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Abstract 

 The paper studies the problem of information uncertainty 
evaluation in modern engineering and technology applications 
and especially system design. It analyses virtual environment 
design and engineering measurement. Information typical for 
those applications is classified according to its uncertainty types. 
Uncertainty sources are identified.  Fuzzy theory models are 
proposed. Examples of their applications in characteristic 
problems are given. 
 

I. INTRODUCTION 
Vigorous development of Internet, computer graphics and 

animation and other information technologies has significantly 
expanded the range of volumes and sources of information 
available for decision making. On the other hand, in order to 
reach a high-quality decision in business, engineering and 
social applications nowadays one has to fuse information of 
different kinds (e.g. numerical, statistical, textual, visual, 
audio) from a variety of sources (e.g. engineering measurement 
systems, expert’s opinions, images, sound tracks).  Due to their 
nature, these sources differentiate in reliability and uncertainty 
of the information produced. Uncertainty also can be 
influenced by the characteristics of procedures and tools 
applied in information acquisition and processing. As the 
information sources incorporate both engineering and human 
as well as heterogeneous systems, the characteristics mentioned 
above might include psychological personal profiles and 
emotional behaviour, which IT in the past had trouble 
handling. 
 

As nowadays information delivery includes the engagement 
of complex (including hardware, software, and a component 
now often called brainware) IT systems, the open availability 
of credible measurement and test methods is an important step 
toward assuring the quality of such information and promoting 
competitiveness in the information technology market. Many 
national and international organizations are now working 
toward reaching this goal, including the US National Institute 
of Standards and Technology (NIST), national metrology 
institutes in the European Community and Japan, professional 
organizations such as IEEE and ACM,and industry groups such 
as Open Group (X/Open) and Underwriters Laboratories [1].  
 

Uncertainty is the main challenge for the fusion of a variety 
of information, both in how to reduce the degree of uncertainty 

and in how to describe the uncertainty that inevitably remains. 
The problem of estimating uncertainty (or reliability, 
imperfectness, impreciseness) of the information source and 
uncertainty of the information after its propagation and fusion 
with other information streams has become very important for 
decision making in different IT and engineering applications, 
especially in system design.  
 

II. INFORMATION CLASSIFICATION AND UNCERTAINTY 
According to L.Zadeh all the information commonly available 
in system design can be classified into three groups: 

1) factual information which is numerical and 
measurement-based; 

2) pseudo-measurement based and pseudo-numerical 
information (e.g. “checkout time is 11.00”); 

3) perception based information which is mainly 
linguistic or could be image and sound-based (e.g. 
"Robert is an honest and nice-looking person"). 

Those three groups are commonly supposed to differ in the 
degree of uncertainty, which the corresponding information 
has. However, does it mean that those groups have a 
fundamental, ontological differences as one traditionally 
presumes?  
 
 

III. UNCERTAINTY EVALUATION IN MODERN APPLICATIONS 
Uncertainty in the last two information groups occur in 

many important applications, among them are: 
- Virtual environment 
- System identification, modelling, and control 
- Internet, networks and software testing and 

certification 
The ways of dealing with uncertainty differentiate depending 
on the application area and tools traditionally applied within 
that field. To date, in most cases, information used in virtual 
environment design is often assumed to be of a precise (or 
crisp) nature. This assumption simplifies the representation of 
the models and their management. However, there are many 
situations where imprecise data exist and need to be catered 
for. The impreciseness may concern the spatial and temporal 
aspects of objects, their attributes or their relationships with 
each other, or with the environment itself. The impreciseness 
may come from different sources. It may be due to vagueness 
in human interpretation or intent, or to be given in natural 
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language or visual and audio terms (e.g. locating an object that 
is rather oblong; placing an object near another object; 
activating an event just after another event). These situations 
occur when exactness is not required or is not possible to 
specify; or when exactness would unnecessarily limit options. 
Impreciseness may also be due to missing data (e.g. when an 
object is occluded from another), or uncertainty in taxonomic 
definition (e.g. is this a group of trees or a forest?). Some 
information may be provided in visual or audio forms. In 
addition, in group decision making process, there are fuzziness 
in both human preferences and the concept of majority (e.g. 
one option is slightly preferred than another option, almost all 
participants agree with this alternative). 
 

As a virtual environment or system changes, such 
impreciseness also propagates and can exert serious effects on 
the operation and management of the environment or the 
system. Exact or crisp models when used in these cases would 
not be able to faithfully simulate the richness and subtlety of 
the real work space. Furthermore, in the worst case, misleading 
or incorrect outcomes may result. Thus, there is a need to 
articulate the problems arisen from such imprecise data with 
the view to construct appropriate models for their 
representation, as well as suitable methods for processing and 
manipulating them within the environment. 
 

On the contrary, in engineering design and modelling since 
the early 90’s and in particular since the publication of the 
International Standards Organisation (ISO) “Guide to the 
Expression of Uncertainty in Measurement” [3], there has been 
a widening recognition that uncertainty of measurement is no 
less critical than the value of the measurement result itself. So 
far, the procedures of uncertainty evaluation have been 
developed and formalised up to the level of national and 
international standards for the first information group. The 
methods of reducing uncertainty, such as calibration, are 
known as well. Those standards mainly apply methods based 
on probabilistic models and mathematical statistics, that 
prevents their application to the second and third information 
groups.  However, there is no doubt that fusion of information 
from all available sources would significantly improve the 
quality of decisions made in system design process.  
Furthermore, these standards have been widely criticised 
during last years for their inability to cover all sources of 
uncertainty and it has been suggested that methods based on 
soft computing and fuzzy logic would be more suitable [4,5].  
However, models and methodology for doing so have not been 
constructed yet. 
 

IY. FEATURES OF THE PROPOSED MODELS 
The methods of uncertainty evaluation presented in this 

paper are based on the same principles as applied in physical 
measurement science and stated in the ISO Guide [3] and apply 
fuzzy sets and logic models.  Since its introduction in 1965, 
fuzzy logic has been applied for different purposes. However, 
the basic idea is its use for modelling “human like” logic and 
information. So it is prima-facie a most appropriate way to 
formalise and process an expert’s information especially 
expressed in a natural language. Recent developments of fuzzy 
logic theory such as fuzzy constraints theory and calculus, 

possibility theory and especially the new theory of fuzzy 
information granulation [2] have prepared a necessary 
framework for a joint application of fuzzy and probabilistic 
models in measurement science. Fuzzy models calculus has 
been developed as well (see, for example, [7]). 
  

Y. IDENTIFICATION OF UNCERTAINTY SOURCES AND THEIR 
CLASSIFICATION FOR APPLICATIONS 

Table on fig.1 displays a list of uncertainty sources and feasible 
corresponding models [3,4]. 

In a virtual environment,  uncertainty may occur in: 
- Spatial location of objects 
- Attributes of objects (e.g. shape, colour, visibility, 

personal characteristics) 
- Attributes of environments (e.g. area, volume, boundary) 
- Attribute relationship (e.g. more visible, better looking) 
- Spatial relationships (e.g. direction, occlusion, topology) 
- Typological attributes (e.g. group of objects, sub-objects) 
- Temporal attributes and relationships (when an event 

occurs, and with respect to other events). 
 
 Uncertainty source                               Comments 
A Incomplete definition 

of the object or value 
Incomplete definition may be caused by an 
impossibility or difficulty to compile an exact 
functional relationship or by the application of 
linguistic forms and rules. Fuzzy models may be 
particularly relevant here, also statistical 
depending on source. 

B Imperfect realisation 
of a definition  

Could be due to a number of factors, statistical 
models relevant to physical limitations of 
experiment, fuzzy models relevant to conceptual 
limitations. 

C Non-representative 
sampling 

The sample may not represent the defined object 
because of a limited sample size, inhomogeneity 
of the object under measurement, etc. Sampling 
implies an underlying distribution and refers 
primarily to statistical models, but to the degree 
that the sample may not be representative, may 
involve fuzzy models. 

D Inadequate 
knowledge of the 
effects of the 
environment 

1)the model of environmental conditions may 
not cover all the influence factors or 
2) the model may be made under slightly 
different conditions because of the 
environmental changes statistical modelling  
3) the model may be based on expert’s estimates 
or guesses, fuzzy and statistical models 

E Personal bias in 
description 

May be difficult to model mathematically as it 
depends on a particular person, may vary with 
time, etc.  
Applicable to both fuzzy and statistical models.  

F Limited accuracy 
(high inaccuracy) of 
the information 
available 

Applicable to both statistical and  fuzzy models. 

G Inexact values of 
standards and 
reference materials  

Can be reference sample or reported value from 
a real underlying distributions (statistical model) 

H Inexact values of 
constants and other 
parameters obtained 
from external sources 
and used in the data-
reduction algorithm 

Usually uncertainty which is due to this reason 
has a relatively small value in comparison to 
other components.  In some cases, it can be 
single value from literature references (statistical 
square distribution or fuzzy model). 

I Approximations and 
assumptions 
incorporated in the 
design method and 
procedure 

Difficult to evaluate with statistical methods, 
here fuzzy modelling approaches may be 
particularly relevant. 

Figure 1. Classification of uncertainty sources and feasible models 

 



YI. REPRESENTATION OF  UNCERTAIN INFORMATION AND 
UNCERTAINTY ESTIMATION IN VIRTUAL ENVIRONMENT DESIGN 

To represent fuzziness for two dimensional spatial objects, 
we extend the concept of using intervals to that of bounding 
rectangles which completely enclose the object and whose 
sides are parallel to x and y axes. We use this definition instead 
of a bounding rectangle whose sides are parallel to the major 
axes of an object because although the latter represents more 
closely the shape of an object, the former is much faster for 
processing. Minimum bounding rectangle (MBR) which is the 
smallest of such rectangles has been often used to speed up the 
location of 2D objects and checking of object intersection and 
containment (see, for example, [6]). We therefore use MBBs 
for determining whether an object satisfies certain topological 
relationship. This concept can be extended to minimum 
bounding boxes (MBB) for similar purposes in 3D virtual 
worlds, e.g. to detect collision. If the MBBs of two objects are 
disjoint, then the objects are disjoint and no further work is 
necessary. 
 

To represent topological and directional relationships, an 
abstract spatial graph will be used, which maps a volume into 
a point represented by a triple (rx,ry,rz), where rx,ry and rz are 
intervals along x,y and z direction. In this case, the MBB of an 
object or subobject is the volume of interest. Thus, an abstract 
spatial graph is constructed where each node is a MBB of an 
object in the virtual world. A weight will be added to each 
node to indicate the degree of participation in each relationship. 
This weight needs to be defined to suit the context of the 
relationship being considered. For example, for overlapping 
relationship, the weight can be computed as the ratio of the 
volume of a subobject to the volume of the MBB of the entire 
object. on the other hand, for a directional relationship, it 
would be more logical to define the weight to be the ratio of 
the extent of an object to the extent of the whole MBB along 
the direction of interest. Such weights can also be expressed in 
linguistic terms based on appropriate intervals (e.g. mostly 
overlapped for 70-98%, somewhat overlapped 30-70% and 
little overlapped 5-30%). A better option, however, is to 
express these weights in terms of fuzzy membership functions 
of a fuzzy set. These membership values (between 0 and 1) 
denote the semantic confidence of fuzzy linguistic terms. The 
main advantage of using fuzzy set is that impreciseness in data 
is retained as long as possible, hence the final decision when it 
is made, would give a more accurate result than in the case 
where a crisp approximation for imprecise data is used in every 
step leading to the final result. Due to page limitation, basic 
methods for construction of a fuzzy system is not covered here, 
they may be found in many text books. 
 

Fuzzy sets will also be used to represent the fuzziness of 
other attributes of objects including typological attributes. For 
example, an object may be described as slightly twisted, 
moderately twisted or mostly twisted. Three functions can be 
formed to describe the fuzzy membership with respect to the 
parameter that controls the degree of twistness. Similarly, the 
degree in which an object may belong to a specific category 
(e.g. most likely, moderately likely or slightly likely) can also 
be expressed as fuzzy membership functions. 
 

One major issue in virtual environments is how to manage 
the group decision making process. The impreciseness in this 
case occurs in two aspects: fuzzy human preferences (e.g. 
participant A slightly prefers option A to option B), and fuzzy 
majority (e.g. most instead of a rigid rule such as at least 2/3). 
Again, we will use fuzzy sets to represent both of these 
concepts and investigate appropriate aggregation, implication 
and defuzzification rules that can combine these preferences, 
deduce causes and effects, and finally derive a crisp value from 
fuzzy values in a meaningful way. 

 
YII. REPRESENTATION OF  UNCERTAIN INFORMATION AND 

UNCERTAINTY ESTIMATION IN MEASUREMENT SCIENCE AND 
SYSTEM DESIGN 

According to a real-life measurement practice, the 
metrological characteristics can be given either as  the limits of 
the allowed errors (deterministic form) or as the limits of the 
allowed values for some probabilistic and statistical 
characteristics (mean value, random component dispersion, 
confidence intervals). In both cases, a user does not really 
know how far from the given limits the actual values lay. 
Moreover, according to a number of standards the limits should 
be chosen from a given scale. Because of this, the limits are 
rounded down with the requested values being sometimes 
significantly lower than actually required. The probabilistic 
methods pretend to be objective. However, one can see that an 
application of the probabilistic and statistical methodologies in 
metrological analysis includes an assignment of a number of 
values such as a confidence level, an error probability, the 
significance level, etc. All those values are not calculated but 
assigned by an expert, who authored the corresponding 
document, or a person who performed metrological testing. All 
of these actually mean that real data about error characteristics 
are fuzzy in their nature. However, a user is recommended to 
consider those data as having probabilistic characteristics of 
some general aggregates, which are in turn assigned some 
probability distributions. 
 

Considering all the information mentioned above the idea of 
measurement error formulation in terms of fuzzy systems 
theory looks rather reasonable. Some steps in this direction 
have been already made. In a number of the international 
[3,8,9] and national standards, the term  “measurement error” 
has been replaced with the term “measurement uncertainty”, 
which can be considered as more correspondent to fuzzy 
systems terminology. Publications, criticising the probabilistic 
models applied in measurement science, are now followed by a 
number of works, trying to formulate those models from the 
fuzzy theory point of view or to combine both theories [10-17]. 
For example, in [18,19] a priori fuzzy information about the 
object under measurement is applied to increase the 
measurement accuracy and/or reliability. In order to apply the 
fuzzy sets and systems methodology in metrology and 
measurement practice, one has to prove that this methodology 
is able to perform mathematical and logical operations with 
fuzzy values, intervals and functions, typical for measurement 
science and practice. Let us give a few examples illustrating a 
possibility of such model applications in measurement science.  
 

Example 1 (see fig.2) demonstrates the result of nonlinear 
division operation applied to the fuzzy variable. The initial 

 



fuzzy variable is given by the membership function µA which 
has a flat top in the range between 1.8 and 2.2. The support set 
for this fuzzy variable is the interval (1.5, 2.5). The gravity 
centre for this membership function is 2.0. The measurement 
result which equals 2.0 can be modelled with this membership 
function. The result error has an unexcluded systematic 
component, which extends the interval of possible values to 
(1.8, 2.2) and a random component, which fuzzifies this 
interval boundaries. The division result is a fuzzy set with the 
membership function µB. Its gravity centre equals 0.512. 
Nonsymmetry and a bias are caused by the transformation 
nonlinearity. The boundaries of the corresponding support 
interval are (0.4, 0.64). One can see that with the application of 
fuzzy sets theory any mathematical operation produces some 
information not only about its result itself but some 
characteristics of its uncertainty as well. Such information may 
be given in a detailed form with the membership function or in 
a reduced form with a confidence interval. 

 
 Figure 2. Example of a membership function with α-cuts marked 

 
Figure 3. Examples of fuzzy variables averaging 

Example 2 (see fig. 3a) illustrates an averaging operation of 
36 measurement results. Each measurement is described with 
the unimodal membership function which has a shape of a 
gaussian distribution function. This sample of measurement 
results represents a case of excluded systematic errors. An 
application of the fuzzy sets methodology to an averaging 
operation results is the fuzzy set with a membership function 2. 
One can see that it has the same shape as initial functions but 
with the width 6 times narrower. Numerically, it coincides with 
the results produced by the statistical methods application. 

 
Example 3  (see fig. 3b) is similar to the previous one. 

However, in this example a not excluded systematic error, 
which is given by the interval of possible values according to 
modern norms, is simulated. In the example this interval is 
limited between (-1.9, 1.9). These values serve as the 
boundaries for the membership function 1 flat top. The 
membership function 2 gives the averaging result of 36 initial 

membership functions. One can see that the averaging result 
has the same systematic error as its membership function has 
the same top. However, the result function slopes simulating a 
random error have become 6 times stepper. 
 

These examples demonstrate the efficiency of the fuzzy sets 
methodology in averaging procedures, which are extremely 
popular in measurement results mathematical processing. One 
should note that this methodology allows not to separate 
systematic and random uncertainty components. One can also 
suppose that an interval theory may be applied to determine the 
measurement error characteristics. Further investigation of 
fuzzy models applications in measurement result processing 
should result in the development of a theoretically not 
contradicting and practically useful measurement uncertainty 
theory, which can cover all stages of measurement information 
processing. 
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