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Introduction

“In the 1940s the neurophysiologist 
Donald Hebb … verified that once a 
neuron repeatedly excited another 
neuron, the threshold of excitation of 
the latter decreased; that is, the 
communication between them was 
facilitated by repeated excitation” 
(280).

Hebb’s Rule

Basic Form: Equation 6.1 (280)
Analogy: Figure 6-1 (280)

Effect of the Hebbian 
Update

Hebbian: Equation 6.2 (281)
Linear PE (y = wx): Equation 6.3 (281)
Unlike LMS or backpropagation, 
Hebbian learning is intrinsically 
unstable (281).

Associative Memory

“The Hebbian PE is a very simple 
system that creates a similarity 
measure in its input space according 
to the information contained in the 
weights” (283).
“The Hebbian PE thus implements a 
type of memory that is called an 
associative memory” (283).
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Data Representations in 
Multidimensional Spaces

A set of axes that are “attached” to the data 
cloud is called a data-dependent coordinate 
system (290).
The realignment of axes to include the 
direction of largest variance is called the 
principal coordinate system (290).
Figure 6-6 (290)
With a simple local learning rule, Hebbian 
automatically finds the axis of largest 
variance (292).

Oja’s Rule

“To make Hebbian learning useful we must 
create a stable version by normalizing the 
weights” (292).
Approximated by Equation 6.13 (292)
Applies a forgetting term for normalization, 
but causes forgetting of old associations 
(293).
Finds a normalized weight vector colinear
with the principal component of input data 
(296).

Principal Component 
Analysis

Feature Extraction: Projecting D-
dimensional data onto M-dimensional 
space, M < D (297).
Deflation method with non-local 
Sanger’s Rule: Equation 6.17 (299)
Applications (303-304):

Data Compression – Optimal
Classification – No Guarantees

Anti-Hebbian Learning

Anti-Hebbian Rule: Equation 6.19 
(304)
Output space becomes the orthogonal 
space of the input data (304).
Performs decorrelation from input to 
output (305).
Convergence of the weights! (305)

Summary

Any questions?


