of 1

5 of the polar histogram
radius. For symbol pairs, the shape radius is the longest dis-
tance from points in the two symbols to the polar histogram
center, while the shape radius is 1.5 times of the longest
distance for stroke pairs.

Symbol Segmentation and Classification. Classification
rates for identifying LOS stroke graph edges as ‘merge’
or ‘split’ are quite high. Using the CROHME Test sets
we obtain rates of 98.26% for 2012 and 97.88% for 2014.
Symbol segmentation rates (Recall) are also strong, with
94.87% for 2012 and 92.41% for 2014. These Recall rates
are within 1 percent of the best published results for systems
trained using the CROHME Training set. The 2014 F-
measure we obtain (92.43%) was the highest published value
at the time of submission. It is interesting that these strong



Keyword Spotting in Lecture Audio 
(Miller, Kanadje, Agarwal, et al., PR Letters, 2016; Miller-Jacobson)

• Instructor searches and indexes lecture videos with queries recorded on a laptop. 
Interface to categorize and organize contents. 

• Unsupervised MFCC + Segmental DTW [Park & Glass]. Average 70% of top 10 hits 
were correct; within lecture queries 80%; 90% for lapel mic-recorded MIT lectures. 

• Innovations: whitening of MFCC vectors, reducing strength of low frequencies on 
laptop recordings, noise in audio recording.

2

Fig. 1. Using indexing tools the user can play the video lecture from the
point of generated hits. The tree based indexing structure helps the user to
organize hits into groups such as ‘Definition’ or ‘Example’.

Keyword spotting systems convert an input speech signal into
a temporal spectral vector. After modeling the speech signal,
these systems usually fall within two di↵erent categories: Dy-
namic Time Warping-based or Hidden Markov Model-based.
Dynamic Time Warping (DTW) finds an optimal alignment
between two audio sequences, seeking to determine whether
they represent the same word (Rabiner et al., 1978). DTW
matches two temporal sequences by non-linearly comparing au-
dio frames and calculating the cost of alignment. In contrast,
Hidden Markov Model-based approaches require training data
for creating probabilistic temporal models for individual words.
DTW does not require labeled data for training. However, the
cost of computation is high for DTW, O(mn) where m and n
are sequence lengths. For this reason, many variations of DTW
attempt to reduce its computational cost.

As shown in Figure 1, our system creates an index of candi-
dates for a query within a lecture.1 We have o↵ered the func-
tionality of hierarchical annotations to make this index more
useful. For example, it would be helpful if a user can cre-
ate categories such as ‘Definition’ and ‘Example’ to organize
query results, such as shown in Figure 1. Once these categories
are created, the user can drag and drop hits into categories. The
user can also create copies of a search result, and then place
it in multiple categories. Finally, the current index state can
be saved in JSON format, and then later loaded to generate the
same tree structure again.2

Our approach employs Mel Frequency Cepstral Coe�-
cients (Davis and Mermelstein, 1980) and a variation of Dy-
namic Time Warping algorithm called Segmental Dynamic
Time Warping (Park and Glass, 2005). We have evaluated our
system using videos from introductory Linear Algebra courses
recorded at two di↵erent U.S. institutions (RIT and MIT). At
RIT, a set of linear algebra lectures was recorded using a lone
video camera in a classroom without students by one of the au-
thors (Dr. A. Agarwal). Using queries recorded on a laptop by
the instructor, our system achieved a Precision at 10 of 71.5%.
Using the same queries extracted from the lecture audio, a Pre-
cision at 10 of 79.5% was obtained. The MIT lectures were

1The working demo of interface is available at https://www.cs.rit.
edu/

~

dprl/keywords/index.html

2This prototype is created using ‘jsTree’ http://www.jstree.com/

recorded by an instructor with a di↵erent accent who used a
lapel microphone for recording. Without modifying system pa-
rameters and using keywords similar to that used for the RIT
lectures we obtained a much higher Precision at 10 of 89.5%,
suggesting that our system is robust to di↵erent speakers and
recording environments.

In the remaining of this paper, we summarize related work in
Section 2, our keyword spotting methodology in Section 3, the
experimental design and results in Sections 4 and 5, and then
conclude and identify future directions in Section 6.

2. Related Work

Previous systems have been proposed for indexing, retrieving
and annotating video content. For example, the MIT Lecture
Browser by (Glass et al., 2007) allows users to search lecture
audio using text queries. Automatic speech recognition is used
to create a transcript of the lecture audio, which can then be
searched textually. This transcription-based index may not have
temporal information, and may contain recognition errors for
rarer terms outside the language model. Similar to the MIT Lec-
ture Browser, the Speech@FIT Lecture Browser (Szoke et al.,
2010) uses speech recognition to support text search of lecture
audio. This system shares many of the strengths and weak-
nesses of the MIT Lecture Browser. It also detects lecture slide
changes using image features to provide pointers for lecture
navigation.

The Video Audio Structure Text Multimedia (VAST MM)
Browser designed by (Haubold and Kender, 2007) is another
example of an indexing and annotation system designed for
video presentations. This system creates a visual index for
speaker segmentation using changes in activities. It also of-
fers textual indices for searching through the transcription of
the video.

NTU Virtual Instructor (Lee et al., 2014) o↵ers sophisticated
tools for finding lecture recordings of interest, including au-
tomatic summarization and keyword detection. Keywords are
linked to particular points in the lecture in which they occur,
allowing the user to rapidly find relevant content. Bilingual au-
tomatic speech recognition is integral to the approach, which
also supports text-based search of spoken terms.

While these systems support lecture annotation and textual
search, they do not o↵er video search using audio queries. In
our work we seek to support audio queries, and avoid the need
to train speech recognizers for new lecturers. To do this, we
have chosen to use unsupervised keyword spotting in audio.

Mel Frequency Cepstral Coe�cients (MFCC) are frequently
used to represent speech audio in keyword-spotting systems.
MFCC features were first discussed by Davis and Mermel-
stein (Davis and Mermelstein, 1980). MFCCs are computed
based on a model of how human ears perceive speech, and com-
pensate for insignificant variations present in higher frequency
bands. MFCC feature extraction is usually followed by normal-
ization to reduce the impact of environmental mismatch. (Alam
et al., 2011) have discussed di↵erent normalization approaches
for MFCC features. The short-term mean variance approach
is similar to the whitening process used in this paper. How-
ever, they have used mean (µ) and standard deviation (�) values



Tangent Formula Search Engine 
(Davila, SIGIR 2016 & 2017; Schellenberg, Stalnaker, Pattaniyil)

• Symbol pair path 
matching, re-ranking by 
best query match. 

• Innovations: symbol pair-
based model. Unification and 
wildcard support in rerank. 
Near state-of-art results for 
NTCIR 12 in Tokyo; orders of 
magnitude faster than ‘best’ 
system (real-time)

Layout and Semantics: Combining Representations for
Mathematical Formula Search
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ABSTRACT
Math-aware search engines need to support formulae in queries.
Mathematical expressions are typically represented as trees de�ning
their operational semantics or visual layout. We propose searching
both formula representations using a three-layer model. �e �rst
layer selects candidates using spectral matching over tree node
pairs. �e second layer aligns a querywith candidates and computes
similarity scores based on structural matching. In the third layer,
similarity scores are combined using linear regression. �e two
representations are combined using retrieval in parallel indices and
regression over similarity scores. For NTCIR-12Wikipedia Formula
Browsing task relevance rankings, we see each layer increasing
ranking quality as measured by Bpref and nDCG scores.
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1 INTRODUCTION
Math-aware search engines deal with information needs where
documents containing particular math expressions are sought a�er,
or where document similarity is de�ned by text and formulae. An
expression can be represented semantically by its operations using
an Operator Tree (OPT) or visually by a Symbol Layout Tree (SLT)
[16]. Figure 1 shows an SLT and OPT for x � �2 = 0.

Many researchers working inMathematical Information Retrieval
(MIR) assume OPTs provide be�er formula retrieval results than
SLTs, but each has limitations for retrieval. For SLTs, mathematical
notation can change meaning based on context - a symbol may be
an operator in one context, and a variable in another, for example.
In contrast, well-formed OPTs are mathematically unambiguous.
Online, most write math expressions using SLT representations
(e.g., LATEX). SLTs can be converted to OPTs using parsers, but
semantics are o�en unde�ned or ambiguous, producing errors [3].
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(a) Symbol Layout Tree (b) Operator Tree

Figure 1: Tree representations for x � �2 = 0

We extend an existing two-stage SLT model for formula retrieval
(Tangent-3 [1, 17]). First, top-k candidates are identi�ed using a bag-
of-words model, using symbol pairs in SLTs as ‘words.’ �en, the
top-k candidates are re-ranked a�er aligning query and candidate
SLTs. Candidates are re-ranked using the harmonic mean of symbol
and relationship recall (the Maximum Subtree Similarity) and two
tie-breakers: symbol precision a�er uni�cation, and symbol recall
without uni�cation.

We have altered the Tangent source code1 to work with OPTs,
and we made uni�cation stricter to prevent the uni�cation of func-
tion names and variables. We also added a third stage, using a linear
combination of the structure similarity scores for re-ranking, rather
than their lexicographic order. We have been able to retrieve SLTs
and OPTs independently, and then linearly combine their similarity
scores to obtain stronger formula retrieval results. �is supports the
view that OPTs and SLTs as complementary for formula retrieval.

2 BACKGROUND
Approaches to formula search may be classi�ed by the primitives
used for indexing as text-based, tree-based, and spectral [17]. De-
tailed analysis of existing methods can be found elsewhere [3].

Text-BasedApproaches. Formulae are converted to a sequence
of tokens using linearization of formula trees. To increase the like-
lihood of �nding matches, some methods use canonicalization to
simplify expressions, and to identify commutative operators and
equivalences [8, 12]. It is also common to enumerate identi�ers to
support generalized variable matching and/or uni�cation [2, 12–14].
Converting math to text allows use of existing optimizations in text
search engines, such as ranking by TF-IDF [10], topic modeling,
and word embedding [13].

Tree-Based Approaches. �ese approaches index formulas as
complete SLTs or OPTs. Typically, the hierarchical structures in
formulae are mapped directly, and organized within tree-based in-
dexing structures [4, 6, 18]. In these approaches, all subexpressions
in formulae are indexed to support partial matching, with common
subexpressions labeled and shared to reduce index sizes [6].

1h�ps://cs.rit.edu/ dprl/So�ware.html#tangent
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Table 3: Top-5 formula results for�ery-12 for each ranking stage for each representation

�����12: O (mn logm)
S����� L����� T���� O������� T���� Combined

Core Matching Regression Core Matching Regression Regression

1. O (mn logm) O (mn logm) O (mn logm) O (mn logm) O (mn logm) O (mn logm) O (mn logm)
2. O (mn) O (V E logV ) O (mn logp ) = O (n logn) O (mn) O (nk log (n)) O (mn logp ) = O (n logn) O (mn logp ) = O (n logn)
3. O (mnp ) O (V E logV log (VC )) O (mn) = O

⇣
n3 logn

⌘
O (mnp ) O (V E logV ) O

⇣
mnr 2 log 1

�
⌘

O
⇣
M (m) log2m

⌘
= O (M (n) logn)

4. O (m + logn) O (Tm) = O
⇣
n2m logn

⌘
O
⇣
d5n log3 B

⌘
� (mnp ) O (n logn) O (pn (m + n logn)) O

⇣
mnr 2 log 1

�
⌘

5. O
⇣
m
p
n logn

⌘
O (nk logk ) O

⇣
mnr 2 log 1

�
⌘

O (mr ) O (nk logk ) O (Tm) = O
⇣
n2m logn

⌘
O (mn) = O

⇣
n3 logn

⌘

Table 4: Ranks for judged NTCIR-12 Wikipedia Formulae
using nDCG@K

All Topics Concrete Only Wildcard Only
Condition @5 @20 @5 @20 @5 @20
SLT
Core 0.7109 0.7002 0.7991 0.7727 0.6236 0.6277
Matching 0.7534 0.7218 0.8033 0.7776 0.7036 0.6659
Regression 0.7943 0.7723 0.8031 0.7958 0.7855 0.7488
OPT
Core 0.6978 0.7184 0.7889 0.7891 0.6066 0.6478
Matching 0.7459 0.7446 0.7889 0.8018 0.7028 0.6874
Regression 0.7519 0.7331 0.8008 0.7773 0.7031 0.6888
Combined 0.8136 0.7908 0.8131 0.8088 0.8141 0.7728

of judged matches increases on both representations, uni�ed preci-
sion does not correlate well with relevance and might be hurting
predictions using linear regression and even re-ranking in general.

Table 3 shows an example query, illustrating di�erences in the
Top-5 ranks for each stage of the model, for both SLTs and OPTs.
Di�erences in structure for each representation change the ini-
tial set of candidates extracted from the collection. �e Matching
columns show how the uni�cation process helps in increasing the
rank of partial matches that become exact a�er uni�cation. �is
query illustrates how linear regression can sometimes produce
less intuitive rankings than the simpler lexicographic match score
ordering.

It is important to acknowledge noise in the NTCIR-12 formula
data. Many expressions are incorrectly but consistently converted
into Content MathML from LATEX. For example, the sub expression
f (x ) is almost always converted to the tree corresponding to f ⇥ x .
Such errors in the source can lead to many undesirable partial
matches for OPTs at retrieval time.

5 CONCLUSIONS
We have presented a comparison of the performance for two math
expression representations using a three-layer retrieval model. We
also presented a simple way to combine Symbol Layout Tree (SLT)
and Operator Tree (OPT) representations into a single retrieval
model. Overall, this combined model produced be�er rankings
than the individual representations. Our results suggest that addi-
tional restrictions are needed for uni�cation, to prevent undesirable
matches and resulting rankings. In this study, we simply used the
similarity scores proposed in the original retrieval model that we
extended. However, the method proposed here may be used to in-
corporate and study additional similarity scores that may be be�er
predictors for relevance (e.g., symbol and structure recall before
uni�cation).
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min Math Search Interface  
(Sasarak, Hart, Pospesel, Stalnaker, Hu, LiVolsi, Zhu, HCIR 2012;  
 Wangari, SIGIR 2014; Orakwue, CICM 2015)

• Innovations: first math-aware web search interface with multi-
modal math input (drawing, keyboard (LaTeX support), images)



Where do the dprl students come from?

Interdisciplinary by accident (i.e., due to need or synergies), not by design. 

• Computer Science 

• Interactive Games and Media  

• Human-Computer Interaction 

• Imaging Science 

• Computer Engineering 

• Visitors: CS PhD students from Spain, Japan, Tunisia 

• All levels: Undergraduate, Master’s and PhD students



Where do dprl students go after graduation?

• Google (x7) - including UX research lab at Mountain View 

• PhD, IIT (Illinois Institute of Technology); PhD at Rice University; PhD 
admission offers at Univ. Waterloo (Canada), Univ. Melbourne (Australia) 

• Buckler Lab, Cornell University (research programmer in genetics lab) 

• Apple (research team that contributed to handwriting rec. for Apple Watch) 

• Amazon 

• Square 

• AppNexus 

• …



The dprl as Student-Centered Research Lab

• Assumption: At its best, research produces helpful knowledge and tools for others. 
Good papers and good prototypes should be good tools. 

• Research is used as a pedagogical tool (problem-based learning). Interesting models 
and results are key, but not the only goals. Others important skills to learn include: 
• oral and written communication, 
• literature review,  
• teamwork,  
• modeling/creative problem solving (want solutions that are effective and elegant) 
• bench science,  
• analysis,  
• finding your own working style and strategies (e.g., coping with getting stuck) 

• Often, students work on projects related by subject (e.g., ‘math’), or technique(s), but 
not the same problem. This generates interest and produces a helpful diversity of 
perspectives, while avoiding a lack of focus and direct competition between students.



The dprl as Student-Centered Research Lab

• Replicate, replicate, replicate. Many of the lab’s best results came after a student 
had replicated an earlier result, often having to infer omissions from research 
papers. This allows students to feel a problem and technique directly, with a point 
of reference, and tends to lead naturally to targeted reading. 

• Size matters: for myself, 5-7 is ideal, in terms of quality of student instruction, and 
quality of research output. This seems to lead to ‘enough’ diversity and discussion 
for students in the lab to gel as a group, and find a rhythm. 

• Meetings matter. The lab holds bi-weekly meetings where students briefly present 
and discuss their progress with the lab (~10-15 minutes each), in addition to 
weekly private meetings with myself. Regular discussion is important for progress; 
equally important is leaving students alone to work comfortably on their own. 

• Support learning and progress, not success. Some of the lab’s successes were 
initially thought to be major failures by students. Some students have benefitted 
from being in the lab, while producing only preliminary or negative results. Happy, 
healthy people need to find learning and progress, and not just success rewarding.



Thank you.

• We gratefully acknowledge support from the 
organizations below.  

• My sincerest thanks to the dprl students over the last 10 
years; it has been a privilege to work with you.




