
Object-Oriented Programming:
Inheritance

- 26 -

Object Oriented Programming

Paradigm:
Represent programs as a set of objects that encapsulate data and
methods (state and behaviour) and pass messages between one
another.

Key Object Oriented Concepts:
Class (template for a set of objects)
– Class (‘static’) variables that belong to a class
– Class (‘static’) methods that belong to a class

Instances (objects), each with state and behavior
– Instance variables that belong to individual objects
– Instance methods that are associated with individual objects (but

 defined once!)

- 27 -

Main Elements of a Java Class
1.  Class signature

•  Name, access modifiers (public, private, etc.), relationships with other
classes, etc.

2.  Class (‘static’) properties
•  Data members (variables, constants)
•  Methods: accessors, mutators, other methods

•  cannot reference (use) instance variables

3. Instance properties
•  Data members (variables, constants)
•  Methods: accessors, mutators, other methods

•  can reference (use) static and instance variables

4. (Instance) Constructors
•  Used by the ‘new’ operator to initialize constructed instances

- 28 -

public class MyClass { // CLASS SIGNATURE

private static int numberObjects = 0; // CLASS DATA

private int instanceVariable; // INSTANCE DATA

public MyClass(int value){
 // CONSTRUCTOR

instanceVariable = value;

numberOfObjects++;

}

public int getInstanceVariable() { // INSTANCE METHOD  

return instanceVariable;

}

public static int getNumberObjects() { // CLASS METHOD

return numberObjects;

// CANNOT refer to instanceVariable here

}

public static void main(String[] args) { // CLASS METHOD

MyClass instance = new MyClass(5);

MyClass instance2 = new MyClass(6); 

System.out.println(numberObjects + “: “ +

instance.getInstanceVariable() +

instance2.getInstanceVariable());

}

}

- 29 -

What is Inheritance?
Definition
A new class taking the definition of an existing class as the starting
point for it’s own definition

Superclass
The existing (“parent”) class providing the initial definition for the new
“derived” or “child” class

Subclass
A class derived from an existing class (“child class”)

In Java
Only accessible (e.g. non-private) data members and methods are
inherited by a subclass definition. Constructors are also not inherited.

 NOTE that objects of subclasses still have properties of the
 superclass.

Inheritance is a formalized type of ‘code-reuse’

- 30 -

- 31 -

The Inheritance Hierarchy:
What happens if Class A inherits from Class B?

Effect on Object Properties
Objects from a class possess:

•  Instance data & methods of the class
•  Instance data & methods of the superclass
•  Instance data & methods of the superclass’ superclass
•  ... and so on, up to the Object class in the class inheritance

hierarchy.

Invoking Instance Methods
May invoke accessible methods of an object for the

reference variable class, and any preceding classes in
the inheritance hierarchy

String x = “Hi there.”; // String and Object methods usable on x
Object a = x; // Only Object methods may be invoked on a.

- 32 -

Inheritance in Java
Syntax
Use “extends” keyword

e.g. class NewClass extends AnotherClass { ... }

‘Object’ as the “Parent of them all”
All classes in Java extend (inherit from) the object class.
public class NewClass{} =

 public class NewClass extends Object{}

Multiple Inheritance
A class inheriting from more than one parent class

• Not permitted in Java
•  Is permitted in other languages such as C/C++

- 33 -

getClass() example

Object obj = new String(“Test”);
Class metaObject = obj.getClass();
System.out.println(“Class is: “
 + metaObject.getName());

produces

Class is: java.lang.String

- 34 -

The ‘instanceof’ operator

Use
A boolean operator that tests whether an object

 belongs to a given class.

Examples
Circle myCircle = new Circle(1.0);
– myCircle instanceof Circle // true
– myCircle instanceof Object // true
– myCircle instanceof String // false

- 35 -

Type Casting Object References
Upcasting References
–  Converting an object reference type to a superclass (“up” the

 inheritance/type hierarchy). Does not need to be explicit.
–  e.g. Object o = new Student(); // a Student referenced as an Object
–  e.g. reference parameters of type Object may accept objects of any

 other type (implicitly cast to an Object reference)

Downcasting References
–  Converting an object reference type to a subclass (“down” the

 inheritance hierarchy). Requires explicit casting & using instanceof.
–  e.g. if (o instanceof Student) Student s = (Student) o;
–  e.g. TestPolymorphismCasting.java

Why do we need to check types before downcasting?

- 36 -

Precedence of Cast vs. Dot operator

Caution!
The access (dot) operator has higher precedence

 than type casting.

Fix:
Put casting operations in brackets when paired

 with access operators, e.g.
 ((Circle)object).getArea() vs.
 (Circle)object.getArea()

- 37 -

What is ‘this’ ?
Definition

–  A reference to ‘myself’ for an object
–  Used within instance methods for object invoking the method
–  All instance variable references and method invocations

implicitly refer to ‘this’
•  Within an instance method: x = 2 same as this.x = 2; toString()

same as this.toString())

Some Uses
1.  Prevent masking of variables, e.g. formal params. and instance

variables in a constructor:

public MyClass(int x){ this.x = x; }

2.  Invoke other constructors within a class
–  Note: this(arg-list) must be first statement in constructor definition

public MyClass(int x){ this(); this.x = x; }
3.  Have object pass itself as a method argument

 someClass.printFancy(this);

- 38 -

The ‘super’ keyword
Purpose
Provides a reference to the superclass of the class in

which it appears
Uses
1.  Invoke a superclass constructor

–  Similar to using ‘this,’ the call to ‘super(arg1, arg2, ...)’ must be
the first statement in a constructor if present.

2.  Invoke a superclass method that has been overridden
–  e.g. we can use super.toString() to invoke the toString()

method of the superclass rather than that in the current class
–  Similar to ‘this,’ it is possible but not necessary to use super to

invoke all inherited methods from the superclass (implicit)
–  Warning: we cannot ‘chain’ super, as in super.super.p()

- 39 -

The Inheritance Hierarchy and
Constructor Chaining

Calling a constructor
Normally invokes default constructors for each class from

root of the inheritance hierarchy, starting with Object
•  This is necessary to ensure that all inherited data is properly

initialized according to the class definitions.

e.g. public A() { } = public A() { super(); }

Example
Faculty class

- 40 -

A Warning About Constructor Chaining
in Java...

Default Constructor (“no-arg constructor”)
Is automatically defined if no constructor is given by the

programmer, otherwise it must be explicitly defined to exist

This Means...
That an error occurs if we go to construct an object and one

of its ancestor classes in the inheritence hierarchy does
not have a default constructor defined.

Fix:
If a class may be extended, explicitly define a default

constructor to avoid this situation.
More naïve approach: always define a default constructor.

- 41 -

Class
Implementation

Class Contract
(signatures of public
methods and public

constants)

Client using class
(through class

contract)

Class Contract
•  Collection of methods and
data members accessible
outside of a class

•  Includes description of data
members and method
signatures

Method Signature
Name, return type, and
parameter types for a method
e.g. boolean isDaytime(int seconds)

- 42 -

Visibility Modifiers
Decreasing Visibility:

1. public

2. protected

3. (no modifier)

4. private

