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Abstract - The paper investigates the method of a fuzzy 

system design through its approximation with neural networks. 
It concentrates on further simplification by replacement of a 
Gaussian radial basis function with its linear and piecewise 
linear approximation. Different approximating possibilities are 
tested on four controllers chosen as benchmarks.  
 

I. INTRODUCTION 
Various specifications and conditions of employment of 

intelligent systems diversify design requirements and should 
be supported by the spectrum of implementation solutions 
providing their efficient and effective usage. There are two 
commonly followed ways of a fuzzy system (FS) 
implementation: realisation on a general purpose processor or 
on a specialised one. This paper considers both of them as 
microprocessor implementation in embedded systems. It 
describes research results on developing a FS implementation 
on a cheap general microprocessor through its emulation as a 
neural network (see also [1] for a general problem 
description). The previous paper [1] investigated a possibility 
of further simplification of a FS implementation by making 
the right choice of the NN and its parameters. It considered 
the choice of the NN type, while [2] concentrated on the 
vector distance calculation. This paper primarily researches 
possibility of approximating gaussian function, which is 
applied in radial basis neural networks (RBNN). 
 

Implementation of the fuzzy control algorithm on the 
general purpose micro-controller may impose tough 
restrictions on speed and memory required due to the 
available resources. Typically an application may not 
consume the entire code space available, however the speed 
of the processor cannot be changed without a cost increase. 
In many cases the replacement of a the control algorithm 
developed and tested earlier with a simpler one may either 
significantly improve the real controller characteristics or 
even expand the range of possible micro-controller 
applications in soft computing systems without sacrificing 
the quality. Improvement of the FS realisation efficiency is 
achieved by training a neural network to emulate FS input-
output surface, then implementing the less complex neural 
network structure on an 8-bit microprocessor, which is cheap 
and still very popular with the industry. Producing a FS 
output can require many different equations to be evaluated, 
subsequently the code can easily become complicated. Unless 
additional code is written, the designer is usually restricted to 
only certain types of fuzzy operations.  Non-linear 
transformations can compound the complexity, particularly 

when dealing with 8-bit micro-controllers that do not directly 
support floating-point calculations. Commercial products are 
available to design and compile the necessary pre-fabricated 
code.  The software typically imposes limits on which 
functions are supported and the number and type of rules 
allowed.  The software does not typically provide 
optimisation options for speed and memory, making the 
designer redesign the system with less detail due to resource 
limitations. Integrated circuits (IC) designed for calculating 
FSs provide a convenient option for projects requiring fast 
operation. However, low budget or space conscious projects 
cannot always afford the luxury of a dedicated IC.   
 

Neural Networks (NN) have been proven to become a 
suitable structure to replace the function of a static FS to a 
desired degree of accuracy, which is predominantly 
controlled by the number of neurons used in the network.  
NN operate independently on the FS type.  Therefore, the 
software is generic in its use, only the weights need to be 
changed to implement an alternative surface. The cellular 
structure of a NN and the simplicity of calculating each 
neuron’s output facilitate an efficient code development and 
processing.  The repetitive loop computations are relatively 
simplistic to understand, and uncomplicated to debug.  The 
same NN engine can be used to support multiple control 
surfaces, which may be generated from different network 
sizes.  During development, trading the number of neurons 
used for accuracy provides design implementation flexibility 
with respect to both processing speed and program memory. 
 

II. FUZZY SYSTEM PERFORMANCE 
IMPROVEMENT WITH NEURAL NETWORK 

APPROXIMATION 
Two network structures have been identified as most suited 

to function approximation, multi-layer perceptron networks 
(MLPN) and radial basis networks (RBN).  A preliminary 
case study investigated these network types and several 
prospective variants with full floating point arithmetic.  
Based on their respective entropy, a single layer perceptron 
network performed quite well owing to its global 
approximation characteristic.  In fact, several perceptron 
configurations reduced the median error to less than 0.1%, 
however the surface detail was less accurate with at least a 
7% maximum error.   The RBN networks were capable of 
providing a lower maximum error, due to their localised 
response characteristic.  As the requirement for 
approximation accuracy increased, the MLPN type networks 
were unable to maintain the high efficiency, the result of 
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over-generalisation, whereas the RBNs were capable of 
providing surface detail. 
 

Each of these NN was investigated to identify those 
components of the algorithms less suitable to the micro-
controller architecture.  It was identified that floating point 
arithmetic required more memory and more processing to 
compute operations than integer based arithmetic.  In 
addition, multiplications and divisions are time consuming to 
process, particularly when they involve operands of sizes 
greater than 8-bits.  Combined with the practical inability to 
process logarithmic or exponential functions, the choice of 
network types is limited. 
 

RBNs require a radial basis neuron, which includes the use 
of several multiplications, a square root operation and a 
Gaussian basis transfer function.  The first section of the 
neuron process finds the vector distance, known as Euclidean 
Distance (ED), between the input and weight vectors, and the 
second section transposes the result to represent the degree of 
equality with the two vectors.  The arithmetic and variable 
sizes required to compute this function are not practical, 
therefore an alternative was created.   
 

The ED was replaced with an absolute distance function, 
known as the Manhattan distance (MD).  Given the MD is of 
functional equivalence to the ED function, the Neural 
Network will accommodate the alternative during training.  
In general, the difference between the MD and ED functions 
when used in a Neural Network is negligible, except when 
the generalisation between neurons is insufficient.  This 
results in very few neighbouring neurons overlapping, 
reducing the interpolative ability. The use of small networks 
is, however, limited and their application is only practical 
when approximating surfaces that are void of detail and quite 
smooth.  Case studies proved that the performance was in 
some cases better with the simplified function, predominantly 
due to the higher gradient of the function that allowed finer 
detail to be represented. 
 

III. WAYS OF GAUSSIAN BASIS FUNCTION 
APPROXIMATION 

Similarly, the Gaussian function used to translate the 
distance between the inputs and weights to the degree of 
equality was replaced for a practical substitute.  Three, linear 
piece-wise alternatives which were formulated to 
approximate the shape of the original Gaussian function were 
investigated.  An investigation of different approximation 
strategies has been conducted on the base of four FLCs 
comparison. The first one is used to control motors that 
mechanically feed banknotes in automatic teller machines 
[3]. The second is applied for an anti-lock braking system in 
a vehicle [4]. The third one is used by a robotic arm for force 
feedback movement [5], while the last one is applied in 
automatic cruise control [6]. Each of these controllers has 
been selected to represent the diversity in which they 
typically operate. 
 

The use of a Gaussian basis function, can only be 
implemented with either a lookup table, polynomial 
approximation or by the use of an exponential series 
calculation.  Implementation of the function can be described 
within limits, which will effect the possible use of different 
basis function types. Fig. 1 shows the range of the spreading 
factor from the data collated for the controllers chosen for 
study in this research.  This data represents networks that use 
between 9 to 49 neurons.  The range extends from 0.25 to 6, 
however as more neurons are used it can be expected that the 
spreading factor may increase.  Most importantly, the lower 
limit defines the largest spread of the function. 
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Fig. 1 – Range of the spreading factor for each surface shown with error bars 
 

A lookup table is quite possibly a practical solution, 
however it is likely it will consume more memory than the 
neuron weights themselves.  The actual range of the values 
expected to be applied to the basis function is quite 
dependent on the number of neurons.  However, as the 
function decreases towards zero at the positive and negative 
extents, the input would need to be close to zero to get an 
output other than zero. 
 

Realistically speaking, if the spreading factor is limited 
then it may been beneficial to use a lookup table.  As the 
input is only positive, only one side of the function must be 
stored and all points beyond the range of the table are 
assumed as zero.  An example of a suitable 64 point radial 
basis lookup table is defined (1).   

 
(1)       
 
 

If the required level of memory is available, then this 
method will provide a fast and convenient alternative to using 
an equation.  However, the radial basis function may not 
always have a range that converges to zero within a practical 
finite limit.  Theoretically there is no limit to applicable 
range, however practically, the number of neurons and the 
spreading factor restrict it.  Given that the RB networks 
performance has been optimal around small spreading 
factors, the range has been on the large side.  Subsequently, 
this is likely to restrict the use of using a lookup table.  
Ideally with no restrictions, the lookup table would need to 
reserve approximately 3K of data.  Even if a few least 
significant bits were truncated, the use of the memory is quite 
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excessive and considered inefficient for the function it 
provides. 
 

IV. POLYNOMIAL PIECEWISE APPROXIMATION 
Calculating the Gaussian function from an exponential 

series is simply not practical due to the number calculation 
required, particularly when this calculation must be repeated 
for each neuron.  However a polynomial representation can 
be used to reduce the computation requirement while 
providing an accuracy alternative.  At least a 5th order 
polynomial is required to correctly characterize the curve of 
the bell shaped function.  Such a polynomial was generated 
by finding the coefficients that fit the original curve, in a 
least-squares sense (2).  This equation is quite sensitive to 
coefficient errors in the high order components.  
(2) 
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Evaluating this equation requires ten multiplications, a few 

additions and subtractions.  Unfortunately, unless floating 
point calculations are used this equation becomes slightly 
more complicated to program.  An alternative approach is to 
use a piece-wise polynomial function, as described in (3).   
(3) 
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This was generated in the same manner as the previous 

example, however the first polynomial section requires a 2nd 
order equation and the next a 3rd order equation. The above   
linear equation is less sensitive to coefficient errors, however 
coding this while avoiding floating point calculations is again 
difficult. It does however reduce the computational 
requirements by at least two multiplications.  Practically, this 
method is not flexible in that the spreading factor cannot be 
simply adjusted, the coefficients must be recalculated.  
Scaling the input value will allow the same equation to be 
used, however this will require at least one multiplication and 
unnecessarily add to the complexity of the software. 

 

 

The purpose of the Gaussian basis function is to define the 
level of activation for how close the input vector matches the 
weight vector.  It a function cannot be removed because it 
provides both output scaling and characterizes the extent of 
local neighbourhood.  As long as the basis function satisfies 
the basic requirements, the network will perform as expected.  
The difference between using a Gaussian and another 
alternative is how the interpolation between overlapping 
neurons interact.   
 

Put simply, a linear triangular function can replace the 
non-linear Gaussian function.  Expectedly, the interpolation 
between neurons will differ, particularly with a surface that is 
highly non-linear or using few neurons.  However, the 
simplistic nature of the triangular function, or possibly piece-
wise linear functions, can reduce the resources required 
considerably.  Not only is this simplification important to 
satisfy software implementation, but this approach has also 
been used for VLSI hardware optimisation.  replaces the 
standard Gaussian basis function with an alternative piece-
wise linear one. 
 
It is important that the distinction between perceptron 
networks and RB networks is made regarding the use of non-
linear functions.  Perceptron networks need a non-linear 
transfer function for the backpropagation training algorithm 
to work.  It has also previously been established that such 
networks using only linear transfer functions cannot 
approximate non-linear surfaces.  So far the vector distance 
of the RB network has replaced with a linear alternative and 
now it’s proposed that the basis function be also linearised.  
This is possible, because unlike the perceptron network, the 
RB basis function if network is locally trained. Simply 
speaking it can be as an effective lookup table, which can 
represent non-linear functions. 
 

A total of three linear and piece-wise linear basis will be 
tested and compared with the standard Gaussian function.  
The specific shape of each function will be defined to closely 
match the shape of the Gaussian function in order to provide 
a direct evaluation.  Using slightly different shapes may 
improve the performance, however the purpose of the 
comparison is to identify if the proposed linear type functions 
significantly effect the networks approximation capability. 

 

 
 Fig. 2  Triangular basis function.                     Fig. 3 – Two-piece linear basis function.          Fig. 4 – Three-piece basis function 
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The first basis function, termed triangular, is a simple line 
limited to +ve values only (4), Fig.2. Implementation of this 
function is relatively straight forward with at most, one 
multiply, divide and subtraction involved.  If the parameters 
were carefully selected, the divide may be eliminated or 
restricted to powers of two to facilitate quick division by two 
rotate instructions. 
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where for an approximation of the Gaussian basis function, 
the parameters are:  
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Extending this to a closer original approximation of the 

Gaussian function, a two-piece linear basis function is 
proposed (5).  This type has the ability to produce a broader 
neighborhood close to the center, rather than a sharp point 

produced by a triangular type.  The maximum number of 
multiplies and divides is not far different from the triangular 
basis function, as the parameters are constant and can be 
reduced to single coefficients.  It is more likely that these 
parameter cannot be simplified as easy as the previous case, 
but in addition, there is the extra overhead of range testing 
(6). 
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where for an approximation of the Gaussian basis function, 
the parameters are: 
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Fig. 5 – Maximum error comparison between using the Gaussian and alternative basis functions. 
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Maximum Error - Cruise Control Surface

3.5

5.5

7.5

9.5

11.5

13.5

15.5

8 18 28 38 48
# Neurons

%
 M

ax
im

um
 E

rr
or

RB
RB 1-p 
RB 2-p 
RB 3-p 

Maximum Error - Stepper Motor Surface

3.5

5.5

7.5

9.5

11.5

13.5

15.5

8 18 28 38 48
# Neurons

%
 M

ax
im

um
 E

rr
or

RB
RB 1-p 
RB 2-p 
RB 3-p 



(6)

( )

( )

( )( )

( )
















≥

<≤
−

−

<≤+
−

−−

<≤−−

=−

0

01
10

02

122
12

211

2
2

10
0

0

0

nn

nnn
nn

nna

nnna
nn

aann

nn
n

aana

na piecethree  

where for an approximation of the Gaussian basis function, 
the parameters are: 
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V. APPROXIMATION RESULTS 
The calculation of the parameters will provide an 

equivalent approximation to the Gaussian basis function with 
respect to the spreading factor.  Eighty simulations have been 
performed to identify the difference between the proposed 
basis functions.  These results were generated using the 
Manhattan distance function, as detailed in [2].  Using a 
spreading factor of 0.5, the maximum and median error were 
calculated for each of the four example fuzzy surfaces with 9 

to 49 neurons in the hidden layer.  Fig. 5 shows the maximum 
error for all fuzzy surfaces.  On initial inspection, the results 
may appear to be somewhat inconclusive as to which basis 
function performs the best. 
 

On close inspection, the 2-piece and in particular the 3-
piece function are less consistent with a wide variance.  
Clearly in the banknote surface the 3-piece produces the 
worst approximation, while in the ABS surface it is the best 
option.  The triangular 1-piece basis function is actually the 
most consistent and reliable, while also providing the lowest 
result 36% of the time.  The original Gaussian basis function 
was only the lowest 18% of the time, which occurred only 
when few neurons were present. 
 

Fig. 6 shows the median error, which is quite consistent 
and with little variance.  Based on these results, neither basis 
function is clearly better than another, as the differences in 
error are relatively small.  For the ABS surface, which is 
quite smooth, the 3-piece basis function has more difficulty 
than the others in producing a low median error, which is 
surprising given the maximum error was quite low.  The 
triangular function did not perform as well on the cruise 
control surface, which can be attributed to the region with the 
high gradient, as previously identified.  This can be expected 
because this function has the lowest gradient, however a 
steeper function could improve the response. 

Fig. 6– Median error comparison between using the Gaussian and alternative basis functions
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Median Error - Cruise Control Surface
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Median Error - Stepper Motor Surface
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VI. CONCLUSION 
This analysis has identified that the Gaussian basis function 
can be replaced by a linear or piece-wise linear function 
without a significant change in error.  It has also shown that 
the alternatives are more likely to produce a better result than 
that of the original, unless the number of neurons is less than 
nine.  In particular, the triangular function has shown to be 
the most consistent and reliable with consideration to both 
the maximum and median error results. Additionally, this 
function is the simplest and most efficient basis function 
tested.  Therefore, the triangular basis function has been 
selected for the subsequent implementation of the RB 
networks. 
 
Because the linear equation is quite simple and not resource 
demanding, a lookup table is not required.  This eliminates 
any problems associated with input scaling to the basis 
function and the range the SF may extend, such as found 
when trying to implement the Gaussian basis function.  It 
also does not require any polynomial approximation, which 
tends to complicate the design and implementation of the 
neural network software. 
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