| Tij = x | (9) |
| Tij | = | iGn-2 + jGn-1 | (10) |
| = | (G-n+1x + Gn-3y)Gn-2 | ||
| + (G-n x+ Gn-2y)Gn-1 | (11) | ||
| = | (G-n+1Gn-2 + G-nGn-1 )x | ||
| + (Gn-3Gn-2 + Gn-2Gn-1)y | (12) | ||
| = | (G-n+1Gn-2 + G-nGn-1 )x | (13) | |
| + (Gn-3 + Gn-1)Gn-2y | (14) |
| (15) |
| (16) |
| Gn-2 G-n+1 + Gn-1 G-n + Gn G-n+2 = 1 | (17) |
takes Gn distinct values for