
- 2 -

Event-Driven Programming
Event-Driven Programming
Parts of programs wait for messages from an event loop representing system
events that have occurred at run-time.

Handler (or Listener) algorithms are registered for specific events and then
executed when those events are received by the event loop

•  Example events: pressed keys, mouse moves/clicks, connecting a USB device to
a personal computer, time stamp

Event Creator: The Operating System
Operating system detects/defines system events and passes them onto
programs (including Java programs)

Event-Driven Programming in Java:
•  The JVM receives event messages from the OS, and then sends messages to

(invokes implemented interface methods of) objects registered for each event.
•  Java interfaces define methods for receiving messages for each event type (see

page 487 of Liang). When the JVM receives an event, it creates an even object
(e.g. ActionEvent a), all registered objects registered have interface method for
ActionEvent invoked (e.g. actionPerformed(ActionEvent a))

- 3 -

Events vs. Exceptions in Java
(Both are objects!)

Events objects contain:
1.  Type of event (object type, e.g. ActionEvent)
2.  Which object (widget, normally) is the source of the event
3.  When the event occurred
4.  Data specific to the event type (e.g. the item selected from a list)

The Java event loop, handler interfaces and registration
methods used to process event messages

Exceptions objects contain:
1.  Type of exception (object type, e.g. IOException)
2.  Which object/method threw (was the source of) the exception

message, and at what statement
3.  State of the call stack when the exception was thrown
4.  Data specific to the exception type (e.g. bad array index value)

The try-catch statement and ‘throwing’ protocol are used for
handling exception messages

- 4 -

Registering Handlers for Events

Java GUI Components
Have registration methods for creating a list of objects
implementing handler interfaces for each possible event

•  e.g. addActionListener() for associating handlers with mouse
clicks on JButton objects (ActionListener objects)

When a component is notified of an event, a message is
created and then sent to every listener object in the
appropriate event “listener” list

....registration is a bit like having an object join the ‘mailing
list’ for each event a component/widget might create

- 5 -

Inner Class Example
(‘SimpleEventDemoInnerClass.java’)

Inner Class:
–  Declared within the scope of a class, and has access to its data members and
methods (including for instances).
–  Useful for defining objects that will be used within a class, but not elsewhere.

public class SimpleEventDemoInnerClass extends JFrame {

 public SimpleEventDemoInnerClass() {

 JButton jbtOK = new JButton("OK");

 setLayout(new FlowLayout());

 add(jbtOK);

 ActionListener listener = new OKListener();

 jbtOK.addActionListener(listener);

 }

 private class OKListener implements ActionListener {

 public void actionPerformed(ActionEvent e) {

 System.out.println("It is OK");

 }

 }

}

- 6 -

Anonymous Classes

Anonymous Class
Within a method call, both:

•  Defines a new class based on an existing class or interface (overriding methods)
•  Creates an instance of this new class.

Example of an Anonymous Class:
jbtOK.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 System.out.println("It is OK");
 }
 });

Adapter Classes (in Swing)
Implement interface methods with empty bodies (methods do nothing).
Allows one to define only the handler methods desired (e.g.
WindowListener has 7 methods).

- 7 -

For Java Swing
– Programmers use inner and anonymous classes

extensively to reduce the number of separate classes
and files needed for GUI programs

– In particular, inner and anonymous classes get used to
define handlers for interface events (e.g. mouse,
keyboard, timer).

Important Note:
javac output for inner and anonymous classes differs from

“normal classes”
(e.g. OuterClass$InnerClass.class, Outerclass$1.class)

Examples of Other Event Types (other
than ActionEvent, WindowEvent)

Mouse Events
ScribbleDemo.java

Keyboard Events
KeyEventDemo.java and NewKeyEventDemo.java

Timer Events
AnimationDemo.java

- 8 -

