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Abstract - The paper combines two major neuro-fuzzy  
applications in power engineering: stabilizing power systems at a 
generation stage and reducing disturbances at a delivery stage. 
It presents a neural-fuzzy classifier for recognition of power 
disturbances and a fuzzy excitation controller comprising both 
the exciter and the power system stabilizer. 
 

I.   INTRODUCTION 
 
 Modern power generation and delivery systems are 
required to provide significant improvement in stabilizing the 
parameters of the electricity supply and disturbance 
reduction. Up to date, considerable efforts have been focused 
on this area, for instance, assessing impacts brought about by 
deterioration of power quality, monitoring variant 
disturbances occurred in generation, transmission and 
distribution networks, and seeking measures for power 
service improvement [1]. This paper combines two major 
neuro-fuzzy applications in power engineering: stabilizing 
power systems at a generation stage and reducing 
disturbances at a delivery stage. 
 
 As the prerequisite of solutions to power quality problems, 
an initial investigation is necessary for identifying the exact 
circumstances utilities experienced and verifying the 
countermeasures to adopt. In practice, electric power 
delivered at certain customer sites is monitored continuously, 
which can produce yearly gigabyte size data files. In this 
paper, the authors present a novel classifier based on neural-
fuzzy technologies. The neural networks with the architecture 
of Frequency Sensitive Competitive Learning and Learning 
Vector Quantization (FSCL-LVQ) are trained using a set of 
samples including thirteen types of power quality 
disturbances. After the FSCL and the LVQ two training 
phases, each type of disturbances in the training set is 
represented by a certain number of code-words. These code- 
words are to be used in later recognition for determining how 
well an input waveform matches the thirteen patterns 
respectively in terms of similarity measures. To handle the 
uncertainty existing in the training set and the pattern 
recognition, the similarity measures are each quantified into 
the selected membership functions derived from the statistical 
distributions of the training samples. Finally, the fuzzy 
associative memory (FAM) recalling is activated to identify 
the disturbance type that the input waveform most possibly 
falls into. The identification is accompanied by a belief 
degree that is introduced as an estimate to the recognition 
accuracy. The classifier is designed to recognize up to 
thirteen types of waveforms. Diversities of variant 

disturbances increase the difficulty to achieve high 
recognition accuracy. The huge size of the time-domain data 
files further complicates the problem. Consequently, a pre-
processing procedure is necessary. 

 
The second part proposes a hybrid structure for a fuzzy 

logic based excitation control (FLC) system comprising both 
the exciter and the power system stabiliser (PSS) for a 
synchronous generator connected to an infinite bus through a 
transmission line. The combined structure is based on some 
new techniques of educing the most appropriate parameters 
that can represent the status of the machine. The system 
considers the speed deviation and applies a nonlinear scaling 
for this parameter based on operational sectors. The terminal 
voltage error is another factor considered by the system.  

 
II. DISTURBANCE RECOGNITION 

 
 In the design of the proposed recognition scheme, the 
thirteen types of waveforms to be classified are divided into 
Group-A, Group-B and Group-C. As shown in Table 1, 
disturbances in each group are denoted by A1~A4, B1~B8, 
or C1 and C2 accordingly. For the definition of the listed 
disturbances, please refer to [2]. 
 

TABLE 1 POWER QUALITY DISTURBANCES 
 

Disturbance 
Categories 

Descriptions 

 
 

Group-A 

A1&A2: High&low frequency capacitor 
switching, A3: Impulsive transients, A4: 
Notching. 
The group disturbances have short elapsed-
time, causing no fundamental frequency f1 
change in the steady-state condition. 

 
 

Group-B 

B1&B2: Fundamental frequency deviation 
(higher&lower), B3: Sag, B4: Swell, B5: 
Momentary interruption, B6: DC offset, 
B7: Voltage fluctuation, B8: Harmonics 
containing low-frequency components (<4 
f1)*. 
Long duration or steady state disturbances.   

Group-C C1: Harmonics without containing low- 
frequency components*, C2: Normal 
waveform. 

 * The two distorted waveforms B8 and C1 are regarded as one 
disturbance type in the final classification. In Group-B, waveforms 
containing only high frequency harmonics are clustered as normal ones 
with the recognition being deferred to the Group-C classification.  

It is seen from Table 1 that Group-A includes transient or 
“fast changing” disturbances (much higher frequency 
compared with the fundamental frequency f1). On the 



contrary, Group-B contains long-duration or steady state 
disturbances. This group of distortions is caused either 
directly by the variation of the fundamental frequency (higher 
or lower deviation) or by certain “slow changing” 
disturbances (at the order comparable to the f1). Group-C 
comprises only two members, the normal waveform or the 
one with high frequency harmonics (above 4th). As shown by 
the spectrum analysis in the following section, disturbances of 
Group-A and Group-B can be recognized respectively from 
the upper- and the lower-end frequency component of the 
transformed data. Since a wide range of harmonics (0~50th) is 
concerned by the classifier, however, quite a number of 
spectral components are needed for identifying harmonic 
distortions. In the designed classifier, harmonics below 4th are 
categorized into Group-B because the same lower-end 
spectral component can be utilized for the identification. In 
Group-B pattern recognition, nevertheless, it is difficult to 
differentiate harmonics without containing low-frequency 
components from normal waveforms. Consequently, the 
classification is deferred to Group-C where the middle sub-
band spectral contents are exploited to sort out the two  
 captured waveform 
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Figure 1.  Classification of power quality disturbances. 
  

members. It is seen that the division of the three group  
disturbances is based on their behaviors in frequency domain. 
By processing different type of disturbances separately, the 
recognition accuracy can be increased significantly. The 
training and testing data used in the developed recognition 
scheme are from the measurements carried out at a number of 
customer sites in Tasmania, Australia.  
 

III. DISTURBANCE CLASSIFICATION 
 
 Among different types of neural networks, the LVQ 
architecture is particularly appealing to pattern recognition 
applications. Unlike its counterparts MLP restricted to a 
single distortion measure, the LVQ can choose an appropriate 
criterion from a number of selections according to the 
specific problem. Aside from this, the LVQ architecture 
allows common training for general classification tasks and 
subsequent special training for a particular application [3]. It 
is known that each specific task needs an independent training 
in MLP design. 
 
 The neural approach also suffers a problem, i.e. the 
difficulty in estimating how well a given training set reflects 
an unknown underlying distribution of points and whether the 
neural networks encode the original structure [4]. In practice, 
statistical neural estimators require a “statistically 
representative” training set, which is not always satisfied 
unfortunately. For the available training samples, 
furthermore, inaccuracies or even errors are unavoidable. All 
these factors add uncertainties to the input-output relationship 
described by the training set. The fuzziness of the notion 
“statistically representative” compounds the problem.     

 
Based on the considerations addressed above, a neural-

fuzzy classifier is developed by exploiting the powerful 
capability of the LVQ architecture in pattern recognition and 
the flexibility of the FAM mapping in handling uncertainties. 
Fig. 1 illustrates the procedures throughout the classification 
of the power quality disturbances. A 5-level discrete WT is 
first applied to the captured waveform for isolating the 
disturbance features represented by the feature vectors, i.e., 
the approximation coefficients and the five-scale detail 
coefficients. Then the CD1 is utilized for classifying the four 
disturbances of Group-A. After that, if desired (the input is 
not a Group-A member), the CA5 is to be checked for the 
pattern recognition of Group-B. The classification of these 
two group disturbances is performed by evaluating the 
similarity measures with the code-words of the LVQ 
networks, and by inferring with the FAM rule-bases. Hence a 
database containing the code-words and a rule-base 
performing the FAM mapping should be built up in advance 
for Group-A and Group-B respectively. If fail to identify any 
disturbances belonging to these two groups, the input 
waveform must then be either of the two members of Group-
C: a normal waveform or a one with high frequency 
harmonics (above 4th). To sort out the two patterns, the 



middle scale transform-coefficients CD2~CD5 are employed. 
Due to the orthogonality of the wavelet adopted, the rms of 
the transform coefficients directly indicates the energy of the 
harmonics in the corresponding frequency range. Hence the 
rms is used as the criterion for Group-C classification. It 
should be noted that the CA5 used in Group-B could only be 
employed to ascertain the existence of low frequency 
harmonics (below 4th) other than excluding this type of 
distortion completely since the harmonics usually spread a 
wide spectrum. 

 
IV. FUZZY ASSOCIATIVE MEMORIES 

 
It can be seen that the similarity measure, although more 

reliable in dealing with the uncertainty of the training 
samples, is actually a modified Euclidean distance. Should 
the criterion of maximum similarity measure (shortest 
distance) be adopted, the classification results would be 
similar to that when only the neural network technologies 
were employed. During training and testing of the LVQ 
networks, it has been found that the minimum distance may 
not always indicate the right type of the input waveform. This 
is due to the fact that the training samples can hardly be 
sufficiently representative and the code-words thereby 
extracted may be unable to define perfect boundaries 
separating different patterns. To improve the classification, as 
a result, the developed recognition scheme uses the FAM 
rule-matrix to recall the disturbance type from the similarity 
measures, rather than directly reaching the conclusion with 
the winner of the competitive quantizer. 

 
V. DISTURBANCE RECOGNITION EXPERIMENTS 

 
A testing set containing the thirteen types of waveforms is 
used to verify the performance of the developed classifier. 
The input waveforms are processed by a 5-level WT to 
decompose into the approximation coefficients CA5 and the 5-
scale detail coefficients CD1~CD5. With the code-words 
evaluated from the training samples, the similarity measures 
are computed for each testing sample. By employing the 
FAM rules, the type of the disturbances is recognized. 
 

The recognition scheme has achieved a satisfactory 
performance. Table 2 summarizes the experiment results. For 
the whole testing set, the average correct recognition rate is 
higher than 93%, with each individual rate exceeding 90%. 
The average belief degree for the total classification is 0.929, 
which is very close to the average recognition rate. 

 
Should only the classification with the belief degrees above 

certain level be accepted, the accuracy will be increased 
accordingly. Table 3 provides the classification results using 
three different belief criteria. It is found that the recognition 
rate is approximately proportional to the belief degree 
criterion. This observation shows that the defined belief 

degree is a proper measure for the validity of the 
classification.  

 
TABLE 2. PERFORMANCE OF CLASSIFICATION 

 
Disturbanc

e 
types 

Number of 
testing samples 

Recognizing 
rates (%) 

Average 
belief degree 

A1 100 92 0.933 
A2 100 91 0.916 
A3 100 100 0.950 
A4 150 91 0.921 
B1 100 92 0.927 
B2 100 91 0.934 
B3 100 93 0.920 
B4 100  94 0.938 
B5 100 100 0.949 
B6 100 96 0.952 
B7 150 90 0.909 
C1* 100 91 0.913 
C2 100 92 0.912 

Recognizing  rate 
for whole testing 

set  

 
93.3% 

Average belief 
degree for whole 

testing set 

 
0.929 

 *Including B8 and C1 defined in Table 1. 
 

TABLE 3. RECOGNITION RATES WITH DIFFERENT 
BELIEF   DEGREE CRITERIA 

 
Degree of 

belief 
Disturbance 
types 

 
0.95 

 
0.92 

 
0.88 

A1 98.1% 95.8% 94.0% 
A2 96.6% 93.1% 92.0% 
A3 100% 100% 99.7% 
A4 94.4% 94.1% 91.1% 
B1 95.9% 94.5 93.3% 
B2 96.0% 94.2% 92.3% 
B3 100% 100% 100% 
B4 97.2% 94.2% 93.6% 
B5 99.3% 98.9% 98.5% 
B6 97.1% 96.3% 95.5% 
B7 93.4% 93.1% 91.5% 
C1 93.0% 92.7% 91.5% 
C2 92.9% 91.7% 90.5% 

Average 96.5% 95.3 94.1% 
 
VI. DISTURBANCE REDUCTION AT GENERATION 
 
    The most advanced area of neuro-fuzzy applications in 
power system generation control is the area of PSS design, 
where many successful applications were reported, Hsu et. 
al.[5]. The most popular FLC structure and algorithm used in 
PSS design is the one proposed by Hiyama [6]. In that design 
the stabilising signal UPSS is derived from the speed deviation 
∆ω  and the acceleration ∆ϖ . These two parameters are used 
to divide the phase plane ∆ ∆ω ϖ−  into two control sectors, 
acceleration and deceleration as shown in Fig 2. 
   
  The angle θ  derived from the phase plane is used to 
generate the PSS control signal UPSS in the form 
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where Gc(k) is a gain determined by a discontinuous function 
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Figure 2: ∆ ∆ω ϖ−  plan   Figure 3: Gain function 
proposed by Hiyama 
 
as shown in Fig. 3. Both N ( )θ  and ( )P θ  are fuzzy 
membership functions. However, this algorithm seems to be 
more system dependent than a FLC structure is ought to be. 
The above scheme has many parameters (e.g. Fa, Umax, Gc and 
Dr) that are adjusted and optimised according to some 
performance indices. This point would limit the superiority of 
such schemes within certain operational regions of the 
system. 
 

Rule base type FLCs are also used in many applications, 
however they seem to be of less popularity than the Hiyama 
algorithm. Due to the need of  a large rule base that causes 
lots of computational difficulties, some authors tend to 
optimise the number of rules used in the rule base, see 
Chakraborty [7]. 
 

Two control concepts are used in the  above mentioned 
FLC schemes: one based on the fuzzy set theory is applied in 
the PSS part and the other is based on the classical control in 
the exciter and regulator part. This mixed type control leads 
to facing some problems associated with both FLCs as well as 
conventional controllers design. This section introduces a 
novel excitation system that is totally based on fuzzy set 
theory in a combined single controller  called Shay-Exciter to 
produce the overall excitation control signal. The basic idea 
behind this scheme relies on the pre-controller manipulation 
and refining of the input parameters that are chosen to 
represent the status of the generation unit. Dynamics 
problems are covered by considering the speed deviation ∆ω , 
and steady state conditions are covered through consideration 
of the error in the generator terminal voltage. 
 

The parameter that needs to be processed previously to the 
final control action is ∆ω . The manipulation of ∆ω   
associates it a phase and an amplitude that is to be added 
directly to the error signal in the terminal voltage. The output 
of the summation point is the input to the final control stage, 
Shay-Exciter. Processing ∆ω  is performed more or less close  

logic as that followed by Hiyama in his FLBPSS. However, it 
differs in having fuzzy logic techniques to optimise and 
update the controller parameters on line. 
 

Manipulation of ∆ω  is performed on the basic idea of 
dividing the generator operation into six different operational 
sectors based on three factors, ( )∆ω k , ( )∆ω k − 1  and ( )ϖ k  
where ( ) ( ) ( )ϖ ω ωk k k= − −1 . These six different sectors 
can be realised in a boolean logic based on the sign of the 
three parameters as in Figure 4. 
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Figure 4: Operation sectors representation 

 
The first step of the Shay-Exciter pre-control manipulation 

involves the determination of the operation sector at the 
current moment. The magnitude of the processed signal as 
well as the sign are determined through different types of 
input processing for different sectors. In sectors 3 and 6 the 
amplitude associated to the ∆ω  factor is calculated at the 
initial design stage by the single input single output (SISO) 
FLC that uses ∆ϖ  as an input and produces a nonlinear step 
up or down amplification of ∆ω . The SISO classes and rule 
base are shown in Figure 5, the L/R COG defuzzification 
method is applied in this controller. 
 

The sign of the weighted output is determined at these two 
sectors to be positive (sector 6) and negative (sector 3). This 
sign definition is based on the equal area criterion analysis of 
the stability of a single machine connected to an infinite bus 
through a transmission line. For the remaining sectors, where 
the dynamics of the generator unit is of the most important 
concern, using the suggestions by  Ishigame et. al [8] for the 
sign of the weighted ∆ω  would result in a less robust 
controller under variations of operating conditions. In order 
to provide the fine switching between each two neighbouring 
sectors 1 and 2, 4 and 5, a fuzzy representation of these 
sectors is introduced based on the angle θsw . The sectors are 



represented as in Figure 6. Here the signed value of SHY (see 
the table in Figure 6) represents the desired sign and 
magnitude to be associated to the output signal resulting from 
the SISO system in Figure 5. 
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Figure 5. ∆ω  pre-control SISO FLC representation 
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Figure 6. Fuzzy sectors representation 

The rules used to update the angle θsw  are implemented in 
a SISO FLC in the following form: 
If the operation is at sector 1 and the acceleration is large,... 
 Then increase θsw  large (move it to the right ). 
....... 
If the operation is at sector 2 and the acceleration is large,... 
 Then decrease θsw  large (move it to the left ). 
This system has proved easier to implement than a classical 
FLC. The auxiliary FLCs used to update and tune the 
controller parameters apply relative measures that do not 
require careful adjustment of their internal characteristics 
when used for different systems. 
 

The last stage consists of a single SISO FLC having the 
representation shown on Figure 7 and using the L/R COG 
defuzzification method. The input to this controller is the F.B. 
signal resulting from a linear summation of the error in the 
terminal voltage and the refined ∆ω  input signal. 
 

input IN4 IN3 IN2 IN1 IZ IP1 IP2 IP3 IP4
output ON4 ON3 ON2 ON1 OZ OP1 OP2 OP3 OP4

rules table of Shay-Exciter
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Figure 7. Shay-Exciter representation 

 
VII. COMPUTER SIMULATION 

 
The Shay-Exciter system was tested and compared with a 
conventional exciter system Kothari et. al. [9], see appendix 
for system data. For a synchronous generator connected to an 
infinite bus through a transmission line, Figure 8. 
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Figure 8. General block diagram of the generator system 

The generator was subject to the disturbance of 20% 
reduction in its input mechanical torque Tm with the existence 
of noise added at the summation point. Figures 9-10 show the 
results of these tests. 
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Figure 9. Terminal voltage after 20% reduction     in Tm 



 ∆ω

0 5 10 15 20
-5

-4

-3

-2

-1

0

1
x 10-3

 Shay-Exciter

 Conventional Excitation

Time   (seconds)  
Figure 10. Speed deviation (∆ω ) after 20% reduction in Tm 

 
VIII. CONCLUSIONS 

 
The proposed recognition system provides a promising 

approach applicable in power quality monitoring as being 
verified by the experiment. The reasons of achieving high 
accuracy in the recognition lie in the effective removal of 
redundancy existing in the input waveforms. The unique 
signature of each disturbance can then be identified easily 
from the transform coefficients of the related sub-bands. 

 
Aside from the feature extractions, the recognition scheme 

has been designed to take advantage of the tremendous 
capability of LVQ networks to classify patterns and the 
flexibility of FAM rule-matrix to deal with the uncertainty of 
the underlying input-output relationship. After the training 
phase, the computation cost involved with the classification 
has been reduced significantly owing to the efforts in 
removing the redundancies and simplifying the scheme. 
Consequently, the proposed approach has the potential for on-
line applications. 
 

The simulation results demonstrate that the proposed fuzzy 
control system is superior to the conventional system under 
the effect of noise, that is the case in most practical 
implementations. The pre-control input refining stages and 
sector division of the operation have been proved as 
necessary for power generation control because they allow to 
cope with the highly nonlinear nature of the system and 
provide a suitable input representation of the dynamics of the 
system. 
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APPENDIX 

System parameters simulated: 
Generator: 

H s= 5 0.    xd = 16.    s x
d
' .= 0 32  xq = 155.  Tdo

' .= 6 0   s 

IEEE Type I excitation system: 
KA = 50.0 TA =0.05 s 
KE = -0.05 TE = 0.05 s 
KF = 0.05  TF = 0.5 s 
 
Transmission line: 
xe = 0.4  re = 0.0 
 
Operating condition: 
P= 0.8 Q= 0.6 v∞= 1.0      f= 50 Hz.  
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