
Fuzzy System Implementation through its Approximation with Simplified Radial Basis
Networks

 Leonid REZNIK

School of Communications & Informatics
Victoria University

P.O. Box 14428, Melbourne City MC VIC 8001 AUSTRALIA
Email: Leon.Reznik@vu.edu.au

Abstract - The paper investigates the method of a fuzzy

system design through its approximation with neural networks.
It concentrates on further simplification by replacement of a
Gaussian radial basis function with its linear and piecewise
linear approximation. Different approximating possibilities are
tested on four controllers chosen as benchmarks.

I. INTRODUCTION
Various specifications and conditions of employment of

intelligent systems diversify design requirements and should
be supported by the spectrum of implementation solutions
providing their efficient and effective usage. There are two
commonly followed ways of a fuzzy system (FS)
implementation: realisation on a general purpose processor or
on a specialised one. This paper considers both of them as
microprocessor implementation in embedded systems. It
describes research results on developing a FS implementation
on a cheap general microprocessor through its emulation as a
neural network (see also [1] for a general problem
description). The previous paper [1] investigated a possibility
of further simplification of a FS implementation by making
the right choice of the NN and its parameters. It considered
the choice of the NN type, while [2] concentrated on the
vector distance calculation. This paper primarily researches
possibility of approximating gaussian function, which is
applied in radial basis neural networks (RBNN).

Implementation of the fuzzy control algorithm on the
general purpose micro-controller may impose tough
restrictions on speed and memory required due to the
available resources. Typically an application may not
consume the entire code space available, however the speed
of the processor cannot be changed without a cost increase.
In many cases the replacement of a the control algorithm
developed and tested earlier with a simpler one may either
significantly improve the real controller characteristics or
even expand the range of possible micro-controller
applications in soft computing systems without sacrificing
the quality. Improvement of the FS realisation efficiency is
achieved by training a neural network to emulate FS input-
output surface, then implementing the less complex neural
network structure on an 8-bit microprocessor, which is cheap
and still very popular with the industry. Producing a FS
output can require many different equations to be evaluated,
subsequently the code can easily become complicated. Unless
additional code is written, the designer is usually restricted to
only certain types of fuzzy operations. Non-linear
transformations can compound the complexity, particularly

when dealing with 8-bit micro-controllers that do not directly
support floating-point calculations. Commercial products are
available to design and compile the necessary pre-fabricated
code. The software typically imposes limits on which
functions are supported and the number and type of rules
allowed. The software does not typically provide
optimisation options for speed and memory, making the
designer redesign the system with less detail due to resource
limitations. Integrated circuits (IC) designed for calculating
FSs provide a convenient option for projects requiring fast
operation. However, low budget or space conscious projects
cannot always afford the luxury of a dedicated IC.

Neural Networks (NN) have been proven to become a
suitable structure to replace the function of a static FS to a
desired degree of accuracy, which is predominantly
controlled by the number of neurons used in the network.
NN operate independently on the FS type. Therefore, the
software is generic in its use, only the weights need to be
changed to implement an alternative surface. The cellular
structure of a NN and the simplicity of calculating each
neuron’s output facilitate an efficient code development and
processing. The repetitive loop computations are relatively
simplistic to understand, and uncomplicated to debug. The
same NN engine can be used to support multiple control
surfaces, which may be generated from different network
sizes. During development, trading the number of neurons
used for accuracy provides design implementation flexibility
with respect to both processing speed and program memory.

II. FUZZY SYSTEM PERFORMANCE
IMPROVEMENT WITH NEURAL NETWORK

APPROXIMATION
Two network structures have been identified as most suited

to function approximation, multi-layer perceptron networks
(MLPN) and radial basis networks (RBN). A preliminary
case study investigated these network types and several
prospective variants with full floating point arithmetic.
Based on their respective entropy, a single layer perceptron
network performed quite well owing to its global
approximation characteristic. In fact, several perceptron
configurations reduced the median error to less than 0.1%,
however the surface detail was less accurate with at least a
7% maximum error. The RBN networks were capable of
providing a lower maximum error, due to their localised
response characteristic. As the requirement for
approximation accuracy increased, the MLPN type networks
were unable to maintain the high efficiency, the result of

mailto:Leon.Reznik@vu.edu.au

over-generalisation, whereas the RBNs were capable of
providing surface detail.

Each of these NN was investigated to identify those
components of the algorithms less suitable to the micro-
controller architecture. It was identified that floating point
arithmetic required more memory and more processing to
compute operations than integer based arithmetic. In
addition, multiplications and divisions are time consuming to
process, particularly when they involve operands of sizes
greater than 8-bits. Combined with the practical inability to
process logarithmic or exponential functions, the choice of
network types is limited.

RBNs require a radial basis neuron, which includes the use
of several multiplications, a square root operation and a
Gaussian basis transfer function. The first section of the
neuron process finds the vector distance, known as Euclidean
Distance (ED), between the input and weight vectors, and the
second section transposes the result to represent the degree of
equality with the two vectors. The arithmetic and variable
sizes required to compute this function are not practical,
therefore an alternative was created.

The ED was replaced with an absolute distance function,
known as the Manhattan distance (MD). Given the MD is of
functional equivalence to the ED function, the Neural
Network will accommodate the alternative during training.
In general, the difference between the MD and ED functions
when used in a Neural Network is negligible, except when
the generalisation between neurons is insufficient. This
results in very few neighbouring neurons overlapping,
reducing the interpolative ability. The use of small networks
is, however, limited and their application is only practical
when approximating surfaces that are void of detail and quite
smooth. Case studies proved that the performance was in
some cases better with the simplified function, predominantly
due to the higher gradient of the function that allowed finer
detail to be represented.

III. WAYS OF GAUSSIAN BASIS FUNCTION
APPROXIMATION

Similarly, the Gaussian function used to translate the
distance between the inputs and weights to the degree of
equality was replaced for a practical substitute. Three, linear
piece-wise alternatives which were formulated to
approximate the shape of the original Gaussian function were
investigated. An investigation of different approximation
strategies has been conducted on the base of four FLCs
comparison. The first one is used to control motors that
mechanically feed banknotes in automatic teller machines
[3]. The second is applied for an anti-lock braking system in
a vehicle [4]. The third one is used by a robotic arm for force
feedback movement [5], while the last one is applied in
automatic cruise control [6]. Each of these controllers has
been selected to represent the diversity in which they
typically operate.

The use of a Gaussian basis function, can only be
implemented with either a lookup table, polynomial
approximation or by the use of an exponential series
calculation. Implementation of the function can be described
within limits, which will effect the possible use of different
basis function types. Fig. 1 shows the range of the spreading
factor from the data collated for the controllers chosen for
study in this research. This data represents networks that use
between 9 to 49 neurons. The range extends from 0.25 to 6,
however as more neurons are used it can be expected that the
spreading factor may increase. Most importantly, the lower
limit defines the largest spread of the function.

Range of Spreading Factor

0

1

2

3

4

5

6

7 17 27 37 47

Neurons
Sp

re
ad

in
g

Fa
ct

or

ABS
Cruise Control
Stepper Motor
Banknote

Fig. 1 – Range of the spreading factor for each surface shown with error bars

A lookup table is quite possibly a practical solution,
however it is likely it will consume more memory than the
neuron weights themselves. The actual range of the values
expected to be applied to the basis function is quite
dependent on the number of neurons. However, as the
function decreases towards zero at the positive and negative
extents, the input would need to be close to zero to get an
output other than zero.

Realistically speaking, if the spreading factor is limited
then it may been beneficial to use a lookup table. As the
input is only positive, only one side of the function must be
stored and all points beyond the range of the table are
assumed as zero. An example of a suitable 64 point radial
basis lookup table is defined (1).

(1)

If the required level of memory is available, then this
method will provide a fast and convenient alternative to using
an equation. However, the radial basis function may not
always have a range that converges to zero within a practical
finite limit. Theoretically there is no limit to applicable
range, however practically, the number of neurons and the
spreading factor restrict it. Given that the RB networks
performance has been optimal around small spreading
factors, the range has been on the large side. Subsequently,
this is likely to restrict the use of using a lookup table.
Ideally with no restrictions, the lookup table would need to
reserve approximately 3K of data. Even if a few least
significant bits were truncated, the use of the memory is quite

()() { }






≥
==

−

640
632,1,0*255

2

xfor
xforeroundF

nb

s
l

excessive and considered inefficient for the function it
provides.

IV. POLYNOMIAL PIECEWISE APPROXIMATION
Calculating the Gaussian function from an exponential

series is simply not practical due to the number calculation
required, particularly when this calculation must be repeated
for each neuron. However a polynomial representation can
be used to reduce the computation requirement while
providing an accuracy alternative. At least a 5th order
polynomial is required to correctly characterize the curve of
the bell shaped function. Such a polynomial was generated
by finding the coefficients that fit the original curve, in a
least-squares sense (2). This equation is quite sensitive to
coefficient errors in the high order components.
(2)

2.2535876.006595.0
10*5931.010*059.210*557.2

2

334659

++−
+−= −−−

nn
nnna

Evaluating this equation requires ten multiplications, a few

additions and subtractions. Unfortunately, unless floating
point calculations are used this equation becomes slightly
more complicated to program. An alternative approach is to
use a piece-wise polynomial function, as described in (3).
(3)









≥
<≤+−+−
<≤+−−

= −

2550
2556040453.502513.010*89.37
6005.255214.002573.0

236

2

nfor
nfornnn
nfornn

a

This was generated in the same manner as the previous

example, however the first polynomial section requires a 2nd
order equation and the next a 3rd order equation. The above
linear equation is less sensitive to coefficient errors, however
coding this while avoiding floating point calculations is again
difficult. It does however reduce the computational
requirements by at least two multiplications. Practically, this
method is not flexible in that the spreading factor cannot be
simply adjusted, the coefficients must be recalculated.
Scaling the input value will allow the same equation to be
used, however this will require at least one multiplication and
unnecessarily add to the complexity of the software.

The purpose of the Gaussian basis function is to define the
level of activation for how close the input vector matches the
weight vector. It a function cannot be removed because it
provides both output scaling and characterizes the extent of
local neighbourhood. As long as the basis function satisfies
the basic requirements, the network will perform as expected.
The difference between using a Gaussian and another
alternative is how the interpolation between overlapping
neurons interact.

Put simply, a linear triangular function can replace the
non-linear Gaussian function. Expectedly, the interpolation
between neurons will differ, particularly with a surface that is
highly non-linear or using few neurons. However, the
simplistic nature of the triangular function, or possibly piece-
wise linear functions, can reduce the resources required
considerably. Not only is this simplification important to
satisfy software implementation, but this approach has also
been used for VLSI hardware optimisation. replaces the
standard Gaussian basis function with an alternative piece-
wise linear one.

It is important that the distinction between perceptron
networks and RB networks is made regarding the use of non-
linear functions. Perceptron networks need a non-linear
transfer function for the backpropagation training algorithm
to work. It has also previously been established that such
networks using only linear transfer functions cannot
approximate non-linear surfaces. So far the vector distance
of the RB network has replaced with a linear alternative and
now it’s proposed that the basis function be also linearised.
This is possible, because unlike the perceptron network, the
RB basis function if network is locally trained. Simply
speaking it can be as an effective lookup table, which can
represent non-linear functions.

A total of three linear and piece-wise linear basis will be
tested and compared with the standard Gaussian function.
The specific shape of each function will be defined to closely
match the shape of the Gaussian function in order to provide
a direct evaluation. Using slightly different shapes may
improve the performance, however the purpose of the
comparison is to identify if the proposed linear type functions
significantly effect the networks approximation capability.

 Fig. 2 Triangular basis function. Fig. 3 – Two-piece linear basis function. Fig. 4 – Three-piece basis function

n

a

n0

a0

n

a

n0

a0
a1

n1 n2

a2

n

a

n0

a0

a1

n1

The first basis function, termed triangular, is a simple line
limited to +ve values only (4), Fig.2. Implementation of this
function is relatively straight forward with at most, one
multiply, divide and subtraction involved. If the parameters
were carefully selected, the divide may be eliminated or
restricted to powers of two to facilitate quick division by two
rotate instructions.

(4) ()







≥

<≤−=
00

0 0
0

0
0

n

nn
n

naana Triangular

where for an approximation of the Gaussian basis function,
the parameters are:

10 =a

SF
n e 05.0log

0

−
=

Extending this to a closer original approximation of the

Gaussian function, a two-piece linear basis function is
proposed (5). This type has the ability to produce a broader
neighborhood close to the center, rather than a sharp point

produced by a triangular type. The maximum number of
multiplies and divides is not far different from the triangular
basis function, as the parameters are constant and can be
reduced to single coefficients. It is more likely that these
parameter cannot be simplified as easy as the previous case,
but in addition, there is the extra overhead of range testing
(6).

(5)
()

()

()















≥

<≤
−

−

<≤−−

=−

00

01

0

10

01

1
1

10
0

n

nnn
nn

nna

nn
n

aana

na piecetwo

where for an approximation of the Gaussian basis function,
the parameters are:

10 =a ;
SF

n e 05.0log
0

−
= ;

8
0

01
aaa −= ;

4
0

1
nn =

Fig. 5 – Maximum error comparison between using the Gaussian and alternative basis functions.

Maximum Error - ABS Surface

3.5

5.5

7.5

9.5

11.5

13.5

15.5

8 18 28 38 48
Neurons

%
 M

ax
im

um
 E

rr
or

RB
RB 1-p
RB 2-p
RB 3-p

Maximum Error - Banknote Surface

3.5

5.5

7.5

9.5

11.5

13.5

15.5

8 18 28 38 48
Neurons

%
 M

ax
im

um
 E

rr
or

RB
RB 1-p
RB 2-p
RB 3-p

Maximum Error - Cruise Control Surface

3.5

5.5

7.5

9.5

11.5

13.5

15.5

8 18 28 38 48
Neurons

%
 M

ax
im

um
 E

rr
or

RB
RB 1-p
RB 2-p
RB 3-p

Maximum Error - Stepper Motor Surface

3.5

5.5

7.5

9.5

11.5

13.5

15.5

8 18 28 38 48
Neurons

%
 M

ax
im

um
 E

rr
or

RB
RB 1-p
RB 2-p
RB 3-p

(6)

()

()

()()

()
















≥

<≤
−

−

<≤+
−

−−

<≤−−

=−

0

01
10

02

122
12

211

2
2

10
0

0

0

nn

nnn
nn

nna

nnna
nn

aann

nn
n

aana

na piecethree

where for an approximation of the Gaussian basis function,
the parameters are:

10 =a ;
SF

n e 05.0log
0

−
= ;

8
0

01
aaa −= ;

2
0

1
nn = ;

16
3 0

2
aa = ;

4
0

2
nn =

V. APPROXIMATION RESULTS
The calculation of the parameters will provide an

equivalent approximation to the Gaussian basis function with
respect to the spreading factor. Eighty simulations have been
performed to identify the difference between the proposed
basis functions. These results were generated using the
Manhattan distance function, as detailed in [2]. Using a
spreading factor of 0.5, the maximum and median error were
calculated for each of the four example fuzzy surfaces with 9

to 49 neurons in the hidden layer. Fig. 5 shows the maximum
error for all fuzzy surfaces. On initial inspection, the results
may appear to be somewhat inconclusive as to which basis
function performs the best.

On close inspection, the 2-piece and in particular the 3-
piece function are less consistent with a wide variance.
Clearly in the banknote surface the 3-piece produces the
worst approximation, while in the ABS surface it is the best
option. The triangular 1-piece basis function is actually the
most consistent and reliable, while also providing the lowest
result 36% of the time. The original Gaussian basis function
was only the lowest 18% of the time, which occurred only
when few neurons were present.

Fig. 6 shows the median error, which is quite consistent
and with little variance. Based on these results, neither basis
function is clearly better than another, as the differences in
error are relatively small. For the ABS surface, which is
quite smooth, the 3-piece basis function has more difficulty
than the others in producing a low median error, which is
surprising given the maximum error was quite low. The
triangular function did not perform as well on the cruise
control surface, which can be attributed to the region with the
high gradient, as previously identified. This can be expected
because this function has the lowest gradient, however a
steeper function could improve the response.

Fig. 6– Median error comparison between using the Gaussian and alternative basis functions

Median Error - ABS Surface

0

0.5

1

1.5

2

2.5

3

8 18 28 38 48
Neurons

%
 M

ed
ia

n
Er

ro
r

RB
RB 1-p
RB 2-p
RB 3-p

Median Error - Banknote Surface

0

0.5

1

1.5

2

2.5

3

8 18 28 38 48
Neurons

%
 M

ed
ia

n
Er

ro
r

RB
RB 1-p
RB 2-p
RB 3-p

Median Error - Cruise Control Surface

0

0.5

1

1.5

2

2.5

3

8 18 28 38 48
Neurons

%
 M

ed
ia

n
Er

ro
r

RB
RB 1-p
RB 2-p
RB 3-p

Median Error - Stepper Motor Surface

0

0.5

1

1.5

2

2.5

3

8 18 28 38 48
Neurons

%
 M

ed
ia

n
Er

ro
r

RB
RB 1-p
RB 2-p
RB 3-p

VI. CONCLUSION
This analysis has identified that the Gaussian basis function
can be replaced by a linear or piece-wise linear function
without a significant change in error. It has also shown that
the alternatives are more likely to produce a better result than
that of the original, unless the number of neurons is less than
nine. In particular, the triangular function has shown to be
the most consistent and reliable with consideration to both
the maximum and median error results. Additionally, this
function is the simplest and most efficient basis function
tested. Therefore, the triangular basis function has been
selected for the subsequent implementation of the RB
networks.

Because the linear equation is quite simple and not resource
demanding, a lookup table is not required. This eliminates
any problems associated with input scaling to the basis
function and the range the SF may extend, such as found
when trying to implement the Gaussian basis function. It
also does not require any polynomial approximation, which
tends to complicate the design and implementation of the
neural network software.

References
[1] Little A., and L. Reznik Implementation of Fuzzy Controllers with

Radial Basis Neural Networks The Ninth IEEE International
Conference on Fuzzy Systems, FUZZ-IEEE 2000 San Antonio, USA,
7-10 May 2000 Proceedings IEEE vol.2 p.581 – 586

[2] Little A. and L.Reznik Improving the Approximation Smoothness of
Radial Basis Neural Networks, Journal of Advanced Computational
Intelligence, vol. 4, No. 6, 2000, pp.1-4

[3] Sato M., Kitagawa T., Sekiguchi T., Watanabe K., Goto M. Fuzzy
Logic Based Banknote Transfer Control, IEEE 1993, published in
“Fuzzy Logic Technology and Applications”, IEEE Update series 1994

[4] Madau D.P., Yuan F., Davis L.I.,Jr., Feldkamp L.A. Fuzzy Logic
Anti-Lock Brake System for a Limited Range Coefficient of Friction
Surface, IEEE 1993, published in “Fuzzy Logic Technology and
Applications”, IEEE Update series 1994

[5] Hollinger J.G., R.A. Bergstrom, J.S. Bay A Fuzzy Logic Force
Controller for a Stepper Motor Robot, IEEE 1993, published in “Fuzzy
Logic Technology and Applications”, IEEE Update series 1994

[6] Muller R. and G. Nocker Intelligent Cruise Control with Fuzzy Logic
IEEE 1993, published in “Fuzzy Logic Technology and Applications”,
IEEE Update series 1994

